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The Significance of Abrupt Transitions in Lineweaver-Burk Plots
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1. Lineweaver-Burk plots for glutamate dehydrogenase, glucose 6-phosphate dehydro-
genase and several other enzymes show one or more abrupt transitions between
apparently linear sections. These transitions correspond to abrupt increases in the
apparent K,, and V... with increasing concentration of the varied substrate. 2. The
generalized reciprocal initial-rate equation for a multi-site enzyme requires several
restrictions to be put on it in order to generate such plots. These mathematical conditions
are explored. 3. It is shown that the effective omission of a term in the denominator of the
reciprocal initial-rate equation represents a minimal requirement for generation of abrupt
transitions. This corresponds in physical terms to negative co-operativity followed by
positive co-operativity affecting the catalytic rate constant for the reaction. 4. Previous
models for glutamate dehydrogenase cannot adequately account for the results. On the
other hand, the model based on both negative and positive co-operativity gives a good
fit to the experimental points. 5. The conclusions are discussed in relation to current
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knowledge of the structure and mechanism of glutamate dehydrogenase.

One of the original arguments advanced in favour
of the Monod-Wyman-Changeux model for allo-
steric proteins was the fact that all the well-docu-
mented cases of homotropic interaction appeared to
be of the positive type, binding at each site assisting
binding at the next (Monod et al., 1965). Koshland
et al. (1966) pointed out that their model based on
interacting sites allowed, in theory at least, the
opposite type of interaction in which binding at each
site hinders binding at the next. Since then ‘negative
co-operativity’ has been invoked to explain results
obtained with several enzymes, notably NAD®*-
binding results for glyceraldehyde 3-phosphate
dehydrogenase from rabbit muscle (de Vijlder &
Slater, 1968; Conway & Koshland, 1968) and
Lineweaver-Burk plots of eo/v against 1/[NAD(P)*]
for ox liver glutamate dehydrogenase (Dalziel &
Engel, 1968; Engel & Dalziel, 1969), where ¢, is the
total enzyme site concentration and v is the initial
rate.

Negative co-operativity leads to Lineweaver-Burk
plots that are concave downward, i.e. apparent sub-
strate activation. Dalziel & Engel (1968) therefore
sought the condition for

d? (eo/v)
d(1/s)?

to be negative and used this condition to discriminate
between various models for a two-site enzyme. No
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attempt, however, was made to fit the kinetic results
for glutamate dehydrogenase. Interpretation of these
results suggested that, if there is a random pathway of
substrate addition to the enzyme, the negative inter-
actions should be found not in the binding of
NAD(P)* to form a binary complex but in its binding
to enzyme-glutamate to form the ternary complex
(Engel & Dalziel, 1969). It has now been found
(Dalziel & Egan, 1972) that binding of NAD(P)* to
free enzyme is non-co-operative, whereas binding in
the presence of saturating concentrations of the
inhibitory substrate analogue, glutarate, shows strong
negative co-operativity.

The Lineweaver-Burk plots of eo/v against 1/
[NAD(P)*] for glutamate dehydrogenase are, how-
ever, not merely concave downwards. Distinct
pseudo-linear sections can be discerned, separated by
fairly abrupt transitions (Dalziel & Engel, 1968;
Engel & Dalziel, 1969). With NAD™ as coenzyme and
at pH7, three such transitions were noted within a
1000-fold range of coenzyme concentration.

Abrupt transitions of this kind are not a unique
feature of ox liver glutamate dehydrogenase. Similar
transitions have been reported for glutamate de-
hydrogenase from pig heart (Godinot & Gautheron,
1971) and yeast (Fourcade & Venard, 1971), and also
for glucose 6-phosphate dehydrogenase from human
erythrocytes (Pinto et al., 1966), yeast (Anderson
et al., 1968) and sweet potato (Muto & Uritani,
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1970). Single transitions only were seen in most of
these cases, but Muto & Uritani (1970) found two
abrupt transitions in the plot of eo/v against the
reciprocal of the glucose 6-phosphate concentration.

