
Supplemental Methods 1. Study Population 

AI-Hub dataset consisted of 30,000 echocardiographic examinations retrospectively collected 

from five tertiary hospitals, including Chungnam National University Hospital, Hanyang 

University Hospital, Seoul National University Bundang Hospital, Severance Hospital, and 

Soonchunhyang University Seoul Hospital, over the period from 2012 to 2021. It encompasses 

a wide range of cardiovascular disease categories, from normal cases to ischemic heart disease, 

cardiomyopathy, pulmonary hypertension and embolism, pericardial disease, valvular heart 

disease, cardiac mass, and congenital heart disease. Data collection was based on diagnostic 

codes and echocardiographic reports to achieve targeted sample sizes; however, consecutive 

patient sampling was not enforced. 

 

The AI-based frameworks introduced here were all developed using data extracted from the 



AI-Hub dataset. Specifically, the DL-based AS continuum assessment algorithm was 

developed using the Developmental Dataset (DDS) sourced from the AI-Hub. During the 

assembly of DDS, data from Severance Hospital were deliberately excluded and used for 

external validation. We initially screened transthoracic echocardiography (TTE) data from 

4,563 patients diagnosed with aortic stenosis (AS). After excluding those who had undergone 

aortic valve (AV) replacement or open-heart surgery, those with moderate or greater AV 

regurgitation, or cases where the severity of AS could not be determined, 4,018 patients with 

AS have remained. To ensure the model's accuracy, 628 cases exhibiting discordant findings 

among aortic valve (AV) peak velocity (Vmax), mean pressure gradient (mPG), and aortic valve 

area (AVA) regarding the severity of AS were excluded. These cases were later used separately 

for validating the model. Among the 3,390 patients diagnosed for AS included in the model 

development, 2,500, 516, and 374 were categorized into mild, moderate, and severe AS, 

respectively. Additionally, for the purpose of model training, TTE examinations were extracted 

for 3,290 individuals demonstrating normal AV morphology and function and 1,747 individuals 

exhibiting signs of AV sclerosis—characterized by degenerative changes in the AV but not 

meeting the diagnostic criteria for AS. Consequently, TTE data from a total of 8,427 individuals 

were compiled into the DDS. These data were split in an 8:1:1 ratio for training, validation, 

and internal testing purposes. 

  The Distinct Hospital Dataset (DHDS) was compiled by reviewing data from 

Severance Hospital that were not included in the DDS sourced from the AI-Hub dataset. A total 

of 719 patients with AS were reviewed, none of whom had undergone AV replacement or open-

heart surgery. After excluding 60 patients with moderate or greater AV regurgitation, the dataset 

included 659 patients with AS (209 mild, 251 moderate, and 199 severe). Adding 1,037 normal 

patients, the DHDS totaled 1,696 patients. Since Severance Hospital does not commonly use 

the diagnosis of AV sclerosis, a separate AV sclerosis category was not included.  



 For the Temporally Distinct Dataset (TDDS), we screened TTE data conducted in 

2022 at Seoul National University Bundang Hospital, identifying 520 consecutive patients with 

AS. After excluding cases with a documented history of AV replacement or open-heart surgery, 

those with moderate or greater AV regurgitation, or cases where the severity of AS could not 

be determined, a total of 443 patients with AS remained (313 mild, 75 moderate, and 55 severe). 

Additionally, 55 individuals with normal AV and 274 with AV sclerosis, identified during the 

same period, were included, resulting in a total of 772 cases included for this dataset. 

 



Supplemental Methods 2. View Classification Networks Update 

To enhance our echocardiographic view classification algorithm, we expanded our datasets and 

refined the classification algorithm to include new views. Building upon our previous work, 

the dataset was broadened to encompass more granular classifications and additional views.1 

Specifically, we differentiated the parasternal long-axis (PLAX) zoomed view into four distinct 

categories: PLAX zoomed aortic valve (AV) (779 videos), PLAX zoomed mitral valve (MV) 

(279 videos), PLAX zoomed both AV and MV (1,357 videos), and PLAX zoomed aorta (502 

videos). Additionally, we incorporated 663 CW Doppler AV images obtained from the right 

parasternal view. These enhancements are crucial for accurately measuring AV stenosis (AS) 

parameters, such as left ventricular outflow tract (LVOT) diameter, AV maximum velocity 

(Vmax), mean pressure gradient (mPG), and AV area (AVA), which are critical for evaluating 

the severity of AS. The new data points were annotated using a Developmental Dataset (DDS), 

and the view classification network was subsequently retrained with this enriched dataset, 

employing the methodology previously detailed in our research.1 

 The tables clearly show the exact number of views used in training for each category, 

offering a comprehensive count for the latest version of our view classification algorithm.  

