Folate Metabolism in Streptococcus faecalis

By P. G. MCELWEE and J. M. SCOTT

Department of Biochemistry, Trinity College, University of Dublin, Dublin 2, Irish Republic

(Received 1 November 1971)

The possibility that the inability of *Streptococcus faecalis* to utilize 5-methyltetrahydropteroylglutamate or pteroyltriglutamate might be due to permeability was investigated. Whereas the former was taken up by *S. faecalis* cells growing on pteroylglutamic acid, the latter was not. No subsequent conversion of the 5-methyltetrahydropteroylglutamate took place and accumulation, which was against a considerable concentration gradient, was inhibited by fluoride. It would thus appear to be an active process.

It has been known for some time that Streptococcus faecalis is unable to use either 5-CH₃-H₄-PteGlu* or PteGlu₃₋₇. Lactobacillus casei, however, can grow on both 5-CH₃-H₄PteGlu and any folate having less than four glutamic acid residues (Stokstad, 1954; Johns & Bertino, 1965; Baugh et al., 1970). These differences in growth response between the two organisms have been used frequently to estimate these forms of the vitamin in the presence of other folate derivatives (Herbert, et al., 1962; Luhby & Cooperman, 1964; Perry & Chanarin, 1970).

The inability of these forms of folate to support growth of *S. faecalis* is presumably due to inability of the organism either to transport them or, having concentrated them within a cell, to metabolize them further.

Evidence is presented in this paper that 5-CH₃-H₄PteGlu is taken up by *S. faecalis*. This uptake by the cells takes place against a considerable concentration gradient and, together with the demonstration that there is no subsequent conversion of the vitamin into other forms of folate, it would appear that active transport has taken place. However, PteGlu₃ was not taken up by growing *S. faecalis* cells. Both forms of folate were taken up by *L. casei*.

Materials and Methods

Folates

PteGlu was supplied by Lederle Laboratories American Cyanamid Co., Pearl River, N.Y., U.S.A. Radioactive (\pm) -5-¹⁴CH₃-H₄PteGlu with a specific radioactivity of 91 μ Ci/mg was obtained from The Radiochemical Centre, Amersham, Bucks., U.K. Non-radioactive 5-CH₃-H₄PteGlu was prepared by

* Abbreviations: 5-CH₃-H₄PteGlu, 5-methyl-5,6,7,8tetrahydropteroylglutamic acid; PteGlu, pteroylglutamic acid; PteGlu₃₋₇, polyglutamyl forms of folate with three or more glutamic acid residues.

the method of Blair & Saunders (1970). PteGlu₃ was prepared by the solid-phase peptide synthesis of Krumdieck & Baugh (1969) by using pteroic acid prepared by the method of Houlihan & Scott (1972). Stock solutions of 5-CH₃-H₄PteGlu and PteGlu₃ were assayed spectrophotometrically on a Unicam SP.800, by using the molar extinction coefficient of 31.7×10^3 litre · mol⁻¹ · cm⁻¹ at 290 nm (0.1 M-sodium phosphate buffer, pH7.0) for 5-CH₃-H₄PteGlu and 26.3×10^3 litre · mol⁻¹ · cm⁻¹ at 255 nm (0.1 M-NaOH) for PteGlu₃, and by microbiological assay using L. casei in conjunction with a standard curve based on PteGlu. PteGlu₃ was found to have 62.5% of the growth-promoting activity of PteGlu for L. casei. In all microbiological estimations it was taken into account that chemically prepared 5-CH₃-H₄PteGlu is a racemate with only 50% biological activity.

Whatman chromatography paper no. 1 and Whatman DE 52 cellulose were supplied by W. and R. Balston Ltd., London, U.K. Cellulose powder MN 300 UV 254 was obtained from Macherey, Nagel and Co., Düren, West Germany. Filter membranes were supplied by Millipore Ltd., Wembley, U.K.

Micro-organisms

S. faecalis (N.C.I.B. 6459, A.T.C.C. 8043) and the chloramphenicol-resistant strain of L. casei (N.C.I.B. 10463, A.T.C.C. 7469) isolated by Davis et al. (1970) were both supplied by the Torry Research Station, Aberdeen, U.K.

