
‭Supplementary Material‬

‭CARDBiomedBench Statistics‬

‭# of Seed Questions‬ ‭80 questions‬

‭# of Unique Template Questions‬ ‭40 questions‬

‭# of Augmented Questions‬ ‭68k+ questions‬

‭# of Biological Categories‬ ‭10 categories‬

‭# of Reasoning Categories‬ ‭9 categories‬

‭Median Question Token Length‬ ‭15 tokens‬

‭Total Question Tokens‬ ‭184k+ tokens‬

‭Median Answer Token Length‬ ‭34 tokens‬

‭Total Answer Tokens‬ ‭403k+ tokens‬

‭Table S1:‬‭Summary of CARDBiomedBench statistics, including‬‭approximate token counts using OpenAI’s tiktoken‬
‭with GPT-4o as the tokenizing model.‬

‭Categorization of Reasoning Types‬
‭Questions in CARDBiomedBench are categorized based on complexity and operations required to retrieve data:‬

‭1.‬ ‭Select:‬‭Single-criterion filtering (e.g., gene name,‬‭drug name, or SNP identifier). These are typically‬
‭straightforward queries‬

‭2.‬ ‭Multi-Filter:‬‭Queries requiring filtering by multiple‬‭criteria (e.g., gene name, disease, and drug approval‬
‭status).‬

‭3.‬ ‭Threshold:‬‭Queries that involve applying a statistical‬‭or numerical threshold to filter data. This is often‬
‭used in genetic studies where significance thresholds (e.g., p-values) are applied.‬

‭4.‬ ‭Aggregate (Counting):‬‭Applied when the query involves‬‭determining the number of occurrences or‬
‭summarizing data that meets specific criteria.‬

‭5.‬ ‭Sorting:‬‭Ordering data based on a specific attribute,‬‭such as significance levels, effect sizes, and dates.‬
‭6.‬ ‭Data Retrieval:‬‭Data Retrieval could be seen as an‬‭implicit part of all queries. However, when a query's‬

‭primary function is to pull out additional data based on a simple condition (like alternate names for a drug),‬
‭it becomes more relevant to highlight it. For more complex queries, the emphasis is on the complexity (e.g.,‬
‭filtering, joining, calculating), and the data retrieval aspect is inherent.‬

‭7.‬ ‭Join:‬‭Queries that conceptually involve combining‬‭data from different sources or related data points, even if‬
‭the data is physically stored in a single table.‬

‭8.‬ ‭Calculation:‬‭Queries that require mathematical calculations‬‭to generate new insights into the data. This‬
‭category is used for things such as calculating allele frequencies or SMR values.‬

‭9.‬ ‭Comparative Analysis:‬‭Applied when queries require‬‭comparing values across different sources to check‬
‭for trends or differences.‬



‭Drug Gene Targets‬

‭All drug-related questions and answers are based on data from the Open Targets Platform (version 23.09) and the‬
‭ChEMBL Database (version 33), both updated in 2023. Additionally, the term gene or genetic target is used‬
‭consistently across questions, regardless of whether a drug specifically targets proteins, enzymes, or other molecules.‬
‭This choice reflects the common practice of referencing drug targets by their gene IDs and allows for the‬
‭straightforward adaptation of questions into template formats.‬

‭Challenging Questions‬

‭Figure S2:‬‭GPT-4o struggling to answer a query from‬‭CARDBiomedBench involving p-values. Highlighted in red‬
‭are specific failures such as: providing a hallucinated p-value. This example highlights the limitations of current‬
‭LLMs in handling specialized, data-intensive queries in the field of biological research, underscoring the need for‬
‭domain-specific adaptation.‬



‭Template Question Criteria Details‬
‭While the 80 original questions were unique when viewed in isolation, many had structural similarities when‬
‭transitioned into the context of templating. For example, the original questions:‬

‭A.‬ ‭“‬‭When was Quazepam assigned a United States Adopted‬‭Name (USAN) and approved for use by the‬
‭FDA?”‬