 

Target Views for Current Version of View Classification Algorithm. 

Echo Mode Echocardiographic View 
Number of 

Views 

B-mode 

Parasternal long-axis left ventricle 7,202 

Parasternal long-axis zoomed AV 779 

Parasternal long-axis zoomed MV 279 

Parasternal long-axis zoomed AV & MV 1,357 

Parasternal long-axis zoomed aorta 502 

Parasternal short-axis, level of great vessels 2,959 



Parasternal short-axis, level of mitral valve 5,967 

Parasternal short-axis, level of papillary muscle 6,635 

Parasternal short axis, level of apex 7,143 

Apical four-chamber 4,647 

Apical four-chamber zoomed left ventricle 5,977 

Apical four-chamber right ventricular-focused 2,767 

Apical five-chamber 1,325 

Apical two-chamber 3,035 

Apical two-chamber zoomed left ventricle 5,708 

Apical three-chamber 2,535 

Apical three-chamber zoomed left ventricle 5,500 

Subcostal four-chamber 3,233 

Subcostal long axis IVC 2,717 

M-mode 

M-mode through left ventricle 3,879 

M-mode through aorta and left atrium 2,788 

M-mode tricuspid annular plane systolic excursion 708 

Spectral and tissue 
Doppler 

PW Doppler mitral valve 6,816 

TDI mitral valve lateral annulus 6,388 

TDI mitral valve septal annulus 705 

CW Doppler mitral stenosis 1,811 

CW Doppler mitral regurgitation 1,473 

PW Doppler left ventricular outflow tract 4,262 

CW Doppler aortic valve 3,864 

CW Doppler aortic valve in parasternal 663 

CW Doppler aortic regurgitation 1,094 

CW Doppler tricuspid regurgitation 8,910 

PW Doppler right ventricular outflow tract 2,935 

CW Doppler pulmonic valve 643 

CW Doppler pulmonic regurgitation 748 

Pulmonary vein flow 1,701 

Total 119,655 
AV, aortic valve; CW, continuous wave; IVC, inferior vena cava; MV, mitral valve; PW, pulse wave; TDI, tissue 

Doppler imaging 

  



Supplemental Methods 3. DL-based AS Continuum Assessment Algorithm  

Given an input video, we used the r2plus1d architecture as a backbone.2 Importantly, we 

modified the backbone network to avoid temporal down-sampling by maintaining a stride of 1 

along the temporal axis. In addition to r2plus1d, we evaluated alternative backbone 

architectures, specifically r3d and mc3, to ensure that our model’s performance was not 

dependent on a single feature extractor. The performance comparison among these backbones, 

detailed in the following Table, demonstrates consistent accuracy across configurations, with 

r2plus1d achieving competitive results. 

 

Comparisons analysis of backbone architecture 

  mc318 r3d18 r2p1d18 

ITDS    

any AS 0.956 0.959 0.952 

significant AS 0.955 0.968 0.951 

severe AS 0.971 0.974 0.972 

DHDS    

any AS 0.996 0.997 0.997 

significant AS 0.847 0.805 0.832 

severe AS 0.897 0.890 0.899 

TDDS    

any AS 0.902 0.898 0.899 

significant AS 0.947 0.942 0.946 

severe AS 0.977 0.979 0.982 

 



From this feature 𝒛, we employ four decoders, three of which are designed to predict 

continuous variables such as AV Vmax, mPG, and AVA. Each auxiliary decoder is constructed 

to predict these continuous variables through regression. Each auxiliary decoder consists of 

two hidden layers with 512 units each, batch normalization and ReLU activation, followed by 

an output layer with a single unit and a Softplus activation function to ensure positive output 

values. 

