Science Advances

Supplementary Materials for

Cryo-EM structure and regulation of human NAD kinase

Prakash P. Praharaj et al.

Corresponding author: Gilles Labesse, labesse@cbs.cnrs.fr; Gerta Hoxhaj, gerta.hoxhaj@utsouthwestern.edu

Sci. Adv. **11**, eads2664 (2025) DOI: 10.1126/sciadv.ads2664

This PDF file includes:

Table S1 Figs. S1 to S11

Site	Peptide Sequence	PhosphoPe	Abundance	Total	%	Phosp				
		ptide	of	peptide	modified	hosite®				
		modificatio	modification	abundance	peptide					
		ns	(10 ⁶)	(10 ⁶)						
S15	MTMNKESPDAAAYCCSACHGDETWSYNHPI	1xPhospho	23.431	181.948	12.88	3HTP				
	R	[S8]								
S15		1xPhospho	350.63	6896.52	5.08	3HTP				
	ELSPDAAAYCCSACHGDETWSYNHPIR	[S3]								
S15		1xPhospho	37.426	1849.1	2.02	3HTP				
045	ELSPDAAAYCCSACHGDETWSYNHPIRGR	[S3]	0.404	0000 50	0.0007					
515,			0.184	6896.52	0.0027					
SZ4 S11	ELSPDAAATCCSACHGDETWSTNHFIK	[SS, STZ]	ND	2.007	-					
344	AKSRSI SASPAI GSTK	IXF110Sp110	ND	2.097		TOTTE				
S46		1xPhospho	0.537	0.537	100	30HTP				
010	SRSI SASPAI GSTKEFR	IS31	0.007	0.007	100	001111				
S46		1xPhospho	80.528	429.29	18.76	30HTP				
	SRSLSASPALGSTK	[S3]								
S44,		2xPhospho	2.097	2.097	100					
S46	AKSRSLSASPALGSTK	[S3; S5]								
S48		1xPhospho	3.161	93.74	3.37	37HTP				
	SLSASPALGSTKEFRR	[S3]								
S46;		2xPhospho	103.22	429.29	24.04					
S48	SRSLSASPALGSTK	[S3; S5]								
S48;		2xPhospho	64.916	12857.7	0.5					
S50	SLSASPALGSTK	[S3; S5]	ND	400.00						
546;			ND	429.29						
540, \$50	SPSI SASPAI CSTK	[33, 35, 37]								
S64		1vPhospho	0.94	5 224	17.00	ллнтр				
004	PASQR	[S3]	0.04	0.224	17.55					
S64		1xPhospho	550.51	554.56	99.27	44HTP				
	TRSLHGPCPVTTFGPK	[S3]								
S64		1xPhospho	145.59	20746	0.702	44HTP				
	SLHGPCPVTTFGPK	[S1]								
T62;		3xPhospho	0.96	5.224	18.378					
S64;	TRSLHGPCPVTTFGPKACVLQNPQTIMHIQD	[T1; S3; T/S]								
T/S	PASQR									
S117		1xPhospho	29.61	2227.72	1.33					
0447	MRDASLLQPFK	[S5]	40.07	404004	0.07					
5117			49.97	18432.1	0.27					
S117	DASLLQFFK	[Job] 1vPhospho	2.64	860.8	0.3					
5117		[53]	2.04	009.0	0.5					
0450	DASLLQPFKELCTHLMEENMIVYVEK			5040.0						
5153				5316.8						
S152	INVLEUFAIAGUEGFGAVK	1vPhoenho		23/71 5	<u> </u>					
5155		[\$12]	ND	20471.0						
S371		1xPhospho		21843 4	0.05					
	IMLSPEAR	[S4]	10.15		0.00					
S395		1xPhospho	-	5930.09	0.03					
	HGDSISITTSCYPLPSICVR	[S4]	2.0							

Table S1. Post-translational modifications of NADK expressed in HEK-293 cells.

