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S2. Materials and methods 

S2.2 Newton-Raphson-based optimizer 

The Newton Raphson Based Optimizer (NRBO) (Sowmya et al., 2024) is a novel metaheuristic 

algorithm. 

Step 1: Population initialization: 

NRBO initiates the search for the optimal solution by generating an initial random population 

within the boundary of the candidate solution. Assuming there are Np populations, generate a 

random population within the boundary: 

𝑥𝑗
𝑛 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏), 𝑙𝑏 ≤ 𝑥𝑗 ≤ 𝑢𝑏       (1) 

wherein, 𝑛 = 1,2,⋯ ,𝑁𝑝;  𝑗 = 1,2,⋯ , 𝑑𝑖𝑚; Xij: the position of the j-th dimension of the n-th 

population; rand: random numbers between (0,1). 

Step 2: Newton-Raphson search rules (NRSR): 

Update the position of the optimal solution based on NRSR to promote search trends and 

accelerate convergence. 

𝑥𝑛
𝐼𝑇+1 = 𝑚 × (𝑚 × 𝑋1𝑛

𝐼𝑇 + (1 −𝑚) × 𝑋2𝑛
𝐼𝑇) + (1 −𝑚) × 𝑋3𝑛

𝐼𝑇     (2) 

𝑋1𝑛
𝐼𝑇 = 𝑥𝑛

𝐼𝑇 −𝑁𝑅𝑆𝑅 + (𝑎 × (𝑋𝑏 − 𝑋𝑛
𝐼𝑇) + 𝑏 × (𝑋𝑟1

𝐼𝑇 − 𝑋𝑟2
𝐼𝑇))     (3) 

𝑋2𝑛
𝐼𝑇 = 𝑋𝑏 −𝑁𝑅𝑆𝑅 + (𝑎 × (𝑋𝑏 − 𝑋𝑛

𝐼𝑇) + 𝑏 × (𝑋𝑟1
𝐼𝑇 − 𝑋𝑟2

𝐼𝑇))      (4) 

𝑋3𝑛
𝐼𝑇 = 𝑋𝑛

𝐼𝑇 − 𝛿 × (𝑋2𝑛
𝐼𝑇 − 𝑋1𝑛

𝐼𝑇)), 𝛿 ∈ [−1,1]     (5) 

𝛿 = (1 − (
2 × 𝐼𝑇

𝑀𝑎𝑥𝐼𝑇
))

5

               (6) 

wherein, IT: the current iteration; MaxIT: the maximum number of iterations; m: a random 

number between (0,1), a and b are random numbers between (0,1), r1 and r2 are different integers 

randomly selected from the population, and the values of r1 and r2 are not equal. 

𝑁𝑅𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 ×
(𝑦𝑤 − 𝑦𝑏) × ∆𝑥

2 × (𝑦𝑤 + 𝑦𝑏 − 2 × 𝑥𝑛)
, ∆𝑥 = 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × |𝑋𝑏 − 𝑋𝑛

𝐼𝑇|        (7) 

𝑦𝑤 = ℎ × (𝑀𝑒𝑎𝑛(2𝑥𝑛 − 𝑟𝑎𝑛𝑑𝑛 ×
(𝑋𝑤 − 𝑋𝑏) × ∆𝑥

2 × (𝑋𝑤 + 𝑋𝑏 − 2 × 𝑥𝑛)
) + ℎ × ∆𝑥)         (8) 

𝑦𝑏 = ℎ × (𝑀𝑒𝑎𝑛(2𝑥𝑛 − 𝑟𝑎𝑛𝑑𝑛 ×
(𝑋𝑤 − 𝑋𝑏) × ∆𝑥

2 × (𝑋𝑤 + 𝑋𝑏 − 2 × 𝑥𝑛)
) − ℎ × ∆𝑥)         (9) 

wherein, randn: a normally distributed random number with a mean of 0 and a variance of 1; 



Xb: the best solution obtained so far; and Xw: the worst position; H: a random number between (0,1). 

Step 3: Trap avoidance operator (TAO)： 

The inclusion of TAO is to avoid falling into local optima and improve the effectiveness of 

NRSR in handling practical problems. 