We then implemented a fusion module, termed the Adaptive Feature Fusion Module 

(AFFM), that generates a score for each continuous feature and then fuses them into one feature 

by a weighted sum of all features according to their scores. For features 𝑧௩೘ೌೣ
, 𝑧௠௉ீ , 𝑧஺௏஺ 

from the three auxiliary decoders before the output layer with a single unit, the fusion module 

computes a weight 𝑤௩೘ೌೣ
, 𝑤௠௉ீ , 𝑤஺௏஺ for each feature 𝑧௩೘ೌೣ

, 𝑧௠௉ீ , 𝑧஺௏஺  using a fully 

connected layer followed by batch normalization, ReLU activation, and a final fully connected 

layer with sigmoid activation. The fused feature 𝑧௙௨௦௘ௗ is then computed as a weighted sum 

of the features:  𝑧௙௨௦௘ௗ = 𝑤௩೘ೌೣ
𝑧௩೘ೌೣ

+𝑤௠௉ீ𝑧௠௉ீ + 𝑤஺௏஺𝑧஺௏஺ 

The fused feature 𝑧௙௨௦௘ௗ is then concatenated with the original feature 𝑧 from the 

r2plus1d backbone, resulting in the final feature 𝑧௙௜௡௔௟ : ൣ𝑧; 𝑧௙௨௦௘ௗ൧ . The final classifier 

classifier processes this concatenated feature 𝑧௙௜௡௔௟ by linear function followed by a sigmoid 

function: 𝑦௙ప௡௔௟ෟ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑊𝑧௙௜௡௔௟ + 𝑏൯. 

Input videos were resized to 224 x 224, and normalization was applied to a [0, 1] range 

for both training and inference. During training, if the number of frames exceeded the specified 

clip length (16 frames), a random start index was selected, motivated by the approach in Holste 

G et al.3 If the number of frames was fewer, indices were evenly spaced to fit the clip length. 

For inference, the videos were divided into four intervals and stacked. If the total frames in the 



video are sufficient, the video is divided into multiple intervals with evenly spaced start indices. 

Each interval begins at a calculated start index, ensuring consistent spacing across the video’s 

duration. A sequence of frames matching the clip length is then sampled from each start index, 

providing a balanced temporal coverage. If the frames were insufficient for multiple intervals 

but exceeded the clip length, the video was sampled, and the clip was replicated to match the 

intervals. If the frames were fewer than the clip length, indices were evenly spaced, and the 

clip was duplicated to match the intervals. The stacked inputs from the inference phase are 

averaged to enhance the model's generalization capabilities. The final DL index for AS 

continuum (DLi-ASc) was rescaled to 0-100 by multiplying the model output after the sigmoid 

function by 100. 

 

 

During training, a class sampler was used to balance the sampling of normal and AS 

classes by assigning higher weights to the less frequent class. The Adam optimizer was used 

with a learning rate of 0.0001 and a batch size of 28. No learning rate scheduler was utilized. 

Early stopping was implemented with a tolerance of 300 epochs, monitoring the validation loss 



as the metric. Additionally, in cases where ground-truth data for clinical variables such as AV 

Vmax, mPG, and AVA were missing, the loss calculation for those instances resulted in a NaN 

value, which was excluded from the loss computation, ensuring that these instances did not 

affect model weight updates. 

 

  



 Deep Learning Architecture for DLi-ASc 

 



Supplemental Methods 4. Cutoff of DLi-ASc for Each AS Severity Category 

We derived the DLi-ASc cutoffs by calculating the mean values of DLi-ASc across normal, AV 

sclerosis, mild, moderate, and severe AS groups in the validation dataset. To establish cutoff 

points, we took the midpoint between the mean DLi-ASc values of each consecutive AS 

severity category. For example, the mean DLi-ASc values for moderate and severe AS were 

59.1 and 80.3, respectively, yielding a cutoff of 69.7 for diagnosing severe AS. This approach 

resulted in the following DLi-ASc cutoffs: 24.6 for AV sclerosis, 45.4 for mild AS, 53.7 for 

moderate AS, and 69.7 for severe AS. 

 

 

  



Supplemental Methods 5. Automated Conventional AVA Assessment Algorithm  

Supplemental Methods 5.1. Automatic Measurement of Spectral Doppler 

Echocardiography  

The Doppler segmentation network employs the BiSeNetV2 architecture, which has been 

thoroughly described in our previous publication.4-6 The BiSeNetV2 is specifically designed to 

balance accuracy and computational efficiency, making it suitable for real-time applications. 

During the training process, the network was optimized using standard cross-entropy loss. 