Site	Peptide Sequence	Methylation	Abundance	Total	%	Phosp
		events	of	peptide	modified	hosite®
			modification	abundance	peptide	
K12	MTMNKELSPDAAAYCCSACHGDETWSYNH	1xTrimethvl	77.5	181.948	42.59	
	PIR	[K5]				
K12	MTMNKELSPDAAAYCCSACHGDETWSYNH	1xDimethyl	ND	181.948		
	PIR	[K5]				
144.0				404.040		
K12,		1xDimethyl	ND	181.948		
19	MTMNKELSPDAAAYCCSACHGDETWSYNH	1xPhospho				
	PIR	[T2]				
R39	ELSPDAAAYCCSACHGDETWSYNHPIRGRA	1xDimethyl	4.52	4.52	100	3HTP
	К	[R27]				
R41	ELSPDAAAYCCSACHGDETWSYNHPIRGRA	1xTrimethyl	1.74	1.74	100	5HTP
K/3	ĸ	[R29] 1xTrimethyl	ND	2 007		
143	AKSRSLSASPALGSTK	[K2]	ND	2.037		
R45		1xDimethyl	ND	2.097		
	AKSRSLSASPALGSTK	[R4]				
R45	SRSLSASPALGSTK	1xMethyl [R2]	182.34	429.29	42.48	1HTP
R45		1xDimethyl	44.709	429.29	10.41	1HTP
K57	SRSLSASPALGSTK	[K2] 1xMethyl	1 176	12857 7	0.01	
N37	SLSASPALGSTKEFR	[K12]	1.170	12007.7	0.01	
K77		1xTrimethyl	ND	5.224		
		[K16];				
	TRSLHGPCPVTTFGPKACVLQNPQTIMHIQD	1xPhospho				
K77		[I/S]	17.75	409.04	4.25	
N//	SOR	[K14]	17.75	400.04	4.55	
K77	SLHGPCPVTTFGPKACVLQNPQTIMHIQDPA	1xTrimethyl	93.71	408.04	22.97	
	SQR	[K14]				
R97		1xDimethyl	ND	26137.2		
1/100	ACVLQNPQTIMHIQDPASQR	[R20]				
K123	DASU OPEKELOTHI MEENMIV/V/EK	1xTrimetnyi	ND	869.8		
K140		1xDimethvl	ND	15711.6		
	ELCTHLMEENMIVYVEK	[K17]				
K141	KVLEDPAIASDESFGAVK	1xMethyl [K1]	116.68	5316.8	2.19	
K141		1xTrimethyl		5316.8	0.04	
1/1 / 1	KVLEDPAIASDESEGAVK	[K1]	2.245	742.92	0.61	
K141	KVLEDPAIASDESFGAVKK		4.00	743.02	0.61	
	KVLEDPAIASDESFGAVKK	[K1]	ND	10.02		
K158		1xMethyl		23471.5	0.52	
	VLEDPAIASDESFGAVK	[K17]	121.53			
K158		1xTrimethyl	_	3100.82	0.19	
K150	VLEDPAIASDESFGAVKK	[K17]	5.74	2100.92	0.04	
0CT7		I XIVIETNYI [K17]	6 39	3100.82	0.21	
K158:		3xMethvl	0.00			
K159;		[K18; K19;		6.16		
K160	KVLEDPAIASDESFGAVKKK	K20]	ND			

R290		1xMethyl		8198.9	0.06					
	QAMQYQVLNEVVIDR	[R15]	4.69							
Site	Peptide Sequence	Acetylation	Abundance	Total	%	Phosp				
		events	of	peptide	modified	hosite®				
			modification	abundance	peptide					
			(10 ⁶)	(10 ⁶)						
K12	MTMNKESPDAAAYCCSACHGDETWSYNHPI	1xAcetyl [K5]	79.445	181.948	43.66					
	R									
K43	AKSRSLSASPALGSTK	1xAcetyl [K2]	ND	2.097						
K57		1xAcetyl	9.69	12857.7	0.08	2HTP				
	SLSASPALGSTK	[K12]								
K77	SLHGPCPVTTFGPKACVLQNPQTIMHIQDPA	1xAcetyl	61.67	408.04	15.11					
	SQR	[K14]								
T62;		1xPhospho	3.324	5.224	63.623					
K77	TRSLHGPCPVTTFGPKACVLQNPQTIMHIQD	[T1]; 1xAcetyl								
	PASQR	[K16]								
S64;		1xPhospho	ND	5.224						
K77	TRSLHGPCPVTTFGPKACVLQNPQTIMHIQD	[S3]; 1xAcetyl								
	PASQR	[K16]								
K102	LTWNKSPK	1xAcetyl [K5]	42.51	154.7	27.48					
K105	SPKSVLVIK	1xAcetyl [K3]	71.54	191.56	37.35					
K111	SVLVIKK	1xAcetyl [K6]	64.42	64.42	100					
K140		1xAcetyl	6.64	259.07	2.56					
	ELCTHLMEENMIVYVEKK	[K17]								
K141	KVLEDPAIASDESFGAVK	1xAcetyl [K1]	20.94	5316.8	0.39					
K158		1xAcetyl		743.82	1.93	1HTP				
	KVLEDPAIASDESFGAVKK	[K18]	14.35							
K158		1xAcetyl		23471.5	0.02	1HTP				
	VLEDPAIASDESFGAVK	[K17]	3.79							
K158		1xAcetyl		3100.82	0.88	1HTP				
	VLEDPAIASDESFGAVKK	[K17]	27.38							
K158		1xMethyl		3100.82	0.21	1HTP				
	VLEDPAIASDESFGAVKK	[K17]	6.39							

