
RESEARCH ARTICLE

Enhanced wave overtopping simulation at

vertical breakwaters using machine learning

algorithms

M. A. Habib1, J. J. O’SullivanID
1,2, S. Abolfathi3, M. SalauddinID

1,2*

1 UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin,

Dublin, Ireland, 2 UCD Earth Institute, University College Dublin, Dublin, Ireland, 3 School of Engineering,

University of Warwick, Coventry, United Kingdom

* md.salauddin@ucd.ie

Abstract

Accurate prediction of wave overtopping at sea defences remains central to the protection

of lives, livelihoods, and infrastructural assets in coastal zones. In addressing the increased

risks of rising sea levels and more frequent storm surges, robust assessment and prediction

methods for overtopping prediction are increasingly important. Methods for predicting over-

topping have typically relied on empirical relations based on physical modelling and numeri-

cal simulation data. In recent years, with advances in computational efficiency, data-driven

techniques including advanced Machine Learning (ML) methods have become more readily

applicable. However, the methodological appropriateness and performance evaluation of

ML techniques for predicting wave overtopping at vertical seawalls has not been extensively

studied. This study examines the predictive performance of four ML techniques, namely

Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Support Vector Machines

—Regression (SVR), and Artificial Neural Network (ANN) for overtopping discharge at verti-

cal seawalls. The ML models are developed using data from the EurOtop (2018) database.

Hyperparameter tuning is performed to curtail algorithms to the intrinsic features of the data-

set. Feature Transformation and advanced Feature Selection methods are adopted to

reduce data redundancy and overfitting. Comprehensive statistical analysis shows superior

performance of the RF method, followed in turn by the GBDT, SVR, and ANN models,

respectively. In addition to this, Decision Tree (DT) based methods such as GBDT and RF

are shown to be more computationally efficient than SVR and ANN, with GBDT performing

simulations more rapidly that other methods. This study shows that ML approaches can be

adopted as a reliable and computationally effective method for evaluating wave overtopping

at vertical seawalls across a wide range of hydrodynamic and structural conditions.

1. Introduction

The primary objective of coastal defences is to protect hinterland infrastructures and people

from extreme sea levels, which typically arise from a combination of waves, high astronomical

tides, and storm surges. Wave overtopping is observed at the crest of the coastal defence
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structure when water exceeds the defence crest level and inundates the coastal lands on the lee-

side of the structure (Fig 1). Wave-structure interactions are important in determining the

resilience of coastal defences and their effectiveness in mitigating wave overtopping. As such,

costal defences are designed based on an allowable limit for overtopping discharge. The assess-

ment and prediction of wave overtopping discharge under different structural and hydrody-

namic conditions has therefore been the focus of much research in recent years and continues

to remain a critical design parameter, given the increased frequency of overtopping events that

are predicted under current climate change trends [1, 2].

Multiple approaches lend themselves to determining the magnitude of wave overtopping

discharge. For different defence structure geometry, physical, empirical and numerical meth-

ods have been applied to determine wave overtopping in terms of (a) overtopping discharge;

(b) averaged overtopping discharge in a specific time per linear meter of the structure width;

and (c) overtopping volume. Physical models have been developed to observe overtopping for

a specific defence type (e.g., plain vertical walls, sloped walls, dykes, etc.) under defined wave

conditions. Physically modelled data is generally used in further analysis and can underpin a

sensitivity analysis to determine the influential overtopping parameters (see for example, [4–

7]). With the advancement of computational fluid dynamics techniques, numerical models

have been adopted to investigate wave overtopping and wave impact loads at sea defences (see

for example, [8–11] presented a tool for predicting the magnitude of infragravity waves, which

are long-period ocean waves in coastal areas with shallow foreshores and dikes. The tool is

based on numerical models and considers factors such as wave height, water depth, and fore-

shore slope to make predictions. Afterwards, [12] discussed the refinement of a mathematical

formula for modelling wave overtopping and runup at coastal structures, such as breakwaters

and sea walls. Empirical formulae are developed based on physical and numerical datasets to

provide predictive relations for estimating wave overtopping for a range of structural geome-

tries and hydrodynamic conditions (see for example, [13–15] and [3]]).

The EurOtop [3] overtopping manual is a comprehensive and state-of-the-art design man-

ual for a range of coastal structures including seawalls, breakwaters, and revetments for various

geometries. The manual encompasses design guidance to estimate potential overtopping at

coastal structures exposed to a comprehensive range of wave actions. The open source data

used in the manual includes laboratory experiments and field observations of wave actions and

their impacts on coastal structures, and amounts to c. 18,000 tests. EurOtop [3] was developed

by a team of coastal engineering experts from various European countries. The latest version

Fig 1. Schematic of parameters used in describing wave overtopping discharge at sea defences (adopted from [3]). See glossary for

further description of the parameters.

https://doi.org/10.1371/journal.pone.0289318.g001
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Abbreviations: a) Parameters used in Fig 1 along

with their units: Ac, armour freeboard relative to

SWL (m); B, berm width (m); Bt, width of the toe

(meter); cot (αd), angle of down slope (degree); cot

(αu), angle of upper slope (degree); Gc, armour

width (m); hb, water depth on the berm (m);; Hm0,

significant wave height at the toe of the structure

(meter); ht, water depth at toe of the structure

(meter); q, Overtopping Discharge (m3/s per metre

width); Rc, crest freeboard relative to SWL (meter);

tan (αF), foreshore slope; tan (αf), foreshore slope;

Tm-1,0, spectral wave period at toe of the structure

(second); γt,d, roughness coefficient of the down

slope; γt,u, roughness coefficient of the upper

slope; b) Parameters used for Prediction tasks

with their units Bt, Width of toe of structure (m);

CF, Complexity-Factor of structure section; cotαd,

cot of angle between structure slope downward

berm and horizontal (-); cotαexcl, cot of mean slope

of structure calculated without contribution of

berm (-); cotαu, cot of angle between structure

slope upward berm and horizontal (-); Gc, Width of

promenade (m); h, Water depth at toe of structure

(m); hb, Water depth on berm (negative means

berm is above SWL) (m); Hm0 d, Significant wave

height at deep water (m); Hm0 toe / Hm0 t, Significant

wave height at toe of structure; ht, Water depth at

the toe of structure (m); mmm, Slope of foreshore;

Pow, Probability of overtopping per wave; Rc, Crest

freeboard of structure (m); RF, Reliability-Factor of

test; Tm d, Average wave period at deep water (s);

Tm toe, Avg. wave period determined at toe (s); Tm-

1,0 d, Spectral wave period defined by m-1/m0 (s);

Tm-1,0t, Spectral wave period at toe (s); β, Angle of

wave attack (o).

https://doi.org/10.1371/journal.pone.0289318.g001
https://doi.org/10.1371/journal.pone.0289318


of the manual (and dataset) was published in 2018, and it remains a primary guidance for

coastal engineers across the world to design resilient coastal structures.