It was thought initially (Dalziel & Engel, 1968) that
such observations could be explained solely on the
basis of very strong negative binding interactions,
a view questioned by Schwert (1970). The mathe-
matical requirements for such behaviour are re-
examined in the present paper and shown to be more
restrictive than originally envisaged. On the basis of
the criteria developed here an equation is presented
which fits the experimental results. The possible
physical implications of the mathematical restrictions
are considered in the Discussion section.

Theory

The essential features of the Lineweaver—Burk plots
in question as shown in Fig. 1 are as follows. (a)
Several apparently linear sections are separated by
clear abrupt transitions. (b) With increasing con-
centration of the varied substrate the successive
linear sections show at each step an increase in slope
and a decrease in intercept, both approximately two-
fold. Thus at each transition both ‘V,,...” and ‘K,
appear to increase.

Any kinetic model for a multi-site enzyme will give
rise to an equation of the form:

) _ No+Ni5s+N 5% - Nyt
v Dys+D;s* - D,s

@
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where N¢-N, and D,-D, are numerical constants
and s is the substrate concentration.

The physical significance of the coefficients N, to
N, and D, to D, depends on the mechanism. The
value of s determines which terms in the numerator
and denominator of eqn. (1) are dominant. At very
low values of s, for instance, the equation reduces to
the linear form:

€9 No + N, 15

— = 2

v D,;s @
Other terms successively assume dominance over
ranges of s determined by the relative values of the
coefficients in eqn. (1). Thus, in theory, with suitable
values of the coefficients eqn. (1) may generate
further linear regions in addition to the low-con-
centration region effectively governed by eqn. (2)
eg.:

e_o_N3s3+N4s“_N3 + Nys

v Dys* Dys

In general, if eqn. (1) is to give rise to pseudo-linear
regions separated by abrupt transitions the following
conditions must be satisfied.

Rule 1: For a given transition in the plot of ey/v
against 1/s the corresponding transitions in the de-
nominator and numerator of eqn. (1) must coincide
fairly closely.

Rule 2: Where there are multiple transitions these
must not overlap.

/v (s)
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Fig. 1. Lineweaver—Burk plot of initial-rate results obtained with glutamate dehydrogenase

The data are taken from Engel & Dalziel (1969, 1970). The glutamate concentration was 50mm and the buffer
sodium phosphate, pH7.0, I=0.25. Fig. 1(a) shows measurements made with low NAD" concentrations
(1-7 uM). The concentration region (8-100umM) beyond the dashed bracket is shown on a larger scale in (b),
with the extrapolated line from (a) also drawn in. Measurements made at high concentrations (60-1000 uM),
beyond the dashed bracket in (), are shown on a still larger scale in (c), with the extrapolated Region 2 line

from (b) also drawn in.
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Rule 3: The narrow concentration range over
which a transition occurs must include the value of s
at which the extrapolated linear portions intersect.

Let us consider first the possibility (Engel, 1970)
that each of the terms assumes overall dominance at
some value of s and that, with appropriate coefficients,
eqn. (1) can give rise to a series of pseudo-linear
sections approximately fitting the equations:

€9 No+NIS .
H_0""17 R 1
p Dis egion
€o NIS+N252 N1+st .
hL = R 2
v D, s? D;s cglon
eo N;s*+Ns3s* N,+Nis .
> = Dy ~"Dus Region 3
€ _ Ng15"'+Ngs? Ny +Ngs
v D,s? Dys
Region g

In this situation, designated Case 1, neighbouring
pseudo-linear sections would always have a numer-
ator term in common: for example N, s is a significant
term in both Region 1 and Region 2. The transition
between these regions occurs as N, s? becomes large
compared with Ny and D,s?* becomes large relative

to Dys.
For the numerator transition:
No=N,st .. s =Ny/N, 3)
For the denominator transition:
D,s=D,s* ..s=D,/D, @)
Therefore, applying Rule 1:
(Dy/D5)* = No/N, ®
Also, applying Rule 2:
Dy/Dy> Dy/D3 .. Dy D3> D5? 6)
and
No/N,»> N N3 ™

The two lines obeying the equations:

1
y=m1(})+cl
=m 1 +
y=m\3)re

1 C1—Cy

—=an ®

S my—m

and

intersect when:

where m,, m,, c¢,, and ¢, are numerical constants.
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Thus in the present case the lines intersect when:

N N,
_D1 Dz_NlDz_NZDl
Nl No N1D1"N0D2

Dz D1

®

1
s

If this point of intersection is to coincide approxi-
mately with the denominator transition, then, from
eqn. (4):

D, NiD,—NoD,

D, N;D,—N,D,

L. Nz Dlz = No Dzz

unless Ny D> Ny D, and N, D,> N, D,. This equa-
tion is equivalent to eqn. (5). Thus for Case 1, the
condition for denominator and numerator transitions
to coincide also ensures that these transitions occur
at the intersection of the theoretical straight lines for
the two regions.

In Case 1 the numerator transition occurs fairly
rapidly as s is raised: N, s? increases from 0.1 N, to
10 N, over a tenfold range of s. The denominator
transition, however, involves terms differing by only
one power of s. For D,s? to increase from 0.1 D;s
to 10 D, s requires a 100-fold increase in s, and this
transition therefore occurs much more gradually.
It is still possible for a Case 1 equation to generate
pseudo-linear sections in a Lineweaver-Burk plot,
but the obviously curved transitional portions must
cover a considerable concentration range, and the
breaks cannot be as sharp as those that have been
experimentally observed. Moreover, successive transi-
tions in Case 1 must be very widely separated to be
distinct. Accordingly an attempt to fit the initial-rate
results for glutamate dehydrogenase by a Case 1
equation failed, yielding a smooth curve.

Case 1 has also been analysed by the use of
differential calculus. If the plot of e,/v against 1/s
shows an abrupt transition between two pseudo-
linear regions, then the plot of

€o
da=2
v

must show an abrupt fall from one plateau value to
another. The second differential must pass through
a corresponding minimum and the third differential
must pass through zero at least once. It can be
shown, however, that if, taking the simplest equation
for a single Case 1 transition:

€ =N0+N1s+st2
v D|S'|‘l)2S2

then the third differential is given by:
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@ (2
v/ 6D, (N, D, D, —No> D, —N, D,?)

o) G

This expression cannot pass through zero. No abrupt
transition can ever be generated by a second-degree
equation. For an equation of higher degree the
numerator of the third differential is a complex
function of s which may in principle pass through
zero, since both positive and negative terms are
present. The conditions, however, for this to occur
are not readily obtainable.

Since Case 1 cannot produce abrupt transitions
one has to consider what extra restrictions must be
placed on the coefficients of eqn. (1) for it to do so.
It is clear that the major shortcoming of Case 1 lies
in the fact that the denominator transition occurs
over too wide a range of s. The range can be

e omys® e sPtamy s fac, T+ bmy s+ bes T+
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m;+c¢; s
my+cs§

Ly —my

. )
C2—C

This is the same as eqn. (8). In other words, if Rule 1
is obeyed, so is Rule 3, just as was found for Case 1.
Eqns. (11) and (8) lead to the conclusion that:

a= (ﬂ)rp (13)

my—m,

which is the condition for obeying Rules 1 and 3.

On the basis of the considerations outlined above,
equations may be constructed to give Lineweaver—
Burk plots with abrupt transitions, the degree of
abruptness being governed by the value of (g—p) in
eqn. (10). The equation may be extended as follows,
to give any desired number of linear sections:

sP

decreased if the two terms involved differ by more
than one power of s.

If we consider as a general case two adjacent
pseudo-linear sections described approximately with-
in the appropriate range of values of s by the

equations:
€9 (l)
—=m\- +Cl
v K

eo—m l+c
v \s ?

then the overall equation must be of the form:

and

e coms’T e sPtamy s +acy st -
ceosPasde .-

(10

where g—p>2 for the reason just given, and a is a
numerical constant. This equation does not include
Case 1 in which adjacent regions share a common
numerator term. At the denominator transition:

sP = as?
S.osTP=1/a an
At the numerator transition:
am, s +acy s7=m; sP" 1 4¢; sP
m; +c¢, s.l
my+cas a

