
 Supplementary Material 

 CARDBiomedBench Statistics 

 # of Seed Questions  80 questions 

 # of Unique Template Questions  40 questions 

 # of Augmented Questions  68k+ questions 

 # of Biological Categories  10 categories 

 # of Reasoning Categories  9 categories 

 Median Question Token Length  15 tokens 

 Total Question Tokens  184k+ tokens 

 Median Answer Token Length  34 tokens 

 Total Answer Tokens  403k+ tokens 

 Table S1:  Summary of CARDBiomedBench statistics, including  approximate token counts using OpenAI’s tiktoken 
 with GPT-4o as the tokenizing model. 

 Categorization of Reasoning Types 
 Questions in CARDBiomedBench are categorized based on complexity and operations required to retrieve data: 

 1.  Select:  Single-criterion filtering (e.g., gene name,  drug name, or SNP identifier). These are typically 
 straightforward queries 

 2.  Multi-Filter:  Queries requiring filtering by multiple  criteria (e.g., gene name, disease, and drug approval 
 status). 

 3.  Threshold:  Queries that involve applying a statistical  or numerical threshold to filter data. This is often 
 used in genetic studies where significance thresholds (e.g., p-values) are applied. 

 4.  Aggregate (Counting):  Applied when the query involves  determining the number of occurrences or 
 summarizing data that meets specific criteria. 

 5.  Sorting:  Ordering data based on a specific attribute,  such as significance levels, effect sizes, and dates. 
 6.  Data Retrieval:  Data Retrieval could be seen as an  implicit part of all queries. However, when a query's 

 primary function is to pull out additional data based on a simple condition (like alternate names for a drug), 
 it becomes more relevant to highlight it. For more complex queries, the emphasis is on the complexity (e.g., 
 filtering, joining, calculating), and the data retrieval aspect is inherent. 

 7.  Join:  Queries that conceptually involve combining  data from different sources or related data points, even if 
 the data is physically stored in a single table. 

 8.  Calculation:  Queries that require mathematical calculations  to generate new insights into the data. This 
 category is used for things such as calculating allele frequencies or SMR values. 

 9.  Comparative Analysis:  Applied when queries require  comparing values across different sources to check 
 for trends or differences. 



 Drug Gene Targets 

 All drug-related questions and answers are based on data from the Open Targets Platform (version 23.09) and the 
 ChEMBL Database (version 33), both updated in 2023. Additionally, the term gene or genetic target is used 
 consistently across questions, regardless of whether a drug specifically targets proteins, enzymes, or other molecules. 
 This choice reflects the common practice of referencing drug targets by their gene IDs and allows for the 
 straightforward adaptation of questions into template formats. 

 Challenging Questions 

 Figure S2:  GPT-4o struggling to answer a query from  CARDBiomedBench involving p-values. Highlighted in red 
 are specific failures such as: providing a hallucinated p-value. This example highlights the limitations of current 
 LLMs in handling specialized, data-intensive queries in the field of biological research, underscoring the need for 
 domain-specific adaptation. 



 Template Question Criteria Details 
 While the 80 original questions were unique when viewed in isolation, many had structural similarities when 
 transitioned into the context of templating. For example, the original questions: 

 A.  “  When was Quazepam assigned a United States Adopted  Name (USAN) and approved for use by the 
 FDA?” 

 B.  “When was Sonidegib Phosphate assigned a United States assigned name (USAN)?” 
 These questions would be considered unique on their own, however, in a template setting they would provide 
 redundant information. 

 Throughout the process of selecting potential template questions, we verified that the distribution of biological 
 categories and reasoning skills required to answer them closely reflected that of the full set, ensuring that the 
 findings on the augmented questions were representative of the original seed questions. 

 Templating questions were also selected by their ability to be adapted to an automated process while maintaining 
 accurate responses. Their structure allowed us to generate accurate responses using Python scripts by substituting 
 variables like drug and gene names and filtering for biological logic, as demonstrated in Figure 1. This distinction in 
 the selection process was particularly important to ensure the accuracy of our benchmark as more complex questions 
 need a more comprehensive biological perspective that a python script can not provide. 
 For example: 

 “Which morphinan scaffold derived medications have been modified for extended-release (ER) or sustained-release 
 (SR) using Polistirex?” 

 relies on a domain expert's knowledge of drug chemistry and categorization, which when expanded to a template 
 question, becomes convoluted and risks comprehensiveness if answered by a script alone. 

 Some template questions were modified slightly for clarity. For instance, a template might request the genomic 
 location for a single SNP instead of two, as in the original version. 

 Figure S3:  Example of refinement from a seed to a  template question. The seed question requests the genomic 
 location of two SNP’s while the template question is focused to only request one. 