Α

																		. 1	β2	1								0	68																					
nadk_human																		_			•	•		5	20	0	Q.	ع	20	2	Q	Q.	20																	
																				4	41	0						4	12	0						4	3	ò						4 4	4 9	0				
nadk_human			•												. (Y	P	L	P	s	I C	v	R	DI	PV	s	D	WF	Ē	S	L	A	QC	L	ΗV	IN	V	R	KK	Q	AI	HF	E	EI	EB	E	EI	EE	E	3
nadk_xenle															. (Y	P	V	P	S	I C	F	R	DI	PV	N	D	WE	D	S	L.	A)	EC	L	ΗV	IN	v	R	ĸĸ	Q	NI	HF	Т	EI	DE	Е	EI	ΕE	GI	D
nadk_danre															. (F	P	L	P	S	I C	F	R	DI	PV	N	D	WE	Ē	S	L	A	2C	L	ΗV	IN	v	R	ĸĸ	Q	SI	HL	.C	LI	EB	Е	DI	F.		
nadk_drome															. 3	Ľ	P	V	P	C	I C	A	2	DS	21	S	D	WE	A	S	L	A)	DG	L	ΗV	IN	v	R	K R	2	K	CL	D	EI	LS	D	L'	r A	S	3
nadk_strpu			•												۰.	7 1	P	V.	A	s١	/C	S	I	DÇ	21	C	D	WE	D	S	Ľ	V)	EC	L	ΗV	IN	Е	R	2т	Q	K	SS	R	SI	K J	K	DI	KS	SI	N
pos5_yeast	Q	L	P	Γī	R	K	т	EI	NI	F	'N	N	SI	KI	KI	P	R	S	G	IJ	C	v	A	КJ	ΓE	N	D	W I	R	G	I	N	EL	L	GI	'N	S	S	R	L	TI	KR	Q	TI	DN	D				
nadk_pseae			•												. 1	ç	K	L	R	L]	C H	P	I		. D	H	N	ΥY	(E	I	C	R	r K	L	G١	G	S	R	LG	G	GI	D.								
)														

Fig. S1. Comparative sequence alignment and phylogenetic analysis of NADKs.

(A) Sequence alignment of NADKs. A multiple sequence alignment shown of cytosolic NADKs from representative animals (human: nadk_human, Xenopus: nadk_xenle, zebrafish: nadk_danre, drosophila: nadk_drome and see urchin: nadk_strpu), alongside the mitochondrial NADK from yeast (pos5_yeast) and from a bacterial pathogen, *Pseudomonas aeruginosa* (nadk_pseae). The catalytic aspartate is highlighted with a black star, and the functionally important residues from the C-tail (this study) are shown in black circle. The figure was generated using Espript (<u>https://espript.ibcp.fr/ESPript/ESPript/)</u>.

(**B**) Evolution of NADKs. A phylogenic tree of various NADKs was built using the software Ibis2Analyzer (<u>http://ibis2analyzer.lcqb.upmc.fr/</u>). Cytosolic NADKs from animals appear more closely related to those NADKs from gram (-) bacteria, than the human mitochondrial NADK2 (nadk2_human).