Notably, our Doppler segmentation network did not include training data for the AV continuous 

wave (CW) Doppler from the right parasternal view. However, this view can be inferred as a 

vertically flipped version of the CW Doppler AV in the apical view. During inference, we 

preprocess the input by flipping the image vertically before running it through the network, 

allowing us to utilize the same trained model for both views without additional training data.6  

AV CW Doppler from apical and right parasternal view 

 



For spectral Doppler images, AV Vmax and VTI were derived from the segmented 

Doppler envelope of AV CW Doppler. This analysis included AV CW Doppler obtained from 

both the apical and right parasternal views, selecting the largest envelope across all cycles in 

all images to obtain AV Vmax and VTI, aiming to prevent underestimation of AS jet velocity.  

The LVOT PW Doppler analysis also spanned all cycles, using the average value of LVOT VTI 

to avoid overestimating LVOT flow.7 These measurements were then used to calculate mPG 

and AVA, which were used to assess the presence and severity of AS.8  

  



Supplemental Methods 5.2. Automated Measurement of LVOT Diameter 

For the PLAX segmentation network, we utilized the SegFormer architecture, which includes 

a transformer encoder that provides multiscale features without needing positional encoding 

and a lightweight multi-layer perceptron (MLP) decoder integrating local and global attention 

for efficient segmentation.9 A weighted cross-entropy loss was applied during training to 

account for the relatively small size of the mitral valve (MV) and AV in the PLAX view. A total 

of 2,369 PLAX videos were annotated at four key frames in the cardiac cycle: end-diastole, 

mid-systole, end-systole, and mid-diastole. Three experienced sonographers – MJ Jung and A 

Choi (each with 20 years in the field) and AR Kim (with 10 years) – performed the annotations. 

All segmentations were subsequently reviewed by SA Lee, a cardiologist specializing in 

echocardiography, with 10 years of experience. The images were resized into 512 × 512 and 

normalized to [-1,1]. We used the Adam optimizer with a learning rate of 0.001 and 

incorporated RandAug, enhanced with echocardiography-specific augmentations such as 

shadow, depth attenuation, and haze, to improve model robustness.10, 11 Additionally, a cosine 

annealing learning rate schedule was employed to optimize the training process.12 Complete 

videos are presented in Video S1. 

Human Expert Annotation and AI Predicted Mask in PLAX View 

 



From the predicted segmentation mask, we identify points where the MV intersects 

with the aorta and where the septum intersects with the aorta to determine annulus points. Using 

these points, we measure the LVOT diameter at three locations: 1) at the annulus, 2) 2.5mm 

away from the annulus towards the LV cavity, and 3) 5mm away from the annulus towards the 

LV cavity. This approach reflects differing opinions on the appropriate location for measuring 

the LVOT diameter.8 Complete videos are presented in Video S1.  

 

Automatic LVOT Measurements From the Predicted Segmentation Mask 

 

 

 

 

 

  



Supplemental Methods 6. Quantifying Uncertainty in Predicted Segmentation  

Quantifying uncertainty in segmentation predictions is a meticulous process, crucial because 

segmentation errors can significantly impact the accuracy of subsequent automatic 

measurements. This uncertainty arises from two primary sources: epistemic uncertainty, which 

arises from a lack of knowledge of the DL model, and aleatoric uncertainty, which results from 

inherent noise in the data. To quantify these uncertainties, we calculate predictive entropy from 

the segmentation network's probability map, which provides a measure of the total uncertainty 

by combining both aleatoric and epistemic uncertainties. The entropy is computed for each 

pixel in the segmentation map, allowing us to identify regions with high uncertainty. The 

entropy is calculated using the equation: 

𝐻ൣ𝒑𝒊𝒋൧ = ∑ 𝑝௜௝
௖ log 𝑝௜௝

௖
௖ , 

where i, j represent pixel coordinates and c represents the class. 

For quantifying uncertainty in the LVOT measurements in the PLAX view, we focus 

on regions of interests (ROIs) that directly affect the performance of LVOT measurement. 

Using the detected two points marking the annulus, we set a 50 × 50 ROI (10% of the resized 

image) centered on these points, as shown in the figure below. We then summed the entropy of 

each pixel within this ROI to assess uncertainty. For Doppler measurements, we evaluated 

uncertainty for the Doppler signal in each single beat. With the detected significant Doppler 

flow, we create an ROI and crop the entropy map to the corresponding ROI, normalizing it to 

64 × 64. By summing the entropy values within the normalized ROI, we obtain the quantified 

uncertainty for each Doppler signal by beat. Complete videos are presented in Video S2.  