 Template Question Sampling Method 
 Since many questions produced responses that could be classified as either “Yes” or “No”, we used this to create a 
 well distributed dataset. For questions that naturally produced less than 2,000 rows, we used all available data. For 
 questions with over 2,000 rows, we adjusted sampling to maintain a ratio of ¾ “Yes” and ¼ “No” responses. If there 



 were less than 1,500 “Yes” rows, we kept all “Yes” and randomly sampled the remaining “No” rows to reach 2,000. 
 If the “Yes” rows exceeded 1,500, we took a random sample of 1,500 “Yes” and 500 “No” responses. 

 For running the experiments detailed in this paper, we created the “test” set by randomly sampling 270 questions 
 from each template question where available. In the case where there were less than 270, all were included. This 
 resulted in a “test” set of ~10k examples. 

 Specification and cost used for running models 
 The open-source models were run using the HuggingFace Transformers library on NIH’s BioWulf HPC at the NIH, 
 Bethesda, MD (  http://biowulf.nih.gov  ) which has 76  A100 nodes, each with 32 x 2.8 GHz (AMD Epyc 7543p), 
 hyperthreading enabled, 256 MB level 3 cache, 4 x NVIDIA A100 GPUs (80 GB VRAM, 6912 cores, 432 Tensor 
 cores), NVLINK among plenty of other computational resources. The approximate total GPU inference runtime for 
 these experiments was 182 GPU hours in order to run the open-source models on our in-house GPU servers. The 
 private sourced models are varying in costs/token, a breakdown of the incurred cost is shown in a table below. All 
 models were run with their latest versions in September of 2024. 

 Table S4:  Cost breakdown of collecting responses and  grading them via BioScore for our experiments. Each model 
 has varying costs per token and number of tokens it responds with so cost is broken down by model. 

 We selected model hyperparameters in order to create a fair evaluation framework. Temperature was set to zero to 
 get deterministic responses. A maximum token limit of 1024, as this was just over the benchmark answers max 
 token count. In accordance with the known power of prompt engineering, we included a small system prompt to 
 usher the model to respond to the questions a certain way. This was to encourage responses that aligned with the 
 biomedical semantic space as well as give the opportunity to abstain to answer. 

http://biowulf.nih.gov/


 Figure S5:  The complete system prompt given to each LLM along with the question, asking explicitly to abstain 
 when they are unsure. 

 Implementation Details for BioScore 
 The BioScore template prompt is written below and filled in with the appropriate question, gold standard response, 
 and predicted response. This prompt is sent to the GPT-4o API and the grades parsed from the API response. These 
 are checked for consistency with the rubric’s scoring mechanism for a valid number. As described above, in the case 
 of abstention the response is assigned a score of -1. These abstained questions are not included in the final BioScore, 
 as they are counted up separately to determine the AR. Similar hyperparameters to the model responses above were 
 used: temperature set to 0, maximum token count of 1024, and a similar system prompt without the instructions to 
 abstain. We elected to use GPT-4o as our grading model as it is one of the most widely adopted models for 
 evaluation and acknowledge that it may be biased towards its own responses, hence why we evaluated seven 
 different models. 

 Figure S6:  The complete BioScore grading prompt, to be filled in with appropriate question {question},  domain 
 expert annotated “gold standard response” {golden_response}, and an LLM’s attempted answer 
 {predicted_response}. 

 Our goal in creating BioScore was to design a nuanced system for assessing LLM responses that allows for various 
 levels of correctness and relevance. We began by recognizing that not all responses would be entirely correct, so we 



 developed a tiered scoring system to reward these varying degrees of accuracy; 3 points for exact matches, 2 points 
 for close matches, 1 point for partial matches. 

 We also determined a need to account for irrelevant information by taking deductions, this too is implemented in 
 varying degrees. For responses that contain irrelevant information that doesn’t take away from the overall message 
 we deduct 0.5 points, to discourage unnecessary elaboration. For responses that contain irrelevant information that 
 distracts or contradicts the overall message we deduct 1 point to reflect the negative impact on the response. 
 To encourage honesty we included a provision which assigned -1 points when a model reports that it doesn’t know 
 the answer which emphasizes that it’s better to admit to a knowledge gap than to provide incorrect information. 

 Error Analysis 
 Error analysis was conducted on the template responses to identify common failure modes of the model. This 
 includes hallucinated responses, incomplete answers, and the generation of irrelevant information. While model 
 abstentions are generally considered good, they were also explored in this section to better understand the models 
 abilities. Insights from this analysis were used to refine our understanding of the model's limitations and to suggest 
 areas for future improvement. 