If Rule 1 is obeyed, eqns. (11) and (12) both apply
and lead to:

SosTP= 12)

+as® b+

(14)

We have examined most thoroughly the cases in
which:

2=q-p=r—q=-‘-: (Case 2)
and

3=qg—-p=r—q=--- (Case 3)
In Case 2 eqn. (1) takes the form:
€ _ No+Ny5+Nys*+N3s?+Nys*+Nss+ -+
v D;s + Dss? +Dss5+ - -

Case 3, however, gives an equation of the form:

€ _No+Nis+N3s’+Nys*+Nes®+Nys™- -
v D;s + Dys* +Dqs7- -

The physical significance of omitting coefficients
in this way will be considered in the Discussion
section.

To explore the potentialities of the equations
discussed above a program was written for the
Wang 700 desk-top computer equipped with a
graph-plotter. This allowed the plotting of the
quotient of two polynomials of power twelve or less.
When supplied with the appropriate coefficients in
eqn. (1) the instrument produced the equivalent
Lineweaver-Burk plot.

The simple case of a single transition involving
twofold changes in slope and intercept in opposite
senses was first examined by using Cases 2 and 3.
This is illustrated in Fig. 2. A fairly abrupt transition
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is seen in both cases, although it is clearly most
abrupt in Case 3. On examination of the sections on
either side of the transition/intersection point it is
clear that they do not exactly follow the theoretical
lines, although they are asymptotic to those lines.
There is a point of inflexion on either side of the
transition point resulting in a ‘knee’ in the curve.
Nevertheless the two sections of the curve do approxi-
mate to straight lines, and would undoubtedly be
regarded as such in an experimental situation.

Attempts were also made to fit the kinetic results
for glutamate dehydrogenase by using both Cases 2
and 3. The procedure followed was to take the experi-
mentally observed slopes and intercepts (Table 1)
of plots of eo/v against 1/[NAD"] taken from the
results of Engel & Dalziel (1969, 1970) and use these
in the appropriate form of eqn. (14) as my, m,, ms,
my and c¢;, c;, €3, cs. Values of a, b etc. were
calculated from eqn. (13). The computer plot of the
resulting equation was then compared with the experi-
mental points. With both Cases 2 and 3 this initial
attempt gave relatively good fit in Regions 1 and 4
but poor fit in Regions 2 and 3. This is because, as
shown in Fig. 2, the apparent slope or intercept for
each region is modified by those terms in the equation
that become dominant in adjoining regions. Slopes
and intercepts were amended by a process of manual
iteration until the best fit to the results was obtained,
as shown in Fig. 3. The values of m and ¢ for each
region used in obtaining the best fit are shown in
Table 1 for comparison with the slopes and intercepts
actually observed. The coefficients used in the equa-
tions are given in Table 2.

Fig. 3 shows that Case 3 gives, as might be
expected, rather more abrupt transitions. On the
other hand, the fit achieved with Case 2 is surprisingly
good. A definite decision as to whether Case 2 or
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Fig. 2. Comparison of single abrupt Case 2 and Case 3
transitions

The Case 2 curve, drawn nearest the left-hand
vertical axis, is given by the equation:
_0.125+0.5x +x*+x3
Y=025 )

The case 3 curve, displaced one division to the right,
is given by the equation:

_0.0625+0.25x +x° +x*
Y=0125 %

In both cases the theoretical lines (- - +) to which the
curve is asymptotic as x approaches 0 and infinity
respectively are given by equations y =2x+0.5 and
y =x+1. Each division on the abscissa represents
1.

Table 1. Observed values of slope (m) and intercept (c) compared with those used to obtain optimum fit of the results

The observed slopes and intercepts are those obtained from the separate sections of the Lineweaver-Burk plot
shown in Fig. 1. The numbers in the other columns are values of m,, m,, m3, my and ¢, ¢;, ¢, ¢4 inserted in eqn.