{
𝑋𝑇𝐴𝑂
𝐼𝑇 = 𝑋𝑛

𝐼𝑇+1 + 𝜑, 𝑖𝑓 𝜇1 < 0.5

𝑋𝑇𝐴𝑂
𝐼𝑇 = 𝑥𝑏 + 𝜑,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

             (10) 

𝑋𝑛
𝐼𝑇+1 = 𝑋𝑇𝐴𝑂

𝐼𝑇                    (11) 

𝜑 = 𝜃1 × (𝜇1 × 𝑥𝑏 − 𝜇2 × 𝑋𝑛
𝐼𝑇) + 𝜃2 × 𝛿 × (𝜇1 ×𝑀𝑒𝑎𝑛(𝑋

𝐼𝑇) − 𝜇2 × 𝑋𝑛
𝐼𝑇)  (12) 

wherein, θ1 and θ2are uniformly random numbers between (−1,1) and (−0.5,0.5), respectively, 

μ1 and μ2 is a random number, generated by formulas (13) and (14) respectively: 

𝜇1 = 3 × 𝑟𝑎𝑛𝑑 × 𝛽 + (1 − 𝛽)       (13) 

𝜇2 = 𝑟𝑎𝑛𝑑 × 𝛽 + (1 − 𝛽)              (14) 

𝛽 = {
0, ∆≥ 0.5

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (15) 

Due to parameters μ1 and μ2 are the randomness of two choices makes the population more 

diverse and escapes from local optima, which helps to improve its diversity. 

S2.3.1 2T2DCOS 

2T2DCOS, an advanced spectral analysis technique, is the construction of 2DCOS using a 

collection of two one-dimensional spectra, which is very different from the generalized 2DCOS. 

Compared with traditional differential and weighted spectrum subtraction techniques, the 

2T2DCOS analysis technique can provide additional information (Noda, 2018). In this technique, 

only a pair of spectra is needed to obtain the relevant spectra, and no disturbance is required. In this 

study, we used the 2T2D correlation spectrum to couple the canopy spectra of the two growth stages, 

capturing rich and useful feature information and identifying spectral bands with synchronous 

changes. 

The formula for constructing the synchronous 2T2D correlation spectra is as follows: 

∅(𝑣1, 𝑣2) =
1

2
[𝐴(𝑣1) ∙ 𝐴(𝑣2) + 𝐵(𝑣1) ∙ 𝐵(𝑣2)]                             (16) 

where A and B represent the canopy spectra at different growth stages. 

S2.3.2 2DCOS 

LPC change is considered to be an external interference to the maize canopy spectral system, 

and the corresponding spectrum is defined by Noda (1993) as a dynamic spectrum. In 2DCOS, 

obtaining the intensity of 2DCOS as two independent spectral variables is shown in Eq. (1). We 

obtained synchronous and asynchronous 2DCOS using a fast Fourier transform of the dynamic 

spectrum, represented by real and imaginary components: 

𝑋(𝑣1, 𝑣2) = ∅(𝑣1, 𝑣2) − 𝑖𝜓(𝑣1, 𝑣2)                                         (17) 

where 𝑋(𝑣1, 𝑣2) represents the intensity of 2DCOS, v1 and v2 represent two independent spectral 

variables, and ∅(𝑣1, 𝑣2) is the intensity of the two-dimensional correlated synchronization, and 

𝜓(𝑣1, 𝑣2)  is the strength of the two-dimensional correlation asynchrony (Zhang et al., 2015). 



Synchronous spectroscopy can represent the overall similarity or consistency between the intensity 

changes caused by two independent optical variables and LPC disturbances. 

S2.3.3 PROSAIL-5B model 

The version of the PROSAIL model used in this study is PROSAIL-5B (Jacquemoud et al., 

2009), which is a coupling of the PROSPECT-5B model and the 4SAIL model: the former is a leaf 

optical model that simulates the reflectance and transmittance of leaves at 400-2500 nm; The latter 

is the canopy bidirectional reflectance model, which is improved to obtain vegetation canopy 

reflectance. 

PROSAIL-5B is an effective way to simulate the inversion of maize leaf biomass from 

hyperspectral data. However, there are problems such as high input parameter uncertainty, difficulty 

in parameter tuning, pathological inversion, and slow speed in the inversion process. The parameter 

calibration of the model can obtain parameter values within the range of observed reflectance and 

uncertainty, provide rich and accurate parameter information, and reduce bias in the model inversion 

process. For model parameter calibration, the traditional method is to use trial and error or set 

empirical values, and the range of parameter values set is relatively rough, making it difficult to 

express the spatiotemporal differences of crop parameters in the study area. In addition, different 

parameters in the model may lead to the "same effect of different parameters" phenomenon of the 

same simulation result. In the inversion calculation, parameters that do not conform to the actual 

situation are taken as the calculation results, resulting in a large deviation between the inversion 

results and the measured values. 