Regions of Interest marked for assessing uncertainty 

 

From the validation set used for training, we find thresholds to reject the frames or 

beats by identifying the top percentage of frames or beats with the highest uncertainty. 

Specifically, we reject the top 5% of frames with the highest uncertainty from PLAX AV 

zoomed videos and the top 1% of beats with the highest uncertainty from Doppler images. We 

calculate the mean of entropy scores and add 1.96 × s.d. for PLAX frames and 2.33 × s.d. for 

Doppler images. The distributions of the entropy scores for both PLAX and Doppler images 

are shown in the figure below, illustrating how the thresholds are set.  

Distribution of Entropy Scores 

 



 

 

The figure above displays examples of Doppler and B-Mode images that were filtered out due 

to high uncertainty. These samples belong to the right end of the uncertainty distribution, 

representing the top percentage of frames and beats with the highest entropy scores. The 

highlighted regions in these images show areas of significant uncertainty, which were excluded 

from further analysis to ensure the accuracy of the automatic measurements. For spectral 

Doppler, the in/out filter was applied on a cardiac cycle basis. As seen in the AV CW Doppler 

image, the first two cycles were analyzed normally due to low uncertainty, while the last cycle 

was excluded due to high uncertainty. 

  



Supplemental Methods 7. Validation of LVOT Diameter Measurement 

To assess the accuracy of the LVOT diameter automatic measurement, part of our AI-based 

system (Sonix Health, Ontact Health, Korea), we conducted a validation study with 212 

American patients who underwent echocardiographic examination at Mayo Clinic Arizona, 

USA and Severance Hospital in Seoul, Korea. Considering the inherent variability in LVOT 

measurements, both AI and manual measurements were taken on the same view and frame. 

The AI system measured the LVOT diameter at three specific points: the annulus, 2.5mm from 

the annulus towards the LV side, and 5mm from the annulus, all marked in fluorescent green. 

Manual measurements were conducted at the annulus (dark red) and 5mm from the annulus 

(dark green) for comparison. The association between automated and manual measurements 

was assessed using the Spearman correlation analysis (r) and mean absolute error (MAE). 

 

  



Comparison LVOT Measurement Location r MAE (cm) 

Manual vs Manual Annulus - 5mm from Annulus 0.931 0.091 

Manual vs AI 

Annulus - Annulus 0.913 0.116 

Annulus - 2.5mm from Annulus 0.904 0.114 

Annulus - 5mm from Annulus 0.884 0.144 

5mm from Annulus - Annulus 0.909 0.148 

5mm from Annulus - 2.5mm from Annulus 0.948 0.114 

5mm from Annulus - 5mm from Annulus 0.948 0.114 

 

 

Our AI system provides LVOT diameter measurements at three locations. To determine which 

value to use for AVA calculation in this study, we compared the AI measurement at each 

location to prior manual measurements within the training set. Results showed that the 

automated measurement at the annulus had the highest correlation with manual measurement 

and lowest mean absolute error (MAE), leading us to select the annuus measurement for AVA 

calculation.   



 

  



Supplemental Methods 8. Availability of Ground Truth Measurements and Success Rate 

of Auto-Measurements in the AS Group 

The availability of ground truth measurements and the success rate of our algorithm's auto-

measurements in the AS group are as follows. 

 
Ground truth 

(% of the overall case) 

Auto-measurement 

(% of the overall case) 

Matching case 

(% of available GT cases) 

ITDS (n=328)    

AV Vmax 328 (100) 328 (100) 328 (100) 

AV mPG 320 (97.6) 328 (100) 320 (100) 

LVOT VTI 166 (50.6) 164 (50.0) 164 (98.8) 

LVOT diameter 159 (48.5) 290 (88.4) 141 (88.7) 

AVA 156 (47.6) 143 (43.6) 133 (85.3) 

DHDS (n=659)    

AV Vmax 83 (12.6) 652 (98.9) 83 (100) 

AV mPG 602 (91.4) 652 (98.9) 598 (99.3) 

LVOT VTI 438 (66.5) 583 (88.5) 367 (83.8) 