The combination of advances in computational power, availability of high-resolution data-

sets, and efficiency of computational algorithms, has added momentum to the application of

data driven approaches for predicting wave overtopping characteristics. In this regard, the use

of Machine Learning (ML) algorithms, where the algorithm learns complex non-linear pat-

terns from datasets to map input features to an output quantity, have gained interest in the

coastal engineering community. MLs have shown superior performance in addressing a range

of complex water and environmental problems compared to traditional statistical approaches

of classification and regression analysis (e.g., [16–24]). Artificial Neural Networks (ANN) have

been used for estimating wave overtopping for a range of defences [4, 25, 26] and have been

endorsed in [3]. More recently, [27, 28] adopted Gradient Boosted Decision Trees (GBDT), a

variant of a decision tree model, to study overtopping using the data from the CLASH [29]

database and other physically based experimental data. The results from the GBDT model

were shown to compare favourably to corresponding predictions from ANN models and

empirical formulations. Other applications of decision trees for overtopping predictions are

investigated by [30–32]. Random Forest (RF) and Support Vector Machines Regression (SVR)

models are also shown to outperform ANNs for predictions of wave overtopping [33, 34]. ML-

based predictive modelling studies for wave overtopping highlight the necessity of a robust

methodological approach for choosing appropriate ML techniques to achieve high levels of

performance in overtopping prediction [35].

Here we present a comprehensive assessment of four widely adopted ML algorithms in pre-

diction of wave overtopping from vertical breakwaters. Random Forest (RF) and Gradient

Boosted Decision Tree (DT) that are derivatives of general decision tree models, together with

Support Vector Machine Regressor (SVR) and Artificial Neural Network (ANN) are imple-

mented in this study to predict mean overtopping rates at vertical defences. The EurOtop

(dataset [3] comprising extensive overtopping data from physical modelling tests for vertical

sea defences is utilised to develop, train, and test the ML algorithms. The dataset was split to

ensure an unbiased evaluation of model performance. Each ML model is first trained and vali-

dated on 70% of the dataset (EurOtop data on vertical wall) and subsequently tested on the

remaining 30%, which remained unseen for the ML algorithm during the training and valida-

tion phase. The predicted overtopping rates are compared to the measured values and detailed

statistical analysis is performed using five statistical error metrics. The computational time was

also compared. The paper examines the robustness of the four ML-based algorithms for their

appropriateness in for modelling wave overtopping at coastal defences, and for the first time,

investigates the applications of optimization techniques such as hyperparameter tuning and

feature selection methods to enhance both statistical metrics and physical consistency. A meth-

odological framework is developed and adopted for a meaningful comparison between the

predictions of the ML algorithms. It is shown that use of advanced feature selection methods

implemented in this study can replace the existing time-consuming permutation method of

finding the best set of features for the overtopping prediction tasks in the datasets.

2. Materials and methods

2.1 Decision trees

Decision Trees (DTs) are supervised algorithms widely adopted for prediction tasks in both

classification and regression problems. A typical structure of a DT is shown in Fig 2, where the

black and white circles represent two distinct set of data features. The entire sample containing

the features are inputted into the root node. The features are then separated in the interior
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nodes according to decision-rules that the algorithm develops based on the training on the

dataset. The leaf nodes in DTs produce the outputs or the predicted quantities (for regression

trees). The final output of a DT is achieved through multiple iterations of the algorithm and is

expressed as an average of all the outputs from successive iterations. The reduced complexity

of DT models and the fact that their performance is largely independent on the ‘noise’ and the

non-linearity of input data, together with the ability of these models to handle both categorical

and numerical data has contributed to their wide popularity [36, 37].

If we consider a set of training features (such as the overtopping parameters) xi 2 Rn; i = 1

to l and label vectors (such as q, the overtopping discharge) y 2 Rl, the function of a decision

tree is to repeatedly split the space of the training vectors so that they have the same labels. The

split points are called ‘nodes’. Suppose Qm is a node with nm features, splitting criteria θ = (j,
tm) where j is a feature set, and tm is the threshold, then following the split, two subsets are

formed which are Qleft
m yð Þ and Qright

m yð Þ. The quality of each split is computed using the impu-

rity or the loss function H() which is different for classification and regression tasks. The mini-

mum of the function G (Qm,θ) (Eq 1) is θ* (Eq 2) to be reached with successive splits.

(Pedregosa et al., 2012).

G Qm; yð Þ ¼
nleft
m

nm
H Qleft

m yð Þ
� �

þ
nright
m

nm
H Qright

m yð Þ
� �

ð1Þ

y
∗
¼ argmin G Qm; yð Þ ð2Þ

The split continues until the minimum of the loss function is achieved or until nm< nmin or

nm = 1.

For regression tasks, such as the prediction of overtopping discharge from overtopping

parameters (see Fig 1), the split at the nodes is based on the Mean Square Error (MSE) or L2
error, the Half Poisson (HP) deviance and the Mean Absolute Error (MAE) of the predicted and

actual values (i.e. labels). In this study the MSE approach is applied given that the MSE computa-

tion is faster than the HP deviance. The loss function H (Qm) is then computed by Eq 3:

H Qmð Þ ¼
1

nm

X

y2Qm
ðy � �ymÞ

2
ð3Þ

Fig 2. Typical structure of a decision tree (DT).

https://doi.org/10.1371/journal.pone.0289318.g002
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where, �ym is the mean of the predicted values and is set according to Eq 4:

�ym ¼
1

nm

X

y2Qm
y ð4Þ

Poor performance of individual DTs can be associated with overfitting problem, an issue

that is typically addressed by bagging and boosting approaches. To address the overfitting

problem, two derivatives of DTs; Random Forests and Gradient Boosted Decision Trees

(GBDT) are proposed.

Bagging or bootstrap aggregation generates ensemble DT regressors that account for all

predictions from individual DTs and give predictions of a quantity based on the majority vot-

ing of the ensembles. An example of a bagging based-DT algorithm is Random Forest (RF). In

a RF, an ensemble of DTs is constructed using a subset of all features which are randomly

selected. Following this, predictions from each DT in the ensemble are computed and a final

predicted quantity is based on the best predictor model. The steps involved in a RF model can

be summarized as follows (Fig 3):

Step 1: Data Preparation and Splitting

• Load the training data in an accessible format to the algorithm

• Tackle missing data through imputation methods and check for outliers

Fig 3. The structure and workflow of a RF algorithm.

https://doi.org/10.1371/journal.pone.0289318.g003
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• Separate the predictor variables (input features) and the target variable (output feature)

• Perform split of training and test data (70% and 30% respectively)

Step 2: Bootstrap Sampling

• Generate subsets of the training data with replacement using a method called bootstrap

sampling

Step 3: Building Ensemble Decision Trees

• Ensembles of DTs (Decision Trees 1, 2. . .t; Fig 3) are generated

• Each subset generated using bootstrap sampling is assigned to a regression based Decision

Tree (DT).

• The DT splitting criteria is set using a random selection of predictor variables.

• The number of features to take into account for each split is typically equal to the square root

of the total number of features, although this may be altered using hyperparameter tuning.

Step 4: Training, Validation and Prediction on Training Set

• The ensemble DTs are validated on the training data. Statistical parameters (such as mean

and median) of the relevant leaf nodes in each decision tree are used to deduce the output

value. The overall output value is the average of the individual trees in the ensemble.

Step 5: Hyperparameter Tuning

• Utilize assessment measures like mean squared error (MSE), mean absolute error (MAE), or

coefficient of determination (R-squared) to rate the effectiveness of the random forest

regression model.