Figure S2: Comparative analysis of the cryo-EM full-length NADK_{FL} and crystal structure of a truncated hsNADK

(A) Electron density and molecular model of a monomer of apo NADK_{FL}.

(**B**) Comparison of apo NADK_{FL} cryo-EM monomer in green and that of the crystal structure of a truncated construct of hsNADK (PDB3PFN) in violet. The main rotation axis is shown in light grey. (**C**) Comparison of the active sites of apo NADK_{FL} and the crystal structure 3PFN. Zoom of the core of the catalytic domains showing the positions of the two pivots, namely V201 and S407, and two highly conserved residues, F211 and L212. The re-orientation of the catalytic aspartate D184 and its interactions with the backbone nitrogens of F211 and L212 are shown. Same color code as in (B).

(**D**) Interaction network connecting the N-tail (especially L98) and the hinge pivots (V201 and S407) through proline P200 in hsNADK (3PFN) and NADK_{FL} cryo-EM structure (color coded as in B). Panels B-D were drawn using PyMOL.

Figure S3: Biochemical characterization of hsNADK

(A) Thermal stability of NADK_{FL} (dark green) and NADK_{esv} (light green) in its apo form and in complex with NAD⁺ or NADP⁺.

(**B**) Relative kinetic parameters, steady state rate constant and Michaelis constant of NADK_{esv} compared to NADK_{FL} for NAD⁺ (color code as in A).

(C) Dissociation constants of NAD⁺ or NADP⁺ from NADK_{FL} and NADK_{esv} (color code as in A).

(**D**) ITC isotherms for the binding of NAD⁺ and NADP⁺ to NADK_{FL} or NADK_{esv} are shown. Values deduced from the isotherms are displayed under each curve.

(E) The electron density for the NAD⁺ molecule bound to NADK_{esv} is shown in cyan surface. The ligand and the side chain of D184 are shown in sticks.

(**F**) Electron density and model of the active site around histidine H351 in the apo-form of NADK_{FL}. The electron density is shown in cyan surface, and protein residues are shown in dark green sticks.

(G) Electron density and model of the active site around histidine H351 in the NAD⁺-bound form of NADK_{esv}. The electron density is shown in cyan surface, and protein residues are shown in orange sticks.

NADK

15 10

Molecular weight (kDa)

NADK 430-446 (HEK-293) NAD* - + - + - + - + - + - + Molecular weight (kDa) -

NADK_{R430A} (HEK-293)

Figure S4: Proteolysis profiles of various hsNADK constructs.

(**A**, **B**) A panel of diluted proteases was used to partially digest (1 hour) different hsNADK constructs (purified from mammalian cells or bacteria), followed by analysis with SDS-PAGE gels. Constructs labeled as described in the text: NADK_{FL} (HEK-293), NADK_{FL} (*E. coli*), NADK_{esv} (*E. coli*), NADK $_{\Delta 1-87}$ (HEK-293), NADK $_{\Delta 430-446}$ (HEK-293), and NADK_{R430A} (HEK-293) were treated with the indicated proteases. Proteases used include ND = Not Digested, α -C = α -Chymotrypsin, EG-C = Endoproteinase Glu-C, EL = Elastase, TR = Trypsin, TH = Thermolysin Br = Bromelain, PE = Pepsin, CL = Clostripain, A-E = Actinase-E, SU = Subtilisin.

Figure S5: Thermal stability of various hsNADK constructs.

The thermostability of NADK_{FL} purified from bacteria (dark green) and HEK-293 cells (dark blue) is compared with that of several hsNADK_{FL} mutants purified from HEK-293 cells, both in the absence and presence of ligands (NAD⁺ or NADP⁺).

Fig. S6. Impact of the N-terminal deletions on cellular NAD(P)(H) pools.

(A) Schematics of labeling of NAD⁺ and NADP⁺ from ²D₄-nicotinamide. Redox-active positions are indicated.

(**B**) Normalized peak areas showing total NAD⁺, NADP⁺, and NADPH pools from NADK-deficient HEK-293 cells expressing either empty vector (EV) or the indicated NADK variants (WT, Δ 1-37, Δ 1-68, Δ 1-87, Δ 81-90, and ISO3). All the data are shown as the mean ± S.E.M. of biological triplicates from at least two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 were calculated with one-way ANOVA and Sidak Post-hoc test.