The PROSAIL model has numerous input parameters, including 13 parameters such as leaf 

structure parameters (Ns), leaf area index (LAI), and average leaf inclination angle (ALA). However, 

due to objective constraints, it is not possible to obtain specific values of vegetation parameters for 

all plots. Therefore, it is necessary to determine the coverage range of each parameter (Table S1), 

determine the magnitude of the impact of input parameters on the model simulation results through 

EFAST sensitivity analysis (Qiao et al., 2020), and determine highly sensitive parameters. Using 

the Mixing Sine and Cosine Algorithm with Lévy Flying Chaotic Sparrow Algorithm to optimize 

model parameters, determine the range of high sensitivity parameters and the values of other low 

sensitivity parameters. Sensitivity analysis of each parameter can better determine the type and 

number of parameters, reduce computational complexity in the calculation process, and improve the 

accuracy of model inversion. 

Based on these parameters, simulate the leaf biomass of maize plants (𝐴𝐺𝐵𝐿𝑒𝑎𝑓) using leaf 

area index and dry matter content. 

𝐴𝐺𝐵𝐿𝑒𝑎𝑓(
𝑡
ℎ𝑎⁄ ) = 𝐿𝐴𝐼 × 𝐶𝑚 × 4100 × 15 ÷ 100                             (18) 

Among them, one hectare is set as 15 acres, and one acre contains 4100 corn plants. 

S2.3.4 EFAST sensitivity analysis 

Using the EFAST method to conduct sensitivity analysis of crop model parameters, and then 

localizing the calibration of the model. This includes local sensitivity analysis and global sensitivity 



analysis. Local sensitivity analysis is the study of the impact of a single input parameter changing 

within a local range on the output response of a model. The method of local sensitivity analysis is 

simple and computationally intensive, but its disadvantage is that it cannot fully describe the spatial 

distribution of model parameters and ignores the interaction between parameters. Global sensitivity 

analysis can analyze the impact of the entire parameter space on model results, considering the 

interactions between parameters. 

The EFAST method is a sensitivity analysis method based on variance decomposition proposed 

by Saltelli combining the advantages of Sobol' method (Sobol, 1993) and Fourier amplitude 

sensitivity test (R. et al., 1977). It can calculate the contribution rate of each parameter and its 

interaction to the variance of the model results. The basic idea of this method comes from Bayesian 

theorem, which states that the sensitivity of the output results of a pattern can be reflected by the 

variance of the pattern results. The sensitivity of parameter x can be represented by the following 

equation: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑥 =
𝑣𝑎𝑟𝑥[𝐸(𝑌|𝑋)]

𝑣𝑎𝑟(𝑌)
                                   (19) 

wherein, Y is the output value of the pattern, x is the input parameter, E(Y|X) is the expected 

value of Y when x takes a certain value, and varx is the variance when x traverses the range of values. 

According to the Sobol' method of total variance decomposition, the total variance output by 

the model can be decomposed into the sum of the variances of each parameter and the variances of 

parameter interactions, and sensitivity quantification can be performed by quantifying the 

contribution ratio of parameters to the output variance. 

Step1: Convert the model y = f (x1, x2, ..., xn) to y = f (s). 

𝑥𝑖 =
1

2
+
arcsin [sin (𝜔𝑖𝑠 + 𝜑𝑖)]

𝜋
, s ∈ [−∞,+∞], 𝑖 = 1,2,⋯ , 𝑛             (20) 

Step2: Expand f (s) using Fourier series: 

𝑦 = 𝑓(𝑠) = ∑ [𝐴𝑗 cos(𝑗𝑠) + 𝐵𝑗 sin(𝑗𝑠)]

+∞

𝑗=−∞

          (21) 

wherein, Aj and Bj are Fourier coefficients. 

𝐴𝑗 =
1

2𝜋
∫ 𝑓(𝑠) cos(𝑗𝑠) 𝑑𝑠
𝜋

−𝜋

                   (22) 

𝐵𝑗 =
1

2𝜋
∫ 𝑓(𝑠) sin(𝑗𝑠) 𝑑𝑠
𝜋

−𝜋

                   (23) 

Step3: Calculate total variance: 

𝑣𝑎𝑟(𝑦) =
1

2𝜋
∫ 𝑓2(𝑠)𝑑𝑠
𝜋

−𝜋

− [
1

2𝜋
∫ 𝑓(𝑠)
𝜋

−𝜋

𝑑𝑠]

2

            (24) 

Step4: Calculate the first-order influence index Si, which is the sensitivity of parameter i: 

𝑆𝑖 =
𝑣𝑎𝑟𝑖(𝑦)

𝑣𝑎𝑟(𝑦)
                                         (25) 

Step5: Calculate the total effect index STi, which is the sensitivity of the main effects and 

interactions of parameter i: 

𝑆𝑇𝑖 = 1 −
𝑣𝑎𝑟~𝑖(𝑦)

𝑣𝑎𝑟(𝑦)
                            (26) 

wherein, var~i(y) is the conditional variance estimate except for parameter i. 