• Adjust the random forest’s hyperparameters such as the number of trees, maximum depth of

individual trees or the amount of characteristics to take into account at each split and re-run

the above steps.

Step 6: Deployment to the test set

• The optimized algorithm is then applied to the test set and the performance was evaluated

using statistical metrics.

In boosting, prediction errors are minimised by differentiating the loss function (Eq 2) to

reach the minimum value. During the training process and through multiple iterations, differ-

ent weights and coefficients are associated with the values of the input variables to optimize

the loss function to a minimum value. The adjustment of the loss function after each iteration

is called the gradient descent. In optimising the loss function, the accuracy of predictions from

the DT is improved in a process referred to as boosting, with the resulting DT model being the

Gradient Boosted Decision Tree (GBDT) [38]. Fig 4 summarizes the following steps that con-

stitute the GBDT algorithm.

Step 1 is similar to that of RF.

Step 2: Building Decision Trees
GBDT is characteristically a Decision Tree and hence the setting up of the trees are similar

to what was discussed in Step 3 of the RF methodology. Hyperparameters like the learning

rate, maximum tree depth, number of estimators, and regularization parameters are initialized

in this step.

PLOS ONE Improved pedictions of overtopping using machine learning algorithms
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Step 3: Optimizing the Loss Function
Following an initial run, the GBDT model will create an ensemble of DTs and the discrep-

ancies between the actual and predicted values are translated into a loss function. The model

then works to minimize this loss function during the training step.

Step 4: Training and Validation
The model is trained and validated on the training set and performance is estimated using

statistical metrics.

Step 5: Hyperparameter Tuning
In this step, the hyperparameters can be tuned by the user to best fit on the training data.

Hyperparameter tuning is performed based on the performance evaluation on the training

data.

Step 6: Deployment to the test set
Based on satisfactory results from the training and validation step, the model is then applied

to the test set.

2.2 Support vector machines

Support Vector Machine (SVM) is another method of supervised ML that can be used for both

classification and regression tasks. The main target of a SVM is to build a hyperplane in a n

Fig 4. The structure and workflow of a GBDT algorithm.

https://doi.org/10.1371/journal.pone.0289318.g004
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dimensional space where each discrete point will be representing the feature data. The data

points that fall close to either side of the hyperplane are called support vectors. The support

vectors are then used to predict an output. SVMs were initially developed to predict categorical

or discrete values. The typical structure of a SVR algorithm is illustrated in Fig 5. The algo-

rithm can be summarized in the following steps.

Step 1 involves the usual process of assemble the dataset with the target variables and the

input features. Pre-processing tasks like data cleansing, feature scaling, or addressing missing

values are carried out as the SVR algorithm is susceptible to missing values. The dataset is then

split into a training and test set and transformed to input vectors (See Fig 5).

Step 2: Defining the Support Vectors
The model parameters are defined which include selecting the kernel function. The regular-

ization parameter (C) and kernel-specific parameters (such as degree for polynomial kernels

and gamma for RBF kernels) are additional hyperparameters that are defined in this step.

Step 3: Training and Validation
In this step, the model’s performance is evaluated for the initial set of hyperparameters.

Step 4: Hyperparameter Tuning
The hyperparameters are altered to tailor the algorithm by altering the parameters inside

the kernel function.

Step 5: Deployment to the test set
The optimized SVR model is then applied to the test set.

Fig 5. The structure of a SVR algorithm.

https://doi.org/10.1371/journal.pone.0289318.g005
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A sub-class of SVMs, namely the Support Vector Machine Regressor (SVR) deals with pre-

dicting continuous values. SVR models include several features that make them an ideal choice

for solving both linear and non-linear prediction problems [39, 40]. SVR models are consid-

ered to be more efficient in reducing errors during predictions [39, 40]. In linear SVR, unlike

linear regression, the hyperplane takes the shape of a tube, known as an ε-tube and the regres-

sion line falls in the middle of this convex tube. The SVR function y = f(x) in Eq 5 [41] is then

optimised to have the flattest ε-tube that defines most of the training data. Any data point that

falls in the ε-tube is disregarded in the error calculations, while only the data points that fall

outside the tube are included, enabling tuning of the margin of error of the regression model.

The regression error is then measured by calculating the distance between the data points and

the ε-tube. The SVR is known for high generalisation ability over unseen data and can perform

prediction tasks with significant accuracy regardless of the number of features in the dataset

[41, 34].

y ¼ f xð Þ ¼< w; x > þb ¼
XM

j¼1
wjxj þ b; y; b 2 R; x; w 2 RM ð5Þ

where w is the support vectors, and ‘M’ is the degree of polynomial used in the approximation

function. The loss function is calculated by Eq 6:

min
1

2
jjwjj2 þ C

XN

i¼1

εi þ ε∗
1

ð6Þ

where N is the number of slack variables, C is a regularization factor that can be tuned to alter

the flatness of the hyperplane, and εi and ε∗
1

are slack variables that measure the distance of the

outliers from the ε-tube. In this study, a non-linear SVR is developed for dealing with non-lin-

ear relationships between the features and the target variable. In the case of non-linearity, the

feature data is mapped onto a higher dimensional hyperplane known as kernel space, contrib-

uting to enhanced accuracy of the model.

The kernel space is defined by k(xi, xj). This study adopts a Gaussian Radial Basis Function

as described in Eq 7. The Gaussian RBF can accommodate an infinite number of feature

dimensions as it follows a Taylor Series expansion and is widely accepted as an appropriate

kernel for datasets where intrinsic characters of the parameters are unknown or difficult to

trace (e.g. overtopping datasets) [42].

k xi; xj
� �

¼ exp exp �

�
�jxi; xjj

�
�2

2s2

 !

ð7Þ

where σ is a kernel parameter.

2.3 Artificial neural networks

Artificial Neural Networks (ANNs) are inspired by the biological neurones and were first

applied by [43]. ANNs make predictions by mapping inputs to outputs assigning weights to

particular inputs and estimating a loss function. ANNs have been used for prediction of over-

topping over a range of coastal defence structures described by the CLASH dataset [29] and [3,

26, 44, 45, 46]. [25] demonstrated the appropriateness of ANN to perform data-driven analysis

on overtopping datasets with a large number of parameters, where the inter-relationship

between the parameters is unknown or difficult to deduce. The layered structure of an ANN

comprising input, hidden, and output layers is shown in Fig 6. The input layers initially receive

data from the feature sets. The exchange of information only takes place between the neurones

PLOS ONE Improved pedictions of overtopping using machine learning algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0289318 August 16, 2023 9 / 29

https://doi.org/10.1371/journal.pone.0289318


and not within them. The hidden layers of the model (or ‘black-box’) perform the operation of

applying activation functions and appropriate weights to the input values. The hidden layers

compute the dependent feature(s) from the independent features in the input layers and pass

these to the final, or output layer, of the network [47]. In the current study, a feed-forward and

back propagation ANN algorithm is adopted for overtopping prediction. As such, the error

rates were minimised by optimising the loss functions through a combination of feed-forward

(passing of information from Input to Hidden to Output Layers) and back propagation (Out-

put to Hidden and Hidden to Input Layers), until a certain threshold of allowable error rate is

achieved. The error rate is an estimation of the extent of which the weights and biases are re-

configured during the back propagation step. This is carried out by assigning new weights and

activation functions in the hidden layers. The number of hidden layers can be optimised

according to the complexity of the input data in order to minimise errors in predictions [39,

40]. Two hidden layers, each consisting of 500 neurones were used to construct the ANN

model in this study. Hyperparameter tuning was adopted to ensure that the best combination

of parameters curtailed for the overtopping dataset are used for the overtopping prediction

tasks.