For inoculation, S. faecalis was grown overnight in single strength Lactobacilli Broth AOAC (B901-15) supplied by Difco Laboratories, Detroit, Mich., U.S.A. The cells were washed five times in ice-cold 0.9% (w/v) saline to remove folates. Three flasks each containing 50 ml of Difco Folic Assay Medium (B318-15) and 0.25% (w/v) ascorbic acid (Bakerman, 1961; Herbert, 1961) were used for growth. The flasks contained, respectively, 0.4ng of PteGlu/ml, 0.4ng of PteGlu/ml plus a microbiologically equivalent amount of 5-CH₃-H₄PteGlu (0.4ng/ml), and 0.4ng of PteGlu/ml plus a microbiologically equivalent amount of PteGlu₃ (0.63 ng/ml). It was always ensured that the medium was capable of supporting at least twice the final growth obtained. Three drops of the washed inoculum, which had a turbidimetric extinction of 0.05 at 640nm, were used to inoculate 50ml of the media. In order to measure folate uptake during growth, samples (5ml) of the growing cells were withdrawn at various time-intervals. Their extinction at 640nm was measured and after centrifugation at 10000g for 15min at 4°C the supernatants were assayed for folate content by using L. casei (Freed, 1966; Davis et al., 1970). Column chromatography on DE52 DEAE-cellulose (phosphate form) was used to identify the folates present in the medium after growth by S. faecalis. Separation of PteGlu and PteGlu₃ was carried out on a 0.5 cm× 20 cm column with a linear gradient formed from 500ml of 0.005м-sodium phosphate buffer, pH7.0, in the mixing vessel and 500 ml of 0.5 M-NaCl in 0.005 Msodium phosphate buffer, pH7.0, in the second vessel. The column was calibrated by applying 1 ml of a 1 mg/ml solution of PteGlu or PteGlu₃ in the starting buffer. Samples (1 ml) of the growth media were adjusted with 0.1 M-NaOH to pH7.0 and similarly applied. The flow rate was 0.165 ml/min. Fractions (3.3ml) were collected every 20min and assayed for folate with L. casei. A standard curve of turbidimetric extinction against mg dry wt. of bacterial cells was plotted for S. faecalis and L. casei by using a Unicam SP. 600 series II spectrophotometer (Koch, 1970).

Uptake of 5-14 CH₃-H₄PteGlu

L. casei was grown in 50ml of Folic Acid Assay Broth (11267) supplied by BBL Division of Bioquest, Cockeysville, Md., U.S.A., and S. faecalis was grown in 50ml of Difco Folic Acid Assay Medium. The media contained (per ml) 40ng of biologically active (by L. casei assay) 5-14CH₃-H₄PteGlu, which is equivalent to 74 ng of (\pm) -5-CH₃-H₄PteGlu (15000 c.p.m.), and 0.4ng of PteGlu. Cells were harvested. after growth for 24h, by centrifugation at 10000g for 15 min and were washed three times on membrane filters (pore size $0.2 \mu m$) with ice-cold 0.9% NaCl to remove any extracellular radioactive material. The cells were lysed by autoclaving at 103.5kN/m² (15lb/in²) for 5 min in 1 ml of water. Lysate (1 ml) plus 0.4ml of 1.0m-HCl was counted for radioactivity in 10ml of toluene-Triton X-100 (2:1, v/v) scintillation fluid, by using a Packard model 3375 liquid-scintillation counter (Turner, 1967). This procedure gave the same efficiency as counting the extracted radioactive material in the absence of cells. Efficiency was

determined by using the channels-ratio technique and also by means of an external standard.