(14) to give a good fit to the experimental results.

m c
g Case 2 Case 3 Case 2 Case 3‘

Observed Fit Fit Observed Fit Fit

Region 1 0.575 0.575 0.575 0.064 0.060 0.062
Region 2 1.04 0.93 0.98 0.023 0.023 0.0237
Region 3 1.49 1.49 1.475 0.0176 0.0167 0.0171
Region 4 2.94 2.59 2.65 0.0122 0.0122 0.0122
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Fig. 3. Comparison of Case 2 and Case 3 simulations of initial-rate results

The experimental points (@) are those of Fig. 1. The dotted curves are computer-drawn lines corresponding to
the optimum fit achieved. The coefficients used in eqn. (1) to achieve this fit in each case are given in Table 2.
The Case 2 fit is shown in (a), (b) and (c) and the Case 3 fit in (d), (e) and (f). Low (q, d), intermediate (b, ¢) and
high (¢, f) NAD" concentrations are shown.

Table 2. Values of coefficients in eqn. (1) used to obtain optimum fit of the experimental results for glutamate
dehydrogenase (see the text)

Case 2 Case 3
Ny, =0.575 Dy=0 N, =0.575 D, =0
N1=0.06 D1=1 N1 =0.062 Dl =1
]V;="10—2 D2=0 Nz =0 Dz =0
N3 =248x1074 D3 =1.08x1072 N; =829x107* D; =0
Ny=2.04x10"¢ D,=0 N, =201x107% D, =8.46x10"*
Ns=229%x10"8 Ds =1.37x107¢ Ns =0 Ds =0
Ng=590x10"11 D=0 Ng =2.96x107° Dg =0
N, =278x10"1%  D,=228x10"1! N, =343x1071! D, =2.01x10"°
Ng =0 Ds =0
N9 =3.87X10_16 D9 =0

Nio=1.78x10718

Do =1.46x10716

Case 3 fits the experimental results more closely
would require many more experimental measure-
ments of greater precision than those employed in

the present paper.

Discussion

It has been demonstrated in this paper that an
abrupt transition between pseudo-linear sections in a
Lineweaver-Burk plot can only be generated by the
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omission of one or more terms in the reciprocal
initial-rate expression (eqn. 1).

This mathematical exercise is an attempt to
utilize the entire information content of a body of
experimental results. Significant details of the shape
of experimentally obtained curves are easily over-
looked or disregarded on the grounds that verifica-
tion of such detail places a heavy demand on the
experimental method. Abrupt transitions in Line-
weaver-Burk plots of kinetic results for glutamate
dehydrogenase represent a definite and reproducible
experimental observation. The present analysis shows
that the results cannot be accounted for by any of
the simple models previously advanced. Dalziel &
Engel (1968) showed that the general downward
concavity of the Lineweaver-Burk plot could be
accounted for by negative homotropic co-operativity
in an Adair model, and suggested that reasonably
strong interactions in such a model would give rise to
abrupt transitions. It is clear from the results shown
here that the occurrence of several clearly separated
transitions within a relatively narrow range of co-
enzyme concentration requires a more complex
model.

Barton & Fisher (1971) have re-examined the
kinetics of glutamate dehydrogenase and obtained
smooth curves in Lineweaver-Burk plots against
1/[NAD*]. They conclude that a random-order
steady-state mechanism accounts adequately for the
results without any need to postulate subunit inter-
actions, and they present an empirical rate equation.
Their results were, however, obtained with phosphate
buffer at pH8, and the abrupt transitions that are so
striking in results obtained at pH 7 are not discernible
at pH 8 (Engel & Dalziel, 1969). For a fixed glutamate
concentration the equation of Barton & Fisher (1971),
when expanded into a single expression, is of the
fourth power in [NAD"] in the numerator and de-
nominator. Such an equation could not therefore
account for the results obtained at pH7.