LVOT diameter 425 (64.5) 618 (93.8) 405 (95.3) 

AVA 560 (85.0) 543 (82.4) 457 (81.6) 

TDDS (n=443)    

AV Vmax 443 (100) 443 (100) 443 (100) 

AV mPG 440 (99.3) 443 (100) 440 (100) 

LVOT VTI 235 (53.0) 233 (52.6) 233 (99.1) 

LVOT diameter 228 (51.5) 419 (94.6) 212 (93.0) 

AVA 227 (51.2) 219 (48.8) 209 (96.5) 

AV, aortic valve; AVA, aortic valve area; LVOT, left ventricle outflow tract; mPG, mean pressure gradient; Vmax, 
peak aortic valve velocity; VTI, velocity time integral. 

 

  



Supplemental Results 1. View Classification Performance in Each Dataset 

In this study, view classifications performance was assessed based on the framework’s ability 

to accurately identify views necessary for AS evaluation. All other echocardiographic views 

are categorized as “Other”, as they do not directly contribute to AS evaluation within our 

framework. 



ITDS 

 

  

  n  Precision  Recall (Sensitivity)  specificity F1-score Accuracy 

PLAX-LV 1,525 0.985 (0.985, 0.989) 0.991 (0.991, 0.995) 1.000 (1.000, 1.000) 0.988 (0.984, 0.992) 

0.996 (0.996, 0.996) 

PLAX zoomed AV 197 0.985 (0.984, 1.000) 0.685 (0.685, 0.711) 0.999 (0.999, 0.999) 0.807 (0.757, 0.852) 

PLAX zoomed AV & MV 663 0.896 (0.896, 0.904) 0.979 (0.979, 0.987) 1.000 (1.000, 1.000) 0.936 (0.924, 0.948) 

PSAX, level of great vessels 1,819 0.990 (0.990, 0.994) 0.971 (0.971, 0.974) 0.999 (0.999, 0.999) 0.980 (0.976, 0.985) 

PW Doppler LVOT 886 0.965 (0.965, 0.971) 0.998 (0.998, 1.000) 1.000 (1.000, 1.000) 0.981 (0.975, 0.987) 

CW Doppler AV 
    from Apical Views 

1,282 0.914 (0.914, 0.918) 0.966 (0.966, 0.970) 1.000 (1.000, 1.000) 0.939 (0.930, 0.949) 

CW Doppler AV  
    from the right parasternal view 

38 0.864 (0.861, 0.977) 1.000 (0.995, 1.000) 1.000 (1.000, 1.000) 0.928 (0.874, 0.975) 

other 74,885 0.999 (0.999, 0.999) 0.998 (0.998, 0.998) 0.986 (0.986, 0.987) 0.998 (0.998, 0.998) 

AV, aortic valve; CW, continuous wave Doppler; ITDS, internal test dataset; LVOT, left ventricle outflow tract; MV, mitral valve; PLAX, parasternal long-axis view. 
PSAX, parasternal short-axis view; PW, pulsed wave Doppler 



  



DHDS 

  n  Precision  Recall (Sensitivity) specificity F1-score Accuracy 

PLAX-LV 3280 0.971 (0.971, 0.973) 0.998 (0.998, 1.000) 1.000 (1.000, 1.000) 0.984 (0.981, 0.987) 

0.995 (0.995, 0.995) 

PLAX zoomed AV 1313 0.989 (0.989, 0.994) 0.909 (0.909, 0.914) 0.999 (0.999, 0.999) 0.947 (0.938, 0.956) 

PLAX zoomed AV & MV 89 0.510 (0.509, 0.540) 0.876 (0.875, 0.935) 0.998 (0.998, 0.998) 0.645 (0.589, 0.702) 

PSAX, level of great vessels 3040 0.947 (0.947, 0.949) 0.994 (0.994, 0.996) 1.000 (1.000, 1.000) 0.970 (0.966, 0.974) 

PW Doppler LVOT 2182 0.999 (0.999, 1.000) 0.998 (0.998, 1.000) 1.000 (1.000, 1.000) 0.998 (0.997, 1.000) 

CW Doppler AV 
    from Apical Views 

2275 0.987 (0.986, 0.989) 0.968 (0.968, 0.970) 0.999 (0.999, 0.999) 0.977 (0.973, 0.982) 