Α

AlphaFold 2.2 model/NADKFL-apo

Figure S7. Structural analysis of the C-terminal tail of NADK

(A) Zoom in the C-terminal region of the hsNADK. Comparison of the three cryo-EM structure hsNADK_{FL}-apo (teal), hsNADK_{esv}-apo (green), and hsNADK_{esv}-NAD⁺ (orange). These structures highlight the positioning of a conserved and functionally important tryptophan W427 relative to the binding site of NAD⁺.

(**B**) Zoom in the cryo-EM structures of hsNADK. Side-chains of hydrophobic residues (F418, L421 from one monomer and F355' and I358' from a second monomer) in contact with the tryptophan W427 are shown in stick, while the remaining of the structure is shown as ribbons.

(**C**) Zoom in the cryo-EM structures of hsNADK. Side-chains of the conserved asparagine N428 (following W427) and those of the interacting residues (T309', T310' and S352' from a second monomer) are shown in stick, while the remaining of the structure is shown as ribbons.

(**D**) Comparison of the C-termini of hsNADK and yeast POS5 (PDB3AFO). The NAD⁺-bound structure of hsNADK_{esv} and the NAD⁺-bound form of POS5 are shown in orange and cyan, respectively. The tryptophan W427 and arginine R430 and the equivalent residues in yeast POS5 (F400 and F404) are shown in stick.

(E) Zoom in the region of the C-tail of hsNADK, highlighting the positions of the bound NAD⁺ molecules and conserved functionally important residues (W427, R430) that are visible in the cryoEM structures of hsNADK. The protein is shown as grey ribbons while the NAD⁺ and the side-chains of W427 and R430 are shown in orange sticks. The electron density from hsNADK_{esv}-NAD⁺ is shown in orange surface.

(**F**) Hybrid model of C-tail of hsNADK. Zoom in the region of C-tail of hsNADK highlights the positions of conserved functionally important residues (W427, R430, Q433, and F436). The C-tail predicted by Alphafold was slightly reoriented to fit into the residual density of hsNADK_{FL}-apo. The C-terminal helix and tail are shown in dark-green ribbons, while the hybrid model is in blue ribbons. The extra electron density from hsNADK_{FL}-apo is shown in cyan surface. Panels A-F are drawn using PyMOL.

Fig. S8. Effects of the C-terminal NADK mutations on cellular NAD(P)(H) pools.

Normalized peak areas showing total NAD⁺, NADP⁺, and NADPH pools from NADK-deficient HEK-293 cells expressing either empty vector (EV) or the indicated NADK variants (WT, Δ 430-446, W427G, R430A, and F436A). All the data are shown as the mean ± S.E.M. of biological triplicates from at least two independent experiments. ****p < 0.0001 was calculated with one-way ANOVA and Sidak Post-hoc test.

Figure S9: Cryo-EM image processing for NADK_{FL}.

- (A) Flowchart of the cryo-EM data processing of NADK $_{\mbox{\scriptsize FL}}$.
- (**B**) The Euler angle distribution plot from cryoSPARC.
- (C) The gold-standard Fourier shell correlation (GS-FSC) curves from cryoSPARC.
- (**D**) Local resolution estimation of the cryo-EM map of NADK_{FL}.

Figure S10: Cryo-EM image processing for NADK_{esv}.

- (A) Flowchart of the cryo-EM data processing of $NADK_{esv}$.
- (**B**) The Euler angle distribution plot from cryoSPARC.
- (C) The gold-standard Fourier shell correlation (GS-FSC) curves from cryoSPARC.
- (D) Local resolution estimation of the cryo-EM map of NADK $_{\rm esv}.$

Figure S11: Cryo-EM image processing for NADK_{esv}-NAD⁺.

- (A) Flowchart of the cryo-EM data processing of NADK_{esv} -NAD+.
- (**B**) The Euler angle distribution plot from cryoSPARC.
- (C) The gold-standard Fourier shell correlation (GS-FSC) curves from cryoSPARC.
- (**D**) Local resolution estimation of the cryo-EM map of $NADK_{esv}$ - NAD^+ .