2.4 Evaluation metrics

The performance of the ML algorithms in terms of predicting the overtopping quantity,

described as discharge per unit width of the structure ‘q’, was evaluated by comparing the pre-

dictions to measured values and determining statistical metrics including Coefficient of Deter-

mination (R2), Root Mean Square Error (RMSE), Root Mean Squared Logarithmic Error

(RMSLE), Mean Absolute Error (MAE), and Relative Absolute Error (RAE).

Fig 6. Structure of a feed forward back propagation ANN.

https://doi.org/10.1371/journal.pone.0289318.g006
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The Coefficient of Determination (R2 in Eq 8), for a set of model estimates, defines the pro-

portion of the variation in the dependent variable that is predictable from the independent var-

iables and as such, is a measure of the overall model performance [48]. R2 values range from 0

to 1, with 1 representing the perfect predictive performance of a model.

R2 ¼ 1 �

P
ðyi � ŷiÞ

2

P
ðyi� � yÞ

2
ð8Þ

where yi, ŷi and �y are observed values, predicted values, and mean of all observed values,

respectively.

The Root Mean Square Error (RMSE) captures the standard deviations between the

observed and predicted values (Eq 9):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðqA � qPÞ

2

r

ð9Þ

where, qA and qP are the actual and predicted overtopping volumes, respectively.

The Root Mean Squared Logarithmic Error (RMSLE) in Eq 10 measures the differences

between actual and predicted values expressed in logarithmic scale, and provides a fair treat-

ment of both small and large errors where there may be outliers in the predicted values:

RMSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log log qA þ 1ð Þ � log log qP þ 1ð Þð Þ
2

q

ð10Þ

The Mean Absolute Error (MAE) is calculated by measuring the magnitude of the differ-

ences between the actual and predicted values and is averaged over the number of observations

(Eq 11):

MAE ¼
1

N

XN

1
jqA � qPj ð11Þ

Finally, the Relative Absolute Error (RAE), ranging from 0 to 1 in order of decreasing accu-

racy, is obtained by dividing the total absolute error by the absolute difference (Eq 12):

RAE ¼

XN

i¼1
jqA � qPj

XN

i¼1
jqA � qAvj

ð12Þ

where qAv ¼
1

N

PN
i¼1

qA.

2.5 hyperparameter tuning

Hyperparameter refers to any parameter of an ML algorithm that can be altered or tuned by

the user, whereas model parameters (e.g., coefficients of mapping functions) cannot be

accessed by the user. Hyperparameter tuning ensures that the ML algorithm is tailored for a

particular input data and is an important feature for reducing risks of overfitting. Hyperpara-

meter tuning was performed for all the ML models in this study following the scikit-learn

library suggestions [36].

Table 1 shows the optimal hyperparameters for the SVR, RF, GBDT, and ANN models. The

C term in Table 1 is a regularisation parameter of the SVR algorithm. The kernel is the engine

of the algorithm and is a function that maps the input parameters to the output. The kernels

considered in this study include linear, polynomial, and RBF. Gamma (in Table 1) is a coeffi-

cient of the kernel function. The optimal parameters were achieved through the combination

of grid search and a k-fold Cross Validation (CV) [36]. A grid search is the term used for the
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collective number of hyperparameter combinations. A k-fold CV is the operation that splits a

particular training set into subsets called ‘folds’. The ML algorithms are first validated on these

folds before being applied to the test set. This is to ensure the algorithm captures all the vari-

ance and patterns of the training set.

The hyperparameters of RF (Table 1) are mostly the functional units of a decision tree net-

work. The ‘n_estimators’ is the number of trees that collectively form the RF. Features such as

‘max_depth’, ‘min_samples_split’ serve to reduce overfitting. Unlike the grid search with CV

used in SVR model development, a random search with CV hyperparameter tuning method is

adopted for the RF model, which yielded higher accuracy compared to grid search CV for the

data used in this study. The Randomised Search (RS) CV uses a fixed number of random com-

binations of hyperparameters, unlike the Grid Search (GS) CV that employs all possible

combinations.

The ideal hyperparameter configuration for GS is often identified by assessing the model’s

performance for each set of parameter values defined in the grid. This information can be

accessed using the ‘cv_results’ attribute in scikit-learn’s package, as k-fold cross-validation was

also implemented. Each configuration’s performance is measured using a performance metric,

such as accuracy or mean squared error, and the configuration with the greatest (or lowest,

depending on the metric) performance is selected eventually. The list of best values for the GS

can be retrieved using the ‘best_params_’ function.

In the case of RS, for each random parameter configuration, the model is trained and

assessed, and the optimal configuration is chosen based on the performance measure. The

retrieval process of the best parameters are similar to what has been discussed about GS.

Functionally, RF and GBDT are both decision trees with the exception that the latter relies

on gradient boosting as previously discussed. The hyperparameters of GBDT (Table 1) deal

with the size of the decision tree that will be a best fit for the data used. The ‘learning_rate’ of a

GBDT is an important criterion that reduces model overfitting by setting the weights of indi-

vidual features in the boosting process to converge the error in the loss function. The ‘max_-

depth’ feature also contributes to reducing overfitting by limiting the number of nodes in the

trees. Random search with five steps CV is shown to have the best performance for the GBDT

model developed in this study.

ANN models have limited scope to work with the hyperparameters, as most of the model

parameters, such as altering the learning rates, cannot be manually changed [49] In this study,

the learning rate ‘alpha’ was altered using both GS and RS methods and the best model was

Table 1. List of the hyperparameters and their corresponding best values.

Algorithm Hyperparameters and Typical Values Best Values

SVR C’: 5, 10, 15; ’kernel’: linear, rbf, poly; ’gamma’: auto, scale C’: 15; ’kernel’: rbf, ’gamma’: auto

RF n_estimators’: 800, 1000, 1500

’min_samples_split’: 2, 5, 10

’min_samples_leaf’: 1, 2, 4

’max_features’: auto, sqrt

’max_depth’: 10 to 110

’bootstrap’: True, False

n_estimators’: 800,

’min_samples_split’: 2,

’min_samples_leaf’: 1,

’max_features’: ’auto’,

’max_depth’: 100,

’bootstrap’: True

GBDT max_depth’: 3, 5, 6, 10, 15, 20;

’learning_rate’: 0.01, 0.1, 0.2, 0.3;

’subsample’: 0.5, 1.0, 0.1;

’colsample_bytree’: 0.4, 1.0, 0.1;

’colsample_bylevel’: 0.4, 1.0, 0.1;

’n_estimators’: 100, 500, 1000

max_depth’: 6; ’learning rate’: 0.1; ’subsample’: 1.0; ’colsample_bytree’: 0.7;

’colsample_bylevel’: 1.0; ’n_estimators’: 1000

ANN activation’: ’relu’, ’sigmoid’; ’batch_size’: 32, 64, 128; epochs’: 10, 15,

20, ‘alpha’: 0.0001, 0.0005

activation’: ’relu’, ’batch_size’: 64, ’epochs’: 20, ‘alpha’: 0.0001

https://doi.org/10.1371/journal.pone.0289318.t001
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selected on the model loss criteria. The typical values for hyper tuning the ANN were based on

existing literature (see for example, [50, 51]) for model loss criteria and computational time.