CW Doppler AV  
    from the right parasternal view 

20 0.810 (0.804, 1.000) 0.850 (0.843, 1.000) 1.000 (1.000, 1.000) 0.832 (0.711, 0.930) 

other 92460 0.998 (0.998, 0.998) 0.997 (0.997, 0.997) 0.987 (0.987, 0.987) 0.997 (0.997, 0.998) 

AV, aortic valve; CW, continuous wave Doppler; DHDS, Distinct Hospital Dataset; LVOT, left ventricle outflow tract; MV, mitral valve; PLAX, parasternal long-axis 
view. PSAX, parasternal short-axis view; PW, pulsed wave Doppler 

 

  



  



TDDS 

  n  Precision  Recall (Sensitivity) specificity F1-score Accuracy 

PLAX-LV 1377 0.984 (0.984, 0.988) 0.992 (0.992, 0.996) 1.000 (1.000, 1.000) 0.988 (0.984, 0.992) 

0.994 (0.994, 0.994) 

PLAX zoomed AV 193 0.907 (0.905, 0.968) 0.404 (0.404, 0.428) 0.998 (0.998, 0.998) 0.560 (0.491, 0.625) 

PLAX zoomed AV & MV 683 0.840 (0.840, 0.847) 0.993 (0.992, 1.000) 1.000 (1.000, 1.000) 0.910 (0.900, 0.921) 

PSAX, level of great vessels 1829 0.995 (0.995, 0.999) 0.948 (0.948, 0.951) 0.998 (0.998, 0.998) 0.971 (0.965, 0.976) 

PW Doppler LVOT 833 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 

CW Doppler AV 
    from Apical Views 1670 

0.905 (0.905, 0.908) 0.992 (0.992, 0.995) 1.000 (1.000, 1.000) 0.946 (0.939, 0.954) 

CW Doppler AV  
    from the right parasternal view 88 

0.917 (0.915, 0.972) 1.000 (0.998, 1.000) 1.000 (1.000, 1.000) 0.956 (0.926, 0.983) 

other 67453 0.998 (0.998, 0.998) 0.997 (0.997, 0.997) 0.981 (0.981, 0.982) 0.997 (0.997, 0.998) 

AV, aortic valve; CW, continuous wave Doppler; TDDS, Temporally Distinct Dataset; LVOT, left ventricle outflow tract; MV, mitral valve; PLAX, parasternal long-
axis view. PSAX, parasternal short-axis view; PW, pulsed wave Doppler 
 

 

  



 



Supplemental Results 2. Distribution of DLi-ASc According to Conventional AS 

Parameters 

 

 

  



Supplemental Results 3. Distribution of DLi-ASc in Discordant Cases of AS Severity 

In this study, discordant cases were defined as those where AV Vmax, mPG, and AVA did not 

consistently fall into a single AS severity class, resulting in interpretations spanning two 

classes, such as mild to moderate, moderate to severe, or cases of low-flow, low-gradient AS 

where reduced stroke volume results in a lower pressure gradient despite significant stenosis. 

These cases were excluded from training, validation, and testing in the DDS. However, when 

included in the internal test dataset (ITDS) for comparison, the distribution of DLi-ASc was 

as follows. This result suggests that DLi-ASc can be helpful in cases where traditional 

parameters are discordant, making the assessment of AS severity challenging. 

 

LFLG Mod, low-flow low-gradient moderate aortic stenosis; LFLG Sev, low-flow low-gradient severe aortic stenosis



Supplemental Results 4. Discrimination of Low Flow Low Gradient Severe AS using DLi-ASc 

  



Supplemental Results 5. UMAP Visualization of AS Continuum Using Different Approaches  
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In the first row, multi-class classification uses standard 5-class cross-entropy loss with one-hot encoding. In the second row, the network is 
trained using only continuous mapping with ordered labels, without multi-task learning with auxiliary tasks. 



Supplemental Results 6. Representative Failure Cases 

The figure shows two representative cases where auto-measurement displayed significant 

discrepancies compared to manual measurement for AS parameters such as AV Vmax, mPG, 

and LVOT diameter.  

In case A, measurement discrepancies in AV Vmax and mPG were attributed to ventricular 

bigeminy observed during AV Doppler measurement, leading to substantial beat-to-beat 

variability in the Doppler signal. For the manual measurement, AV Doppler was captured in a 

sinus rhythm, excluding premature beats, to ensure accuracy. In contrast, the auto-measurement 

processed all values in the AV CW Doppler signal and returned the highest value, resulting in 

the observed discrepancy. Despite this, both manual measurement and auto-measurement 

classified the case as severe AS. The estimated DLi-ASc Score was 87.2, further supporting 

the presence of severe AS. 