Further 5-14CH₃-H₄PteGlu-uptake studies were carried out on S. faecalis cells that had been grown for 3h in single-strength Difco Folic Acid Assay Medium containing 1.0ng of PteGlu/ml. Washed exponential-phase cells were incubated for 15 min in 0.1 M-sodium phosphate buffer, pH6.5, and 0.03 Mglucose, containing 0.25% (w/v) ascorbate and (\pm) -5-¹⁴CH₃-H₄PteGlu to give a radioactivity of 15000c.p.m./ml (74 ng/ml). Uptake was studied in the same medium that also contained (per ml) 11.0 ng of (\pm) -5-¹⁴CH₃-H₄PteGlu (2300c.p.m.), which was found, by using the L. casei assay, to contain 5.7ng of biologically active 5-CH₃-H₄PteGlu. The incubation medium contained 5mg dry wt. of cells/ml in a total volume of 2.5 ml. Cells were washed as described above and the intracellular folates released by autoclaving. Uptake was determined by counting the radioactivity of the lysate in the Packard scintillation counter.

Identification of transported 5-CH₃-H₄PteGlu

To identify the extracted radioactive material, S. faecalis cells were lysed by autoclaving in 1.0ml of

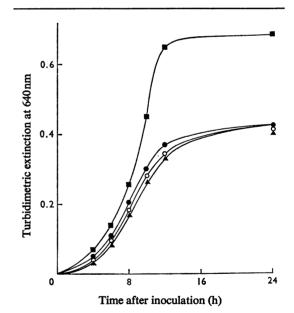


Fig. 1. Growth of S. faecalis on PteGlu (\bullet), PteGlu plus 5-CH₃-H₄PteGlu(\blacktriangle) and PteGlu plus PteGlu₃ (\circ)

The concentration of each form of the vitamin was the microbiological equivalent of 0.4 ng of PteGlu/ml. The effect on growth of *S. faecalis* of doubling the concentration of PteGlu (0.8 ng/ml) is also shown (**I**). For experimental details see the Materials and Methods section.

0.1 M-sodium phosphate, pH7.0, containing 0.5% (w/v) ascorbic acid, and the cell debris was removed by centrifugation at 10000g for 10min at 4°C. The compound was identified as 5-CH₃-H₄PteGlu by ascending chromatography at 4°C on Whatman no. 1 paper with 0.1 M-sodium phosphate buffer, pH7.0, containing 0.5% (v/v) β -mercaptoethanol as solvent (Gupta & Huennekens, 1967). The chromatogram was cut into strips 1 cm in length, which were counted for radioactivity in 10ml of scintillation fluid. The identity of the substance extracted from *S. faecalis* was confirmed as 5-CH₃-H₄PteGlu by t.l.c. on MN 300 UV cellulose powder, with 3.0% (w/v) NH₄Cl containing 0.5% mercaptoethanol as solvent.

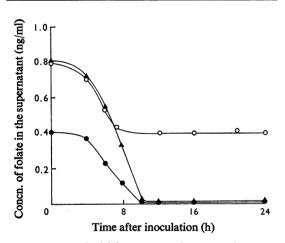


Fig. 2. Removal of folate activity from a medium containing PteGlu (●), PteGlu plus 5-CH₃-H₄PteGlu (▲) and PteGlu plus PteGlu₃ (○), during normal growth of S. faecalis for 24h

The concentration of each folate was the microbiological equivalent of 0.4 ng of PteGlu/ml. For experimental details see the Materials and Methods section.

Results

Growth studies on S. faecalis

The growth of S. faecalis was followed in folatefree medium supplemented with 0.4 ng of PteGlu/ml and a microbiologically equivalent amount of either 5-CH₃-H₄PteGlu or PteGlu₃. It was found that when growth in either case was compared to the growth obtained with 0.4 ng of PteGlu/ml on its own, no difference was seen (Fig. 1). This confirmed that neither of these compounds can support growth in this organism.

Uptake of folates

During growth under the above conditions the uptake of folate was examined (Fig. 2) by assaying the total folate activity remaining in the medium. Clearly not only was all of the PteGlu removed when growth was complete, but so was the 5-CH₃-H₄-PteGlu. For supplementation with PteGlu₃ the amount of folate remaining when growth was complete was exactly equal to the amount of PteGlu₃ added. The folate, active for *L. casei*, remaining in the medium was identified as PteGlu₃ by column chromatography on DE 52 DEAE-cellulose in the phosphate form. Column chromatography also showed that no PteGlu remained in the medium after growth. This indicated that PteGlu₃ could not be removed from the medium by the growing cells.