The hidden layers of the ANN are the engine of the algorithm, and the user can only specify

the number of hidden layers and the neurones in these layers. In addition to the ‘alpha’ param-

eter, the activation function, together with the loss computation methods and epochs are

tuned in this study (see Table 1).

2.6 Feature selection and feature transformation

The overtopping datasets with multiple features or dimensions can be challenging for deriving

robust ML-based predictions. Highly-dimensional datasets can effectively reduce the efficiency

and accuracy of ML algorithms by causing irrelevancy and redundancy in the training process.

Redundant data will also significantly increase the computational cost. The problem of data

redundancy can be addressed by feature selection methods, aiming to filter a subset of relevant

features from a large dataset and largely eliminate redundancy and irrelevancy [52]. The fea-

ture selection is basically a permutation combination based on statistical methods to quantify

the correlation of each feature with a target feature [53, 54]. For overtopping prediction, den

Bieman et al. (2021) adopted feature selection in the form of a permutation analysis of the

features.

Feature transformation is another method for extracting meaningful features from a large

dataset [55] where the initial number of features is transformed into a new compact dataset

while retaining the maximum amount of information possible. Principal Component Analyses

is an example of a feature transformation method [56].

This study examines three feature selection methods and one feature transformation

method for developing ML models, including Univariate Feature Selection (UFS), Correlation

Matrix (CM), Principal Component Analysis (PCA), and Wrapper Methods (WM). In UFS,

the most relevant features are ranked based on univariate statistical tests. This method ranks

the k number of best features according to their random linear dependencies which are mea-

sured by the F-test score [36]. The CM method measures the correlations between all the fea-

tures of a dataset with a certain target variable. Similar to UFS, the CM method will rank the

best features according to a specific pre-set threshold of the correlation score, and discard all

the features with correlation scores below the threshold level. For this study, the threshold cor-

relation value was set at zero to discard any feature that had a negative correlation with the tar-

get variable. However, following construction of the correlation map, it was observed that

several features in the overtopping dataset were not correlated with other features and the tar-

get variable. Hence, the CM was not considered an appropriate method to filter the best fea-

tures for the wave overtopping dataset used in this study.

PCA is used to determine the variance in large datasets and reduce the dimension of the

features in a way to only retain those features that explain the maximum variance in the data-

set as a whole. PCA is a method of dimensionality reduction that converts all the correlated

variables into principal components that are uncorrelated and explains the maximum

variance.

Wrapper methods represent a more complex way of handling feature selection. The meth-

ods rely on regression analysis to filter the best subset of features from a large dataset. Due to

their complexity, wrapper methods tend to be more time consuming to implement than other

feature selection methods [53, 57, 58]. In this study, a wrapper method based on the Ordinary

Least Squares technique was applied to the dataset. Following the regression, the p-values of

the features were considered with a significance level set at 0.05. All features with a p-value
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exceeding 0.05 were discarded from the overtopping dataset due to the lack of significance in

the prediction.

The features that were filtered through PCA and WM were selected for the prediction of

wave overtopping from the EurOtop [3] dataset. The results obtained from PCA and WM

were in agreement. The PCA identified 20 principal components that could explain the vari-

ance in the dataset and the wrapper methods also identified as many as 20 features with a p-
value less than 0.05. The SVR and ANN models developed in this study rely on the complete

datasets (without missing values). For the missing data in the EurOtop dataset, interpolation

and k-Nearest Neighbours (kNN) methods were adopted for data imputation. K-Nearest

Neighbours (KNN) is a simple machine learning algorithm that can be used for missing value

imputation. The basic idea of KNN is to find the K nearest neighbours of an instance with

missing values, and to fill in the missing values with the average or median of the values of the

nearest neighbours as explained in [59]. The feature selection and imputation methods were

applied for the dataset as a pre-processing step and before the data were used as a common

input for the ML algorithms.

2.7 Data analysis

The EurOtop database [3] for overtopping at vertical breakwaters, with a total of 1318 data rec-

ords, was adopted for developing ML-based predictive models. Table 2 describes the dataset

parameters and range. The Pearson correlation factor, r, of the independent variables with the

dependent variable (q) is presented in Table 3. The analysis of the results shows that while no

negative correlation in independent variables was observed, the overall degree of correlation

between the variables was low. For r values of close to zero (at a p-value significance level of

0.05), Table 3 indicates no significant correlation between any two variables. The maximum

correlation of 0.30 with ‘q’ was achieved by Tm-1,0 d, and the other six independent variables

had r values ranging from 0.25 to 0.30.

The ML algorithms investigated in this study are capable of handling non-linear relation-

ships between independent and dependent variables. However, low correlations between the

variables are indicative of redundant features that need addressing by feature selection and

transformation. For the EurOtop dataset [3] used in this study, the entire data was decom-

posed into 20 principal components, representing the maximum variance in the data that can

be explained by 20 features (see Fig 7). Further analysis was carried out to provide insight of

the highest ranking features in the PCA. Overall, the analysis shows that 13 out of the 33 fea-

tures from the dataset can be filtered out without affecting the accuracy of the predictions,

Table 2. Range of overtopping parameters used to extract data for vertical breakwaters.

Overtopping Parameter Range

cotαd (-) 0–0.10

RF 1–3

CF 1–3

ht (m) 0.05–1.28

B (m) 0

Rc (m) 0.01–1.46

γf (-) 1

Hm0 toe (m) 0.03–0.603

q (m3/s) >1.0*10−6

https://doi.org/10.1371/journal.pone.0289318.t002
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while at the same time improving computational efficiency. Following the feature transforma-

tion using PCA and feature selection with wrapper methods, the features selected for the analy-

sis include Hm0 d, Tm d, Tm-1,0 d, mmm, β, h, Hm0 toe, Tm toe, Tm-1,0t, ht, Bt, cotαd, cot αu,

cotαexcl, Rc, hb, Gc, RF, CF and Pow (terms are explained in the glossary). The feature transfor-

mation and selection methods trialled different combinations of input data inside their respec-

tive algorithms to get the best subset of the features. Hence, it was not required to perform any

further trials for identifying the best combination of input parameters. The features extracted

from feature transformation and selection are directly fed into the analysis.

A train-test data split of 70%-30% was adopted in the development of the ML models in

this study, with 70% of the data being used to train the models and the remaining 30% of the

data used to predict the dependent variable, ‘q’ in the testing phase. Following completion of

the prediction process, the predicted values of overtopping discharges were compared to the

measured values reported in the EurOtop dataset [3] which were kept hidden from the algo-

rithms during the testing phase. The analysis of the ML results was mainly carried out using

Scikit-learn library [36]. The flowchart of the methodology framework is described in Fig 8.

Following train-test split, the models were optimized by hyperparameter tuning, feature

transformation and selection, cross-validation, and Grid Search. The model outputs include

Table 3. Correlation table of overtopping parameters.