S2.3.5 Mixing Sine and Cosine Algorithm with Lévy Flying 

Chaotic Sparrow Algorithm 

Assuming there are n sparrows in the population, the population composed of all individuals 

is 𝑋 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛]
𝑇. 

𝑋 = [

𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

⋯
⋯

𝑥1,𝑑
𝑥2,𝑑

⋮ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑑

]                        (27) 

The fitness functions for each individual are F = [𝑓(𝑥1), 𝑓(𝑥2),⋯ , 𝑓(𝑥𝑛)]
𝑇. 

𝐹 =

[
 
 
 
𝑓([𝑥1,1 𝑥1,2
𝑓([𝑥2,1 𝑥2,2

⋯
⋯

𝑥1,𝑑])

𝑥2,𝑑])

⋮ ⋮ ⋮
𝑓([𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑑])]

 
 
 
                   (28) 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ∙ exp (

−𝑖

𝛼 × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) , 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄 ∙ 𝐿,                    𝑅2 ≥ 𝑆𝑇

      (29) 

wherein, t: Current iteration count; 𝑋𝑖,𝑗
𝑡 : the position of the i-th sparrow in the j-th dimension 

in the t-th generation; α∈(0,1); Itermax: Maximum number of iterations; R2: Alarm value; ST: Safety 

threshold; Q: Random numbers that follow a normal distribution; L: 1-dimensional all 1 matrix. 

𝑋𝑖,𝑗
𝑡+1 =

{
 

 𝑄 ∙ exp(
𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 − 𝑋𝑖,𝑗

𝑡

𝑖2
) ,  𝑖 >

𝑛

2

𝑋𝑃
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑃
𝑡+1| ∙ 𝐴+ ∙ 𝐿,  𝑖 ≤

𝑛

2

      (30) 

wherein, 𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 : The position of the individual with the worst fitness in the t-th generation; 

𝑋𝑃
𝑡+1: Represents the position of the individual with the best fitness in the t+1 generation; A: A one-

dimensional matrix, with each element randomly preset to -1 or 1; A+=AT(AAT)-1. 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 |, 𝑓𝑖 ≠ 𝑓𝑔

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑘 ∙ (

𝑋𝑖,𝑗
𝑡 − 𝑋𝑏𝑒𝑠𝑡

𝑡

|𝑓𝑖 − 𝑓𝑤| + 𝜀
) , 𝑓𝑖 = 𝑓𝑔

         (31) 

wherein, 𝑋𝑏𝑒𝑠𝑡
𝑡 : the global optimal position in the t-th generation; β: Step size follows a normal 

distribution with a mean of 0 and a variance of 1; k∈[−1,1]; Set ε as a constant to avoid having a 

denominator of 0; fi: The fitness value of the current individual; fg: The current fitness value of the 

globally optimal individual; fw: The current global worst individual fitness value. 

𝜔 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛) ∙ sin (
𝑡𝜋

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)        (32) 

𝑋𝑖,𝑗
𝑡+1 = {

(1 − 𝜔) ∙ 𝑋𝑖,𝑗
𝑡 +𝜔 ∙ sin(𝑟1) ∙ |𝑟2 ∙ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑗

𝑡 |, 𝑅2 < 𝑆𝑇

(1 − 𝜔) ∙ 𝑋𝑖,𝑗
𝑡 +𝜔 ∙ cos(𝑟1) ∙ |𝑟2 ∙ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑗

𝑡 |, 𝑅2 ≥ 𝑆𝑇
  (33) 

wherein, r1 is a random number within [0, 2π] , and r2 is a random number within [0, 2]. 