Uptake of 5-14CH₃-H₄PteGlu

By using radioactive 5-CH₃-H₄PteGlu and by measuring radioactivity in lysates of washed cells, it was clear that uptake was taking place (Tables 1 and 4). S. faecalis and L. casei cells grown for 24h on PteGlu and radioactive 5-CH₃-H₄PteGlu were lysed in ascorbate, and the radioactive material was identified by the paper-chromatographic method of Gupta & Huennekens (1967). With S. faecalis nearly all of the radioactivity was recovered from a single spot

Table 1. Uptake of 5-14CH₃-H₄PteGlu by S. faecalis and L. casei

Growth was for 24h in media containing (per ml) 0.4ng of PteGlu and 74ng (15000c.p.m.) of (\pm) -5-¹⁴CH₃-H₄PteGlu. Further experimental details are given in the Materials and Methods section.

Micro- organism	Turbidimetric extinction at 640nm after 24h growth	Dry wt. of cells (mg/ml of medium)	Radioactivity of 5- ¹⁴ CH ₃ - H₄PteGlu accumulated (c.p.m./mg dry wt. of cells)	Wt. of 5- ¹⁴ CH ₃ - H ₄ PteGlu accumulated (ng/mg dry wt. of cells)	Percentage recovery from cell lysates of 5-CH ₃ -H ₄ PteGlu taken up from the growth medium
L. casei S. faecalis	1.08 0.38	50 4.5	24–31 6–16	0.12–0.15 0.03–0.08	96–98 90–91
Vol. 127					

Table 2. Paper chromatography of L. casei and S. faecalis extracts

Cells were grown for 24h in medium containing 5^{-14} CH₃-H₄PteGlu and were lysed in 0.1 M-sodium phosphate buffer, pH7.0, containing 0.5% ascorbate and the extracts were analysed by paper chromatography on Whatman no. 1 paper. The solvent was 0.1 M-sodium phosphate buffer, pH7.0, containing 0.5% mercaptoethanol, at 4°C.

		Radioactivity recovered (%)		
Compound	R _F	L. casei extract	S. faecalis extract	
5-¹⁴CH₃- H₄PteGlu	0.65	44	95	
Unknown	0.20	6	5	
Unknown	0.48	10		
Unknown	>0.81	40		

with an R_F value corresponding to 5-CH₃-H₄PteGlu, whereas with L. casei several radioactive areas were found (Table 2). A similar result was obtained when the S. faecalis extract was chromatographed on thinlayer cellulose powder with 3% (w/v) NH₄Cl and 0.5% mercaptoethanol as solvent (Table 3). Nearly all (95%) of the extracted radioactive material was identified as 5-CH3-H4PteGlu. However, of the 74 ng of (\pm) -5-¹⁴CH₃-H₄PteGlu/ml of medium available to S. faecalis growing for 24h (Table 1), only 0.36 ng/ml (4.5 mg dry wt. of cells/ml) was found to be present in the washed cells after harvesting. The remainder of the radioactivity remained in the medium after growth and was identified as 5-14CH₃-H₄PteGlu by chromatography with the above procedures. By using washed exponential-phase cells and incubation for 15 min with 74 ng of (\pm) -5-14 CH₃-H₄PteGlu/ml (15000c.p.m./ml), 4.6ng of radioactive folate/ml was taken up and stored by the cells (5mg dry wt. of cells/ml). Since quantitative recoveries of 5-14CH₃-H₄PteGlu were possible from cells grown for either 24h or incubated for only 15min (Tables 1 and 4), it was concluded that no metabolism of 5-¹⁴CH₃-H₄PteGlu had taken place.

Uptake did not take place when exponential-phase cells were incubated with 0.1 M-KF. Uptake was impaired when cells were incubated in the absence of glucose. Also, the quantity of 5^{-14}CH_3 -H₄PteGlu taken up by the cells was found to vary depending on the concentration of PteGlu present in the medium. High concentrations of PteGlu effectively inhibited uptake of 5^{-14}CH_3 -H₄PteGlu. These experiments suggest that PteGlu and 5-CH_3 -H₄PteGlu share the same transport mechanism, probably an active one, in *S. faecalis*.