Pearson r Values Overtopping Parameters

0.3 Tm-1,0 d

0.25 < r < 0.3 Tm toe, Tm d, Tm-1,0t, ht, RF, Pow

0.20 < r < 0.25 Hm0 d, Tp d, Hm0 toe, Tp toe

r < 0.2 hdeep, mmm, β, h, Bt, cotαd, cotαexcl, Rc, hb, Ac, Gc, CF

https://doi.org/10.1371/journal.pone.0289318.t003

Fig 7. PCA Decomposition and scores of the dataset.

https://doi.org/10.1371/journal.pone.0289318.g007
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the predicted overtopping rates, together with ancillary information such as feature impor-

tance and permutation analysis (described in Section 3). A detailed statistical analysis was then

performed to evaluate the performance of the proposed ML-based overtopping prediction

models for vertical breakwaters.

2.8 Empirical estimation of overtopping

The mean overtopping rates obtained from the algorithms were compared with corresponding

rates estimated from empirical calculations.

According to [3], the mean overtopping rate (q) for non-impulsive conditions at vertical

walls is estimated by Eq 13:

q
ffiffiffiffiffiffiffiffiffiffi
gHm0

p ¼ 0:05exp � 2:78
Rc

Hm0

 !

ð13Þ

where, Hm0
is the significant wave height from spectral analysis, Rc is the crest freeboard and g

is the gravitational acceleration. The non-impulsive and impulsive conditions are deduced by

Fig 8. Framework of the methodology.

https://doi.org/10.1371/journal.pone.0289318.g008
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Eqs 14 and 15, respectively, as suggested by [60].

h2
t

ðHm0
Lm� 1;0Þ

> 0:23 ð14Þ

h2
t

ðHm0
Lm� 1;0Þ

� 0:23 ð15Þ

where ht denotes the water depth at the toe of the structure and Lm−1,0 is the wave-length of the

waves in deep water calculated from
gT2

m� 1;0

2p
with Tm−1,0 referring to the spectral wave period.

The mean overtopping rate for impulsive wave conditions is calculated from Eqs 16 and 17,

according to the given conditions [60].

q
ffiffiffiffiffiffiffiffiffiffi
gHm0

p ¼ 0:011ð
Hm0

htsm� 1;0

Þ
0:5 exp � 2:2

Rc

Hm0

 !

; for 0 <
Rc

Hm0

< 1:35 ð16Þ

q
ffiffiffiffiffiffiffiffiffiffi
gHm0

p ¼ 0:0014ð
Hm0

htsm� 1;0

Þ
0:5
; for

Rc

Hm0

� 1:35 ð17Þ

where Sm−1,0 is the wave steepness, calculated from
Hm0

Lm� 1;0
.

For the case of ‘no influencing foreshore’ in front of the structure, Eq 18 as proposed by

EurOtop [3], is employed.

q
ffiffiffiffiffiffiffiffiffiffi
gHm0

p ¼ 0:047 exp � 2:35
Rc

Hm0

 !1:3" #

ð18Þ

3. Results and discussion

3.1 Prediction results

Following extraction and filtration of overtopping data for the case of vertical seawalls from

the EurOtop database [3], hyperparameter tuning, feature transformation and selection were

conducted, and the selected overtopping features were inputted to the proposed ML algo-

rithms (i.e. Random Forest, Gradient Boosted Decision Trees, Support Vector Machines

Regression, and Artificial Neural Network). The dimensionless predicted values of ‘q’

q predictedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81∗ðHmtoeÞ

3
p

� �

were compared against the dimensionless measured values of ‘q’

q measuredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81∗ðHmtoeÞ

3
p

� �

to evaluate the predictive performance of the proposed ML models for wave

overtopping. The overall results of statistical analysis indicate that all the ML algorithms exam-

ined in this study are capable of predicting ‘q’ with high accuracy. Predicted overtopping val-

ues are compared to those measured in Fig 9. It is to note that empirical equations (Eq 13, Eqs

16–18) are based on best fitting to laboratory and field measurements at vertical walls, and this

study compares the performance of four developed ML models against the measured values as

reported in EurOtop database (i.e., laboratory and field measurements of overtopping rates at

vertical walls).

Analysis of the results indicates that for the four ML algorithms tested, the majority of pre-

dictions for small overtopping volumes are within the 95% confidence interval, although the
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accuracy of the predictions reduces for larger overtopping rates. The predictions from the SVR

models are shown to exhibit slightly more scatter from the regression line compared to those

for the RF and GBDT models, while predictions from the ANN show greater scatter. Data

therefore suggests that ANN is the least accurate predictor algorithm amongst the four models

tested in this study. The performance of ML models is further explained by the statistical scores

in Table 4.

The results obtained for the RF and GBDT models show better agreement to measured

overtopping rates, as evidenced by the number of predicted data points within the 95% confi-

dence interval, compared to the predictions from the ANN and SVR models (see Fig 9). The

mean overtopping rates calculated from empirical equations, described in Section 2.8 and

adapted from EurOtop [3], yielded results that exhibited more scatter when plotted against the

measured overtopping rates. Comparable scatter was also evident in the study of [34]. This

observation suggests that the mean overtopping rates obtained from empirical equations are

less accurate than the rates deduced from the algorithms. All the algorithms examined here

have yielded strong correlation scores. As for computational efficiency, DT based algorithms

Fig 9. Comparison of the dimensionless q (predicted) ¼
q predictedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81∗ðHmtoeÞ

3
p

� �

and dimensionless q (measured)

¼
q measuredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81∗ðHmtoeÞ

3
p

� �

for—a) RF, b) ANN, c) GBDT, and d) SVR.

https://doi.org/10.1371/journal.pone.0289318.g009

Table 4. Evaluation scores of ML algorithms for five key statistical metrices.

Algorithm Coefficient of

Determination- R2
Root Mean Square Error-

RMSE

Root Mean Square Logarithmic

Error- RMSLE

Mean Absolute Error

(MAE)

Relative Absolute Error

(RAE)

RF 0.84 0.0025 0.00247 0.0010 0.27

GBDT 0.81 0.0027 0.0026 0.0011 0.27

SVR 0.80 0.0027 0.0027 0.0011 0.28

ANN 0.75 0.0031 0.0032 0.0014 0.36

https://doi.org/10.1371/journal.pone.0289318.t004
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such as RF and GBDT outperformed SVR and ANN. Under the given hyperparameter condi-

tions (see Table 1), the prediction task took 27, 29, 48 and 502 seconds to complete for GBDT,

RF, SVR and ANN respectively, for a computer with a Central Processing Unit of 8 cores, 16

gigabytes of Random Access Memory and 6 gigabytes of dedicated video memory. This indi-

cates that RF, GBDT and SVR are performing the prediction task more efficiently than ANN,

and also with improved accuracy.

3.2 Evaluation metrics

The wave overtopping prediction results obtained from all the four ML algorithms were evalu-

ated and compared using 5 statistical metrics for non-dimensional values of mean overtopping

rate, q. (see Table 4). The results show that the best prediction performance was achieved by

the RF model with an R2 value of 0.84. The RMSE and RMSLE values were 0.0025 and

0.00247, respectively, indicating the cumulative number of outliers in the RF model. The

RMSE measure is taken to be the most effective parameter for analysing the performance of

ML model predictions (following [61]). The MAE and RAE measures for RF model were

0.0010 and 0.27, respectively. GBDT was found to produce the second-best predictions for

wave overtopping. A coefficient of determination (R2) of 0.81 indicates that the GBDT model

exhibited similar performance to the RF algorithm. The RMSE and RMSLE for GBDT models

were slightly higher than for the RF model, with values of 0.0027 and 0.0026, respectively. The

MAE and RAE determined for GBDT predictions were 0.0011 and 0.27, respectively, which

are close to those values measured for the RF model.