‭B.‬ ‭“When was Sonidegib Phosphate assigned a United States assigned name (USAN)?”‬
‭These questions would be considered unique on their own, however, in a template setting they would provide‬
‭redundant information.‬

‭Throughout the process of selecting potential template questions, we verified that the distribution of biological‬
‭categories and reasoning skills required to answer them closely reflected that of the full set, ensuring that the‬
‭findings on the augmented questions were representative of the original seed questions.‬

‭Templating questions were also selected by their ability to be adapted to an automated process while maintaining‬
‭accurate responses. Their structure allowed us to generate accurate responses using Python scripts by substituting‬
‭variables like drug and gene names and filtering for biological logic, as demonstrated in Figure 1. This distinction in‬
‭the selection process was particularly important to ensure the accuracy of our benchmark as more complex questions‬
‭need a more comprehensive biological perspective that a python script can not provide.‬
‭For example:‬

‭“Which morphinan scaffold derived medications have been modified for extended-release (ER) or sustained-release‬
‭(SR) using Polistirex?”‬

‭relies on a domain expert's knowledge of drug chemistry and categorization, which when expanded to a template‬
‭question, becomes convoluted and risks comprehensiveness if answered by a script alone.‬

‭Some template questions were modified slightly for clarity. For instance, a template might request the genomic‬
‭location for a single SNP instead of two, as in the original version.‬

‭Figure S3:‬‭Example of refinement from a seed to a‬‭template question. The seed question requests the genomic‬
‭location of two SNP’s while the template question is focused to only request one.‬

‭Template Question Sampling Method‬
‭Since many questions produced responses that could be classified as either “Yes” or “No”, we used this to create a‬
‭well distributed dataset. For questions that naturally produced less than 2,000 rows, we used all available data. For‬
‭questions with over 2,000 rows, we adjusted sampling to maintain a ratio of ¾ “Yes” and ¼ “No” responses. If there‬



‭were less than 1,500 “Yes” rows, we kept all “Yes” and randomly sampled the remaining “No” rows to reach 2,000.‬
‭If the “Yes” rows exceeded 1,500, we took a random sample of 1,500 “Yes” and 500 “No” responses.‬

‭For running the experiments detailed in this paper, we created the “test” set by randomly sampling 270 questions‬
‭from each template question where available. In the case where there were less than 270, all were included. This‬
‭resulted in a “test” set of ~10k examples.‬

‭Specification and cost used for running models‬
‭The open-source models were run using the HuggingFace Transformers library on NIH’s BioWulf HPC at the NIH,‬
‭Bethesda, MD (‬‭http://biowulf.nih.gov‬‭) which has 76‬‭A100 nodes, each with 32 x 2.8 GHz (AMD Epyc 7543p),‬
‭hyperthreading enabled, 256 MB level 3 cache, 4 x NVIDIA A100 GPUs (80 GB VRAM, 6912 cores, 432 Tensor‬
‭cores), NVLINK among plenty of other computational resources. The approximate total GPU inference runtime for‬
‭these experiments was 182 GPU hours in order to run the open-source models on our in-house GPU servers. The‬
‭private sourced models are varying in costs/token, a breakdown of the incurred cost is shown in a table below. All‬
‭models were run with their latest versions in September of 2024.‬

‭Table S4:‬‭Cost breakdown of collecting responses and‬‭grading them via BioScore for our experiments. Each model‬
‭has varying costs per token and number of tokens it responds with so cost is broken down by model.‬

‭We selected model hyperparameters in order to create a fair evaluation framework. Temperature was set to zero to‬
‭get deterministic responses. A maximum token limit of 1024, as this was just over the benchmark answers max‬
‭token count. In accordance with the known power of prompt engineering, we included a small system prompt to‬
‭usher the model to respond to the questions a certain way. This was to encourage responses that aligned with the‬
‭biomedical semantic space as well as give the opportunity to abstain to answer.‬

http://biowulf.nih.gov/


‭Figure S5:‬‭The complete system prompt given to each LLM along with the question, asking explicitly to abstain‬
‭when they are unsure.‬