Table 3. Chromatography of S. faecalis extract

S. faecalis cells were grown for 24h in a medium containing 5-14CH₃-H₄PteGlu and were lysed in 0.1M-sodium phosphate buffer, pH7.0, containing 0.5% ascorbate and the extracts were analysed by t.l.c. on MN300 UV cellulose powder. The solvent was 3.0% (w/v) NH₄Cl containing 0.5% mercaptoethanol at room temperature.

		S. faecalis extract (% of radioactivity
Compound	R _F	recovered)
5-14CH3-H4PteGlu	0.81	95
PteGlu	0.22	
H₄PteGlu	0.65	
Unknown	0.91	4
5- ¹⁴ CH ₃ -H₄PteGlu PteGlu H₄PteGlu	0.81 0.22 0.65	recovered)

Discussion

The observation that folates that are reduced and substituted with a methyl group in the 5-position or that have three glutamic acid residues support growth for *L. casei* but not for *S. faecalis* has been used to assay these compounds in the presence of other folates, although the reason for this lack of response was unknown.

It seemed likely either that these folates could not be taken up by *S. faecalis* cells or that this microorganism has some alteration in folate metabolism making it impossible to convert accumulated folates into the folate pool. Inability to transport PteGlu₃ would seem to be the reason that this form of the vitamin does not support growth in *S. faecalis* (Fig. 2). The presence of three glutamic acid residues makes the molecule too large to enter the cell or ensures that it is not recognized by the cell transport mechanisms.

For 5-CH₃-H₄PteGlu, transport definitely takes place. This derivative of folate at a concentration sufficient to double the growth of an S. faecalis culture growing on PteGlu, caused no increase in growth (Fig. 1). However, the 5-CH₃-H₄PteGlu was completely removed from the medium by the cells (Fig. 2). That this loss of folate from the medium was actual uptake and not simply adhesion to the cell walls is indicated by the fact that S. faecalis cells, either grown for 24h in a medium containing 5-14CH₃-H₄-PteGlu and PteGlu (Table 1) or exponential-phase cells incubated for 15min with 5-14CH₃-H₄PteGlu (Table 4), when washed three times in saline and lysed, still contained a considerable concentration of radioactivity (Tables 1 and 4). No destruction of 5-14CH₃-H₄PteGlu occurred, as radioactive material removed from the media was recovered quantitatively and identified as 5-14CH₃-H₄PteGlu by chromatography (Tables 1 and 4). Incubations of exponentialphase S. faecalis cells with 5-14CH₃-H₄PteGlu in the presence of KF failed to show any accumulation of

Table 4. Uptake of 5-14 CH₃-H₄PteGlu by exponential-phase S. faecalis cells

Washed exponential-phase cells were incubated for 15min usually in the presence of (per ml) 74ng of (\pm) -5-¹⁴CH₃-H₄PteGlu (15000c.p.m.) (equivalent to 40ng of biologically active 5-CH₃-H₄PteGlu). The volume of the incubation mixture was 2.5ml and contained 5mg dry wt. of cells/ml in 0.1M-sodium phosphate buffer, pH 6.5, 0.03 M-glucose and 0.25% ascorbate.

Conditions of incubation	Radioactivity accumulated (c.p.m./mg dry wt. of cells)	Wt. of 5-CH₃-H₄PteGlu accumulated (ng/mg dry wt. of cells)	Percentage recovery from cell lysates of 5-CH ₃ -H ₄ PteGlu taken up from the incubation medium
37°C	185	0.92	100
0°C	18	0.09	92
0.1м-KF added	0	0	
10ng of PteGlu/ml added	13	0.06	93
$1 \mu g$ of PteGlu/ml added	3	0.015	90
37°C; 11.0ng of (±)-5- ¹⁴ CH ₃ -H₄PteGlu/ml (2300c.p.m./ml) added	79	0.39	98
37°C; no glucose present	35	0.18	96

this radioactive folate. It was also found that at 0° C or in the absence of glucose uptake was impaired.