Since a Case 2 or Case 3 equation appears to be
required to describe the results, it is necessary to
consider the physical significance of such equations.
When eqn. (1) describes either binding without cata-
lysis or a ‘rapid-equilibrium’ catalytic reaction with
a rate limited by the first-order reaction of the
enzyme-ligand complex(es), each numerator term
represents the contribution of a single species to the
total enzyme concentration. Thus N, represents the
fractional contribution of free enzyme, N, s that of
ES, N, s? that of E(S), and so on. The denominator
terms correspond to the contributions of each
species to the overall degree of saturation in the
case of binding, or to the overall rate in the case of
a ‘rapid-equilibrium’ catalytic reaction, although in
the more general case of a steady-state reaction
individual enzyme-containing species contribute to
more than one term in the numerator and therefore
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to more than one in the denominator. It seems less
likely that a mechanism of the latter type could
give rise to the equations under present consideration,
and attention is confined to the simpler ‘rapid-
equilibrium’ situation.

Taking first the equation for a single Case 2
transition:

€ __ No+N;s+N,s*+Nss?
v D;s + Dss?

the enzyme-containing species E, ES, E(S), and
E(S); are all significant in the rate equation, since
all the corresponding terms appear in the numerator,
but one term, the term in s?, is missing from the de-
nominator. This means that the total catalytic re-
activity of E(S), is very low compared with the
catalytic reactivity of both ES and E(S)s. This implies
a negative interaction affecting the catalytic rate
constant followed by a positive interaction: the
binding of the second molecule of S ‘switches off’
the enzyme, but the binding of the third switches it
on again. The second site may indeed not be an
active site, but mere inactivity is insufficient: occupa-
tion of this site must greatly decrease the catalytic
activity at the first site, otherwise that activity would
be manifest in a significant D,s? term.

Clearly a simple binding system without catalytic
rate constants cannot give rise to an equation that has
a term missing from the denominator but nevertheless
contains the corresponding numerator term. The
mathematical condition for the disappearance of the
denominator term in s* is:

D1y Dx11y> D2

ensuring that the term in s* is always much smaller
than at least one of the adjacent terms. Now for a
simple binding system each denominator term is
given by multiplying the corresponding numerator
term by the power to which s is raised in that term.
Hence the inequality above becomes:

Nex-1y Nx+1y (2 = 1) > N2 x?
S N(x—l) N(x+1) >]v::2

This, however, is the condition for disappearance of
the numerator term in s*. A simple binding system,
therefore, cannot give rise to a Case 2 equation.

For Case 3, the equation for a single transition is of
the form:
€ _No+N;s+N3s5°+N,s®

; Dls +D4S‘

The absence of the numerator term in s> means that
E(S), never constitutes a significant fraction of the
total enzyme concentration. This again requires
negative co-operativity followed by positive co-
operativity, but now affecting binding rather than the
catalytic rate: any E(S), formed is almost entirely
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converted into E(S);. This automatically deletes the
s? term in the denominator also, unless E(S), is
abnormally catalytically reactive. In Case 3, however,
the s term also is missing from the denominator.
Superimposed on the binding co-operativity, there-
fore, there is also a marked decrease in site reactivity
in E(S); which is reversed in E(S);. Thus although
E(S); contributes significantly to the total enzyme
concentration at some stage during the overall
saturation process it is nevertheless essentially
inactive.

Case 2 clearly involves simpler assumptions than
Case 3 and in the absence of compelling reasons for
adopting Case 3 it is concluded that a Case 2
equation accounts adequately for the existing results
for glutamate dehydrogenase.

For glutamate dehydrogenase the present analysis
implies that a sequence of negative followed by
positive co-operativity occurs, not merely once, but
three times within the saturation range covered by
the experimental results. The results within each
linear region have been analysed to give a set of
kinetic parameters (Engel & Dalziel, 1969). In using
these parameters it must be borne in mind that:

(@) Notwithstanding the abruptness of the transi-
tions the slope and intercept of each section is affected
by contributions from the neighbouring regions. The
experimentally obtained parameters will therefore
only approximate to ‘true’ parameters.

(b) Successive pseudo-linear sections definitely do
not correspond to successive saturation steps. If
Case 2 applies, for instance, the four sections reflect
the first, third, fifth and seventh saturation steps.