‭Implementation Details for BioScore‬
‭The BioScore template prompt is written below and filled in with the appropriate question, gold standard response,‬
‭and predicted response. This prompt is sent to the GPT-4o API and the grades parsed from the API response. These‬
‭are checked for consistency with the rubric’s scoring mechanism for a valid number. As described above, in the case‬
‭of abstention the response is assigned a score of -1. These abstained questions are not included in the final BioScore,‬
‭as they are counted up separately to determine the AR. Similar hyperparameters to the model responses above were‬
‭used: temperature set to 0, maximum token count of 1024, and a similar system prompt without the instructions to‬
‭abstain. We elected to use GPT-4o as our grading model as it is one of the most widely adopted models for‬
‭evaluation and acknowledge that it may be biased towards its own responses, hence why we evaluated seven‬
‭different models.‬

‭Figure S6:‬‭The complete BioScore grading prompt, to be filled in with appropriate question {question},  domain‬
‭expert annotated “gold standard response” {golden_response}, and an LLM’s attempted answer‬
‭{predicted_response}.‬

‭Our goal in creating BioScore was to design a nuanced system for assessing LLM responses that allows for various‬
‭levels of correctness and relevance. We began by recognizing that not all responses would be entirely correct, so we‬



‭developed a tiered scoring system to reward these varying degrees of accuracy; 3 points for exact matches, 2 points‬
‭for close matches, 1 point for partial matches.‬

‭We also determined a need to account for irrelevant information by taking deductions, this too is implemented in‬
‭varying degrees. For responses that contain irrelevant information that doesn’t take away from the overall message‬
‭we deduct 0.5 points, to discourage unnecessary elaboration. For responses that contain irrelevant information that‬
‭distracts or contradicts the overall message we deduct 1 point to reflect the negative impact on the response.‬
‭To encourage honesty we included a provision which assigned -1 points when a model reports that it doesn’t know‬
‭the answer which emphasizes that it’s better to admit to a knowledge gap than to provide incorrect information.‬

‭Error Analysis‬
‭Error analysis was conducted on the template responses to identify common failure modes of the model. This‬
‭includes hallucinated responses, incomplete answers, and the generation of irrelevant information. While model‬
‭abstentions are generally considered good, they were also explored in this section to better understand the models‬
‭abilities. Insights from this analysis were used to refine our understanding of the model's limitations and to suggest‬
‭areas for future improvement.‬

‭Figure S7:‬‭BioScore grading metric applied to the‬‭question “What is the ChEMBL ID of the drug Sunitinib?”. The‬
‭first column represents the highest score, 3 points, for an exact match. In the second column, a deduction of 0.5‬
‭points is applied, yielding a BioScore of 2.5, due to unnecessary elaboration in the response. The third column‬
‭illustrates an incorrect ChEMBL ID for Sunitinib but a correct ID for a related compound, resulting in a partial‬
‭credit score of 1. In cases of a refusal to respond, a score of -1 is assigned, as seen in the fourth and fifth columns.‬
‭Finally, an incorrect response receives a score of 0.‬



‭Figure S8:‬‭Barchart showing the percentage of Gemini‬‭API “safety errors” by Bio Category. They are a result of‬
‭Gemini API's safety filters, in particular the harm category “Dangerous Content”. Error rate can range between 0%‬
‭and 100%, in the context of our Q/A lower is better as none of our questions should be deemed dangerous.‬

‭Taking a closer look at the gemini model abstentions due to API safety errors across various biological categories we‬
‭can see that they occur in drug focused questions, and in particular pharmacology. These pharmacology questions‬
‭aim to identify how drugs interact with biological systems, the mechanisms through which they exert effects, and‬
‭specific characteristics like their molecular type or action type (e.g., as inhibitors, agonists, or binding agents). This‬
‭classification is significant as pharmacology centers on understanding drug actions at both cellular and systemic‬
‭levels, crucial for developing effective and safe therapeutics.‬