Increasing concentrations of PteGlu in the incubation medium decreased the amount of 5^{-14} CH₃-H₄PteGlu taken up by the cells (Table 4). This accounted for the smaller amount of 5^{-14} CH₃-H₄PteGlu found in cells grown for 24h (Table 1) compared with the amount found in exponentialphase cells incubated for 15 min (Table 4). *S. faecalis*, grown for 24h in a medium containing 5^{-14} CH₃-H₄PteGlu, required an additional form of folate capable of supporting growth (Fig. 1). This was provided in the form of 0.4 ng of PteGlu/ml of medium. This concentration of PteGlu partially inhibited uptake of 5^{-14} CH₃-H₄PteGlu.

By taking the intracellular water volume to be $4\mu l/l$ mg dry wt. of cells (Davis et al., 1968), the ability of S. faecalis to deplete the medium of 0.4 ng of 5-CH₃-H₄PteGlu (Fig. 2) represents a 40-fold concentration of the vitamin. Wood & Hitchings (1959), using a similar uptake system, found that S. faecalis does transport and store PteGlu, but degrades the 5formyltetrahydropteroylglutamate. This may be a consequence of lysing cells after uptake by autoclaving in the absence of a reducing agent. Using a related micro-organism (Pediococcus cerevisiae), Mandelbaum-Shavit & Grossowicz (1970) have demonstrated that, whereas this organism cannot utilize 5-CH₃-H₄PteGlu as a source of folate, it does actively transport it. One of the difficulties in investigating the transport of any compound is that frequently it is metabolized, resulting in a constantly changing concentration gradient. The finding that these organisms do not carry out such metabolism makes them suitable for folate-transport studies.

We thank the Biomedical Trust and the Medical Research Council of Ireland, who supported this work, Dr. J. Brown, who synthesized the non-radioactive 5- $CH_3-H_4PteGlu$, and Miss C. Houlihan, who synthesized the PteGlu₃.

References

Bakerman, H. A. (1961) Anal. Biochem. 2, 558

- Baugh, C. M., Stevens, J. C. & Krumdieck, C. L. (1970) Biochim. Biophys. Acta 212, 116
- Blair, J. A. & Saunders, K. J. (1970) Anal. Biochem. 34, 376
- Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S. & Wood, W. B., Jr. (1968) Principles of Microbiology and Immunology, chapter 21, p. 624, Harper and Row, John Weatherhill, Tokyo
- Davis, R. E., Nicol, D. J. & Kelly, A. (1970) J. Clin. Pathol. 23, 47
- Freed, M. (1966) Methods of Vitamin Assay, 3rd. edn., p. 37, Interscience, New York
- Gupta, V. S. & Huennekens, F. M. (1967) Arch. Biochem. Biophys. 120, 712
- Herbert, V. (1961) J. Clin. Invest. 40, 81
- Herbert, V., Larrabee, A. R. & Buchanan, J. M. (1962) J. Clin. Invest. 41, 1134
- Houlihan, C. M. & Scott, J. M. (1972) Anal. Biochem. in the press
- Johns, G. & Bertino, J. R. (1965) Clin. Pharmacol. Ther. 6, 372
- Koch, A. L. (1970) Anal. Biochem. 38, 252
- Krumdieck, C. L. & Baugh, C. M. (1969) *Biochemistry* 8, 1568
- Luhby, A. L. & Cooperman, J. M. (1964) Advan. Metab. Disord. 1, 264.
- Mandelbaum-Shavit, F. & Grossowicz, N. (1970) J. Bacteriol. 104, 1
- Perry, J. & Chanarin, I. (1970) Brit. J. Haematol. 18, 329
- Stokstad, E. L. R. (1954) Vitamins, 1st. edn., 3, 89
- Turner, J. C. (1967) in *Review No.* 6, The Radiochemical Centre, Amersham
- Wood, R. C. & Hitchings, G. H. (1959) J. Biol. Chem. 234, 2381