The idea of both negative and positive co-operativ-
ity occurring in the binding of a single ligand to a
single protein has been clearly enunciated previously
by Teipel & Koshland (1969). These authors attempt-
ed to explain the occurrence of intermediate plateau
regions in plots of v against s for several enzymes,
including glutamate dehydrogenase from Blasto-
cladiella (L€ John & Jackson, 1968) and have shown
by inflexion-point analysis of a four-site model that
negative co-operativity alone cannot account for such
behaviour. Appropriately ‘bumpy’ curves could be
generated by postulating negative followed by
positive co-operativity in either the binding constants
or the catalytic rate constants. Although this situation
is somewhat analogous to that analysed in the
present paper, the plot of v against s for ox liver
glutamate dehydrogenase shows no plateaux. Such
plateaux correspond in the Lineweaver-Burk re-
presentation to a long smooth curved transition
between the two pseudo-linear sections. The differ-
ence in slope between the two sections is also much
greater than is found with ox liver glutamate de-
hydrogenase. It is precisely because there is no
plateau, but instead an abrupt transition between two
sections with slopes and intercepts differing only by
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factors of approximately two, that (i) the Lineweaver—
Burk plot is the most sensitive method for detecting
this aspect of the kinetics; and (ii) interactions in-
volving binding alone cannot adequately account for
the behaviour.

At the concentrations normally used in kinetic
experiments glutamate dehydrogenase exists as a
hexamer consisting of identical subunits (references
are given in Goldin & Frieden, 1972). If eqn. (1) were
based on a rapid-equilibrium mechanism involving
six interacting active sites, the highest exponent of s
in the numerator and denominator would be 6. Such
an equation could not adequately fit the experimental
results. The highest exponent of s in the numerator
and denominator of the expression used to fit the
result (Fig. 3) is 10 if Case 3 is used or 7 by Case 2,
and the presence of such high powers of s clearly
requires explanation.

One possibility is that the protein exists in two
conformational states that equilibrate only very slow-
ly (cf. Frieden, 1972). This would be Kkinetically
equivalent to having a mixture of two enzymes. Each
form would give an initial-rate expression containing
powers of s up to s® and the summed rate combined
into a single expression would contain terms up to s'2
in denominator and numerator.

A second possibility is that there are two NAD™*-
binding sites per subunit, making a total of twelve per
hexamer. There is abundant evidence from many
sources (e.g. Jallon & Iwatsubo, 1971 ; Koberstein &
Sund, 1971; di Prisco, 1971 ; Melzi D’Eril & Dalziel,
1972; Goldin & Frieden, 1972) for more than one
nucleotide site per subunit and it appears that NADH
can bind to two sites per subunit, the active site and
one inactive site. Engel (1972) has found evidence in
the amino acid sequence for a partial gene duplication
which may be a structural reflection of the presence
of a secondary coenzyme site. Dalziel & Egan (1972)
have, however, measured NAD* binding directly by
equilibrium dialysis, simulating the active ternary
complex by using the inhibitory substrate analogue
glutarate. They found only one NAD* site per sub-
unit under these conditions. The weight of this
evidence depends on the extent to which glutarate
mimics the substrate glutamate. Conformational
changes involved in the unmasking of new NAD*
sites might depend on the presence of the a-amino
group on the substrate molecule. Shafer et al. (1972)
have obtained evidence from rapid-reaction kinetics
that there must be non-catalytic NAD™ sites on the
enzyme molecule.

A third possibility is that in the presence of sub-
strates the hexamers associate to forms with higher
molecular weight as they do at high protein con-
centrations even in the absence of substrates. The
evidence bearing most directly on this point is that of
Cohen & Mire (1971) who performed ultracentrifuga-
tion experiments on glutamate dehydrogenase layered
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over a complete reaction mixture. Under these con-
ditions the sedimentation coefficient was still that of
the hexameric enzyme. The enzyme was, however,
detected in these experiments by measuring the
absorption at 340nm due to NADH, which is known
to dissociate larger species of glutamate dehydro-
genase to the hexamer (Frieden, 1959). It may
therefore be argued that under true initial-rate con-
ditions the sedimentation coefficient would have been
different.

It is not possible at present to choose among these
possibilities. The mathematical considerations de-
veloped in the present paper should prove useful,
however, in assessing future models of the action of
glutamate dehydrogenase and similar regulatory
enzymes.
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