In case B, there was a discrepancy in LVOT measurement due to differences in the 

measurement location. In manual evaluation, the measurement was taken slightly away from 

the aortic annulus toward the left ventricle, while the auto-measurement was performed closer 

to the annulus to determine the LVOT diameter. We previously evaluated various measurement 

points at different distances from the AV annulus in LVOT auto-measurement and found that 

measurement at the annulus level showed the highest correlation with the ground truth values 

(Supplemental Methods 7). However, in cases like this, where the LVOT demarcation is 

relatively unclear or the left ventricular septum is thick and sigmoid-shaped, the auto-measured 

LVOT value at the annulus level may be larger than usual. Nonetheless, both manual and 

automatic measurements classified the case as mild AS. The estimated DLi-ASc Score was 

52.6, supporting the mild AS classification. 





Supplemental Results 7. Comparative analysis with other existing studies  

We compared our AI algorithm with those from prior studies, specifically those by Holste et al. 

and Wessler et al. Key difference between our model and these earlier approaches are as follows.  

 Model Architecture and Data Processing: Holste et al.3 utilized a 3D-ResNet 18 

model with binary cross-entropy (BCE) loss for binary classification (non-severe vs. 

severe AS) on PLAX views, using 16 frames at a lower resolution (112 x 112). 

Additionally, Holste et al. used an ensemble of three models to improve robustness 

and classification accuracy. Wessler et al.13, in contrast, employed a WideResNet28 

model for three-category classification (no AS, early AS, significant AS) using a 

single frame from PLAX and/or PSAX views. Our model employs an R2Plus1D18 

backbone, sampling 16 frames at a higher resolution (224 x 224), with a continuum-

aware multi-task loss. This approach allows our model to capture both spatial and 

temporal features effectively, facilitating more nuanced AS severity assessment.  

 Loss Function: Unlike the previous studies that use binary or categorical cross-

entropy loss, our model leverages a continuum-aware multi-task loss. This custom 

loss function not only accommodates the progressive nature of AS by mapping 

ordered severity labels, but it also includes auxiliary regression tasks to predict key 

TTE parameters. This dual approach enables a more comprehensive and clinically 

relevant assessment of AS severity. 

 Target Classification: Our model’s focus on a five-class continuum-based AS 

assessment provides finer granularity compared to the binary classification by 

Holste et al. or the three-class system of Wessler et al. By aligning better with 

clinical practices, our model supports a more precise and ordered understanding of 

AS severity, which is crucial for guiding treatment decisions. 



  Input type Backbone Loss Required view 
Sampled 

frame 
Resolution Target Ensemble 

Holste G et al.3 Video 3D-ResNet18 CrossEntropyLoss PLAX 16 112 × 112 
non severe 

AS, 
severe AS 

Yes, 

3 models 

Wessler BS et al.13 Image WideResNet28 CrossEntropyLoss 
PLAX or/and  

PSAX 
1 112 × 112 

no AS,  
early AS,  

significant 
AS 

No 

DLi-ASc (Ours) Video R2Plus1D18 
continuum-aware  

multi-task loss 
PLAX or/and  

PSAX 
16 224 × 224 

Normal,  
AV 

sclerosis,  
Mild,  

Moderate,  
Severe 

No 

  



The results shown below demonstrated the performance advantages of our approach 

across multiple datasets (ITDS, DHDS, and TDDS). Our model consistently achieved higher 

accuracy for detecting any AS, significant AS, and severe AS across all datasets, underscoring 

the effectiveness of our continuum-based methodology. 

 

 Holste G et al.3 Wessler BS et al.13 DLi-ASc (Ours) 

ITDS    

any AS 0.844  0.859  0.958  

significant AS 0.947  0.784  0.979  

severe AS 0.972  - 0.985  

DHDS       

any AS 0.946  0.967  0.996  

significant AS 0.934  0.832  0.969  

severe AS 0.958  - 0.969  

TDDS       

any AS 0.768  0.729  0.905  

significant AS 0.914  0.714  0.949  

severe AS 0.965  - 0.980  
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