The feed-forward and back-propagation ANN produced good predictions but achieved a

0.75 R2 score which is lower than other ML models tested in this study. The lower R2 score for

the ANN model is confirmed by higher RMSE and RMSLE values of 0.0031 and 0.0032,

respectively. The MAE and RAE scores are also higher than for the other algorithms at 0.0014

and 0.36, respectively.

In terms of the statistical metrics, it can be inferred that the RF, GBDT and SVR models

performed better than the ANN model in prediction of wave overtopping from the EurOtop

database. For the RF, GBDT, and SVR models, the R2 scores are above 0.8 while for the ANN

model, this is 0.75. The RMSE for ANN is higher than for the other models, which suggests

that the standard deviation of the residuals for ANN is larger than the other three algorithms.

RAE reflects the measure of the relative error in predicted values and in this score, ANN shows

the highest error of 0.36 or 36%, indicating more error in the predictions from the ANN

model compared to the RF, GBDT and SVR models.

3.3 Feature importance and physical consistency

Feature importance analysis was conducted following the prediction of overtopping discharge

‘q’, to compare the consistencies of the tested ML algorithms in the prediction tasks. Feature

importance shows the features (i.e., parameters) that are most influential in the prediction

tasks. Absence or presence of these features will significantly alter the overtopping prediction

accuracy. For the same dataset, different ML algorithms should show similar feature impor-

tance to cross-validate the consistency of the prediction results. The GBDT and RF algorithms

perform feature importance analysis by default, while the SVR and ANN algorithms are not

readily capable of this process. Hence, permutation importance analysis was performed for

SVR and ANN using ELI5 [62]. However, both the feature importance analysis (for GBDT and

RF) and ELI5 (for SVR and ANN) indicate similar results, a quantitative measure of the influ-

ence of the features for a robust prediction performance. Feature importance values are

expressed in the range of 0 to 1 in order of increasing significance for the prediction tasks. The
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permutation importance is independently scored for each feature, which is randomly taken

from the prediction tasks and the resulting change in accuracy is measured on a range of 0 to 1

in order of increasing significance of accuracy. For all the ML algorithms, Hm0 toe and Rc were

the top two important features in the prediction tasks. Features such as cotαexcl and Hm0 d are

also amongst the top 5 important features in multiple algorithms. These results suggest that

although the prediction tasks are data driven, and all the algorithms performed independently,

there is some agreement between the features that were found to be the most influential in

these algorithms. This confirms the consistency of data analytics that form the core of the algo-

rithms examined in this study. The finding that significant wave height at the toe of the struc-

ture and the crest freeboard of the structure have been identified as the most important

parameters in the prediction of overtopping discharge by ML algorithms is consistent with

observations from physical modelling. The feature importance analysis results for the RF and

GBDT, and the permutation importance analysis results for the SVR and ANN algorithms are

shown in Fig 10.

Although some new features are highlighted as influential in the permutation importance

analysis of ANN and SVR (Fig 10), the top two features are similar to the results obtained for

the RF and GBDT models, indicating consistency in the prediction tasks.

In addition, further investigation was carried out to gain knowledge on the consistency of

the predicted overtopping quantities with the physics of the overtopping process. For this, the

two most important features, the crest freeboard and height of wave at the toe of the structure

are considered. The variations of dimensionless overtopping rates to the ratio of the crest free-

board and wave height at the toe of the structure (Rc/Hm0,t) is decreasing (Fig 11), indicating

that the predictive results align with our understanding of physical processes, and increasing

Rc/Hm0,t reduces the overtopping rates.

Recent studies [11, 63] and [12] (65, 12, have suggested that shallow foreshore slope can

have a considerable impact on wave behaviour and subsequently wave overtopping, although

previous studies have typically focused only on the effects of deep-water wave characteristics

on this process. This is exemplified in the work of [64] where it was found that deep-water

parameter-based wave overtopping models were in good agreement with field measurements

of wave overtopping at a studied site in the United Kingdom. Therefore, foreshore slope was

expected to be more influential in the feature importance analysis in this work. However, from

Fig 10. a) Feature importance of the RF and GBDT and b) Permutation Importance analysis of SVR and ANN.

https://doi.org/10.1371/journal.pone.0289318.g010
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Fig 10, this was shown not to be the case. The resulting findings of feature importance (fore-

shore slope) are in-line with results for permutation importance previously reported by [27,

28] for overtopping prediction at sloping structures where the authors did not report any con-

siderable impacts of foreshore slope in overtopping predictions. This might be linked to the

fact that the advanced ML models developed and employed in this study for overtopping pre-

dictions are capable of automatically understanding the complex and co-dependency of

parameters by assigning weights during the training phase. Nevertheless, it is to be noted that

feature importance is not a guarantee or a sole representative of improved model accuracy,

and of the influence of feature selection on model accuracy can depend on many factors,

including the size and complexity of the data, the type of model being used, and the relation-

ships between the features and the target variable (see, [65] and [59]). The evidence presented

thus far suggests that while feature importance can be useful in evaluating the relevance of fea-

tures, it should be used in conjunction with other evaluation metrics, such as cross-validation

Fig 11. Variation of dimensionless overtopping rate ‘q’ with Rc/Hm0,t for a) RF, b) ANN, c) GBDT, and d) SVR.

https://doi.org/10.1371/journal.pone.0289318.g011

PLOS ONE Improved pedictions of overtopping using machine learning algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0289318 August 16, 2023 21 / 29

https://doi.org/10.1371/journal.pone.0289318.g011
https://doi.org/10.1371/journal.pone.0289318


and statistical scores as adopted in this work, to ensure that the model is robust and generalizes

well to unseen data.

The discrepancy ratio (DR) between the actual and the predicted values is plotted against

Rc/Hm0,t in Fig 12. To ensure robust predictions, the DR should be independent of the input

data [66]. For all the algorithms, the DR results are shown to be independent from the two

most important features in the dataset with very low R2 values. Hence, it can be concluded that

the results from the ML algorithms can be well interpreted in the physical context of overtop-

ping and the results are also robust with regards to the discrepancy ratio.

3.4 Taylor’s diagram

The Taylor’s Diagram is an efficient and graphical approach to represent the statistical metrics

from prediction results [34]. Three statistical parameters including the correlation coefficient

plotted as azimuthal angle (in black), centered Root Mean Square (cRMS) values plotted radi-

ally (in green), and the standard deviations plotted horizontally (in blue) are represented in the

Taylor’ Diagram (Fig 13).