 Figure S7:  BioScore grading metric applied to the  question “What is the ChEMBL ID of the drug Sunitinib?”. The 
 first column represents the highest score, 3 points, for an exact match. In the second column, a deduction of 0.5 
 points is applied, yielding a BioScore of 2.5, due to unnecessary elaboration in the response. The third column 
 illustrates an incorrect ChEMBL ID for Sunitinib but a correct ID for a related compound, resulting in a partial 
 credit score of 1. In cases of a refusal to respond, a score of -1 is assigned, as seen in the fourth and fifth columns. 
 Finally, an incorrect response receives a score of 0. 



 Figure S8:  Barchart showing the percentage of Gemini  API “safety errors” by Bio Category. They are a result of 
 Gemini API's safety filters, in particular the harm category “Dangerous Content”. Error rate can range between 0% 
 and 100%, in the context of our Q/A lower is better as none of our questions should be deemed dangerous. 

 Taking a closer look at the gemini model abstentions due to API safety errors across various biological categories we 
 can see that they occur in drug focused questions, and in particular pharmacology. These pharmacology questions 
 aim to identify how drugs interact with biological systems, the mechanisms through which they exert effects, and 
 specific characteristics like their molecular type or action type (e.g., as inhibitors, agonists, or binding agents). This 
 classification is significant as pharmacology centers on understanding drug actions at both cellular and systemic 
 levels, crucial for developing effective and safe therapeutics. 

 Lexical and Semantic Scores 
 We also evaluated the model-generated responses using conventional lexical and semantic metrics. Lexical metrics 
 evaluate the token overlap between model-generated and ground truth analyses. Semantic metrics evaluate the 
 semantic similarity between the model-generated and ground truth analyses. We computed one lexical metric 
 (BLEU),  34  and three semantic metrics (ROUGE-1, ROUGE-L,  and BERTScore).  35,36  However, these conventional 
 metrics of text similarity are not enough when the generated text is long and contains nuanced analysis. Figures S9 
 and S10 demonstrate this clearly. BioScore was able to capture the differences between a good answer and ground 
 truth, while the traditional NLP metrics did not provide such insights. The key differences are that BioScore is able 
 to (1) differentiate between an incorrect answer and an abstention from answering, (2) assign higher scores based on 
 a predefined point system that awards performance according to how an expert biologist would expect an answer. 

https://paperpile.com/c/NMrdCX/qzIsl
https://paperpile.com/c/NMrdCX/sT08i+gWyjr


 Figure S9:  Performance of various state-of-the-art  AI models on CARDBiomedBench (measured via BioScore). 
 The Abstain Rate (AR) for each model (i.e., the ratio of the cases with the model's self reported “I don’t know”) are 
 also provided under each bar. A model with a higher BioScore and lower AR is more desirable. Models are sorted by 
 decreasing median BioScore, followed by decreasing Abstain Rate (AR), and then increasing spread (interquartile 
 range). Ranges are between 0.0 and 1.0, with higher BioScore and low AR being more desirable. 



 Figure S10:  Boxplot of Performance of various state-of-the-art  AI models on CARDBiomedBench (measured via 
 traditional NLP metrics). The order of models is preserved from the Figure above. As shown,  traditional NLP 
 metrics do not accurately capture performance on CARDBiomedBench.  This is the motivation behind our more 
 fine-grained, rubric-based evaluation metric BioScore and accompanying AR. Ranges are between 0.0 and 1.0, with 
 higher being more desirable. 

 We find that modern LLMs have significant room for improvement in the NDD domain as measured by BioScore 
 and AR. Models all had an underwhelming performance on a subset of around 10k examples CARDBiomedBench 
 as a whole with mean BioScore falling between 0.48 and 0.60 and AR between 0.10 and 0.60. This indicates that the 
 models are abstaining from answering a large number of the questions and when they do respond, the quality is 
 suffering. 



 Table S11:  The tables report the Mean and 95% CI for  each custom and NLP metric across different models. Ranges 
 are between 0.0 and 1.0, with higher for all metrics and low AR being more desirable. 

 Figure S12:  A, heatmap of mean BioScore by model (x-axis) and biological category (y-axis). B, accompanying 
 Abstention Rates (AR). Higher BioScore (blue) and lower AR (white) are more desirable while low BioScore (red) 
 and high AR (orange) are considered poor performance. Cells corresponding to categories with insufficient data (less 
 than 5 responses) are displayed in dark gray and annotated with 'NA' to denote unavailability of reliable data. Ranges 
 are between 0.0 and 1.0, with higher BioScore and low AR being more desirable. 



 Figure S13:  A, a heatmap  of Quality Rate by model (x-axis) and reasoning category (y-axis), and B is the same 
 heatmap Safety Rates. Higher Quality Rate and Safety Rate (blue) are more desirable while low of either (red) are 
 considered poor performance. Ranges are between 0.0 and 1.0, with higher being more desirable. 