‭Lexical and Semantic Scores‬
‭We also evaluated the model-generated responses using conventional lexical and semantic metrics. Lexical metrics‬
‭evaluate the token overlap between model-generated and ground truth analyses. Semantic metrics evaluate the‬
‭semantic similarity between the model-generated and ground truth analyses. We computed one lexical metric‬
‭(BLEU),‬‭34‬ ‭and three semantic metrics (ROUGE-1, ROUGE-L,‬‭and BERTScore).‬‭35,36‬ ‭However, these conventional‬
‭metrics of text similarity are not enough when the generated text is long and contains nuanced analysis. Figures S9‬
‭and S10 demonstrate this clearly. BioScore was able to capture the differences between a good answer and ground‬
‭truth, while the traditional NLP metrics did not provide such insights. The key differences are that BioScore is able‬
‭to (1) differentiate between an incorrect answer and an abstention from answering, (2) assign higher scores based on‬
‭a predefined point system that awards performance according to how an expert biologist would expect an answer.‬

https://paperpile.com/c/NMrdCX/qzIsl
https://paperpile.com/c/NMrdCX/sT08i+gWyjr


‭Figure S9:‬‭Performance of various state-of-the-art‬‭AI models on CARDBiomedBench (measured via BioScore).‬
‭The Abstain Rate (AR) for each model (i.e., the ratio of the cases with the model's self reported “I don’t know”) are‬
‭also provided under each bar. A model with a higher BioScore and lower AR is more desirable. Models are sorted by‬
‭decreasing median BioScore, followed by decreasing Abstain Rate (AR), and then increasing spread (interquartile‬
‭range). Ranges are between 0.0 and 1.0, with higher BioScore and low AR being more desirable.‬



‭Figure S10:‬‭Boxplot of Performance of various state-of-the-art‬‭AI models on CARDBiomedBench (measured via‬
‭traditional NLP metrics). The order of models is preserved from the Figure above. As shown,‬‭traditional NLP‬
‭metrics do not accurately capture performance on CARDBiomedBench.‬‭This is the motivation behind our more‬
‭fine-grained, rubric-based evaluation metric BioScore and accompanying AR. Ranges are between 0.0 and 1.0, with‬
‭higher being more desirable.‬

‭We find that modern LLMs have significant room for improvement in the NDD domain as measured by BioScore‬
‭and AR. Models all had an underwhelming performance on a subset of around 10k examples CARDBiomedBench‬
‭as a whole with mean BioScore falling between 0.48 and 0.60 and AR between 0.10 and 0.60. This indicates that the‬
‭models are abstaining from answering a large number of the questions and when they do respond, the quality is‬
‭suffering.‬



‭Table S11:‬‭The tables report the Mean and 95% CI for‬‭each custom and NLP metric across different models. Ranges‬
‭are between 0.0 and 1.0, with higher for all metrics and low AR being more desirable.‬

‭Figure S12:‬‭A, heatmap of mean BioScore by model (x-axis) and biological category (y-axis). B, accompanying‬
‭Abstention Rates (AR). Higher BioScore (blue) and lower AR (white) are more desirable while low BioScore (red)‬
‭and high AR (orange) are considered poor performance. Cells corresponding to categories with insufficient data (less‬
‭than 5 responses) are displayed in dark gray and annotated with 'NA' to denote unavailability of reliable data. Ranges‬
‭are between 0.0 and 1.0, with higher BioScore and low AR being more desirable.‬



‭Figure S13:‬‭A, a heatmap‬‭of Quality Rate by model (x-axis) and reasoning category (y-axis), and B is the same‬
‭heatmap Safety Rates. Higher Quality Rate and Safety Rate (blue) are more desirable while low of either (red) are‬
‭considered poor performance. Ranges are between 0.0 and 1.0, with higher being more desirable.‬