Analysis of Fig 13 shows that the RF model has the best predictive performance for wave

overtopping amongst the four ML algorithms that were examined in this study. RF results

have the lowest standard deviation and cRMS, and the highest correlation. The GBDT and

SVR have similar performance in terms of the standard deviation, with the former exhibiting a

slightly greater cRMS and lower correlation coefficient. The models are better separated in

terms of correlation coefficient compared to the standard deviation. The ANN, although hav-

ing similar correlation coefficients compared to the GBDT and SVR algorithms, exhibits

increased standard deviation. This means the residual errors in ANN are greater than in the

other models examined. Overall, therefore, ANN is ranked after the GBDT and SVR

Fig 12. Variation of discrepancy ratio (DR) with Rc/Hm0,t for a) RF, b) ANN, c) GBDT, and d) SVR.

https://doi.org/10.1371/journal.pone.0289318.g012
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algorithms. On the other hand, the RF model has the lowest standard deviation coupled with

the highest correlation score. Considering the statistical scores, the RF outperforms other ML

models tested here, while ANN generates relatively less accurate results in comparison to the

others. The results from Taylor’s diagram highlight that the RF model is the most accurate ML

model amongst the models tested here, for the prediction of wave overtopping at vertical

breakwaters.

ML algorithms are characterised by different advantages and disadvantages and a general-

ized recommendation on which ML technique can provide a superior performance is difficult

to opine. The performance comparison of ML algorithms depends on the individual applica-

tions and the structure of data [67]. For the case of wave overtopping prediction from vertical

breakwaters based on the EurOtop database [3], the findings of this study suggest that decision

tree-based models (i.e., GBDT and RF) perform better than ANNs. This is consistent with the

findings of [68] and [69], where [68] draws attention to the capabilities of DT models to map

the non-linear relationships between the input and target features. [67] found that following

hyperparameter tuning and feature selection, SVR performed better than ANNs. This can be

attributed to the ability of SVR to better tackle the noise in the input data [70]. Amongst the

DT-based models tested here, RF slightly outperforms the GBDT. The performance of MLs

vary according to datasets and for cases where the input dataset has missing values, high

dimensionality, and is collective in nature (such as [3]); the RF technique was shown to per-

form better than GBDT, which is in line with the findings of existing studies (e.g. [71]). The

feature importance analysis scores of RF are also shown to be moderately more accurate than

those of GBDT [72, 73].

In this study, Machine learning algorithms were shown to offer improved accuracy over

empirical methods for predicting varve overtopping at vertical seawalls. ML algorithms can

learn patterns and relationships in large amounts of data, which can then be used to make

more accurate predictions of overtopping. Hyperparameter tuning enables the models to cur-

tail to specific datasets. This is especially useful when the underlying physical processes are

complex and difficult to model using traditional methods. Although, the underlying physics is

Fig 13. Taylor’s diagram of the statistical scores from the prediction analysis of the four ML algorithms.

https://doi.org/10.1371/journal.pone.0289318.g013
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not explicitly described in the ML models, the feature importance analysis can deduce the

most important physical parameters in overtopping as demonstrated in this study. The models

in this study therefore, present a holistic approach that combines feature selection, hyperpara-

meter tuning and feature selection to predict overtopping.

4. Conclusions

This study compared the appropriateness and robustness of advanced machine learning tech-

niques for prediction of wave overtopping at vertical seawalls. Four ML algorithms including

RF, GBDT, SVR, and ANN were developed for prediction of overtopping discharges. The

developed ML models were applied to a large and comprehensive dataset of overtopping from

EurOtop 2018. A methodological approach to pre-processing that includes steps for missing

value imputations, feature transformation (PCA) and selection (wrapper methods), and data

scaling, was adopted, prior to application of ML-based predictive modelling of wave overtop-

ping. These steps ensured that performance of the algorithms was not affected by missing val-

ues and redundancy of data. The training process was performed by hyperparameter tuning so

that the individual algorithms were fine-tuned or curtailed according to the specific dataset

features. Cross validation was conducted for the training step so that the ML algorithms could

trial on a random subset of training data before being applied on the test set. The train-test

split of 70%-30% was used following standard ML modelling protocols. These measures

ensured that a uniform framework was followed to achieve comparable results from the pre-

dictions performed by the four algorithms. Feature importance and permutation importance

analysis identified water depth at the toe of the structure and crest freeboard as the two most

important features for overtopping prediction, confirming the relevancy of the results to the

physical processes that govern overtopping. Parametric analysis was performed to identify the

relationship of dimensionless overtopping quantity ‘q’ with the ratio of the crest freeboard and

the wave height at the toe of the structure, Rc/Hm0,t. The decreasing trend of the overtopping

quantity with Rc/Hm0,t highlights that ML algorithms are capable of understanding the physi-

cal overtopping process.

Comprehensive statistical error indexes including R2, RMSE, RMSLE, MAE, and RAE were

determined for all the four tested ML algorithms. The RF algorithm outperformed other tested

algorithms across all the statistical scores with a R2 value of 0.84, RMSE of 0.0025, RMSLE of

0.00247 and MAE, RAE values of 0.0010 and 0.27, respectively. The GBDT and SVR models

yielded R2 values of 0.81 and 0.80, respectively, which are close to that of RF, but the RMSE

was 8% higher for SVR and GBDT, respectively. The higher residual errors in SVR and GBDT

were also evident in the Taylor’s diagram that was prepared, where the two algorithms had

higher standard deviations than RF. The ANN model exhibited the least accurate predictions

of wave overtopping with a lower R2 value and higher residual errors. The DT based models

performed significantly better than ANN in terms of computational time. This was reflected

by the time taken for GBDT and RF to complete the prediction tasks in 27 and 29 seconds,

respectively. The time taken for SVR to complete the prediction task was 48 seconds. This indi-

cates that although ANN is a more widely used and endorsed ML method to predict overtop-

ping quantities, other ML algorithms, especially DT-based models and SVNR, can perform

better. One common advantages of RF, GBDT, and SVR, in contrast to ANNs used in this

study, is the capability of more fine-tuning provisions based on the overtopping dataset provi-

sions for vertical breakwaters. Therefore, further research should follow to investigate the

applicability of RF, GBDT and SVR for overtopping predictions from defences with different

geometrical configurations and data sources. Overall, the application of ML algorithms in

overtopping predictions from coastal infrastructures is still limited. Although the ML
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algorithms tested here differed in terms of evaluation metrices and statistical scores, their fea-

ture importance/permutation analysis yielded consistent results. Also, all the algorithms exam-

ined in this study understood the underlying physical processes governing the wave

overtopping from vertical breakwaters. The overtopping rates from the algorithms were more

accurate than those derived from empirical methods.

The methodological framework proposed for comparing the appropriateness and robust-

ness of ML algorithms for wave overtopping prediction enables a fair comparison of ML mod-

els. The trade-offs of the models are discussed in terms of statistical metrics. Feature

transformation methods (i.e., PCA) and advanced feature selection methods (i.e., wrapper

method) are, for the first time, implemented in this study to enhance the overtopping predic-

tion from ML-based methods. The use of feature selection methods has significantly reduced

the time-consuming trials of selecting the best set of features, without the loss of important

information. The proposed hyperparameter tuning for RF and SVR algorithms provides addi-

tional enhancement to the existing ML-based studies for wave overtopping predictions. This

study, for the first time, successfully implements a RF algorithm for predicting wave overtop-

ping from plain vertical seawalls based on the EurOtop database [3]. The comparative study

shows that RF consistently outperform all other three ML algorithms tested here.

Like other ML-based predictive studies for wave overtopping, the presence of missing val-

ues in the dataset and validity of the ML model for the range of training parameters are the

main limitations of this study.
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