𝑋𝑖,𝑗
𝑡+1 =

{
 

 𝑄 ∙ exp(
𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 − 𝑋𝑖,𝑗

𝑡

𝑖2
) ,  𝑖 >

𝑛

2

𝑋𝑃
𝑡+1 + 𝑋𝑃

𝑡+1⊕𝐿𝑒𝑣𝑦(𝑑),  𝑖 ≤
𝑛

2

     (34) 

S2.3.6 Modelling evaluation 

Evaluate the calibration model by comparing the coefficient of determination (R2) and root 

mean square error (RMSE). The ratio of standard deviation (SD) to root mean square error (RMSE) 

is called RPD, which is used to evaluate the predictive accuracy of a model. The model is divided 

into four levels: 1) poor prediction (RPD<1.5), 2) moderate prediction (1.5≤RPD<2.0), 3) 

approximate prediction (2.0 ≤ RPD<3.0), and 4) good prediction (RPD ≥ 3.0). 

The values of R2, RMSE, SD, and RPD are calculated using the following equation: 

𝑅2 =
∑ (�̂�𝑛 − �̅�)

2𝑁
𝑛=1

∑ (𝑦𝑛 − �̅�)
2𝑁

𝑛=1

               (35) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑛 − �̂�𝑛)
𝑁
𝑛=1

𝑁
              (36) 

𝑛𝑅𝑀𝑆𝐸[%] =
𝑅𝑀𝑆𝐸

measured value range
× 100      (37) 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
               (38) 

where, �̂�𝑛 and 𝑦𝑛 are predicted and measured P, respectively; N is the sample number in the 

calibration, validation dataset; n is the sequence number. 

S2.4 Regression algorithm 

S2.4.1 Support Vactor Regression 

Support Vector Regression (SVR) is a machine learning method based on structural risk 

minimization (SRM) to solve nonlinear regression problems. The core principle of SVR is to fit data 

by minimizing prediction errors and maintaining a boundary (interval) during the fitting process, so 

that most data points fall within this boundary. 

S2.4.2 Random Forest Regression 

Random Forest (RF) regression is an ensemble learning based algorithm that performs 

regression tasks by constructing multiple decision trees and integrating their prediction results. In 

the process of generating numerous decision trees, random sampling is performed on the sample 

observations and feature variables of the modeling dataset. Each sampling result is a tree, and each 

tree generates rules and judgment values that match its own attributes. The forest ultimately 



integrates the rules and judgment values of all decision trees to achieve the regression of the random 

forest algorithm. 

S2.4.3 Extreme Learning Machines Regression 

Extreme Learning Machine (ELM) is a single hidden layer feedforward neural network 

algorithm, whose model structure consists of three layers: input layer, hidden layer, and output layer. 

Similar to artificial neural networks, the connections between each layer are completed using feature 

mapping functions. The information in the input layer is processed and transmitted to the output 

layer through the hidden layer, and then the output layer calculates the value based on the mapping 

function. 

S3. Results 

S3.2.2 Empirical model prediction of shoot P uptake 

According to the photochemical properties, the spectral band of 350-2500 nm is divided into 

different intervals: the Violet Blue band (VB: 350-449 nm); Blue band (B: 450-510 nm); Blue Edge 

(BE: 490-530 nm); Green band (G: 530-590 nm); Yellow Edge (YE: 560-640 nm); Red band (R: 

640-670 nm); Red Edge (RE: 680-760 nm); Near-Infrared-1 band (NIR1: 760-860 nm); Near-

Infrared-2 band (NIR2: 861-1040 nm); Short-Wave-Infrared-1 band (SWIR1: 1040-1350 nm); 

Short-Wave-Infrared-2 band (SWIR2: 1550-1850 nm); Short-Wave-Infrared-3 band (SWIR3: 2080-

2350 nm) for evaluating spectral sensitivity changes at different growth stages. 
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Fig. S1 Correlation between AGB of maize and jointing, filling, and milk stages. 

 



 

Fig.S2 Random Forest model based on NDSI. 
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Fig. S3 Distribution of P content in mature leaves and grains. 

S3.3.1 EFAST sensitivity analysis 

Table S1. Spectral sensitivity changes at different growth stages. 

Parameter 
Sensitive band 

Filling period milk ripening period 

VB 444nm 428nm 

B 472nm 450nm 

BE 490nm 490nm 

G 555nm 530nm 

YE 560nm 640nm 

RT 670nm 670nm 

RE 680nm 680nm 

NIR1 786nm 786nm 



NIR2 1039nm 861nm 

SWIR1 1041nm 1350nm 

SWIR2 1806nm 1835nm 

SWIR3 2281nm 2345nm 

 

 

Fig.S4 Sensitivity analysis results during Grain-filling period. 

 

 
Fig.S5 Sensitivity analysis results during milk stage. 

 

Table S2. Parameter values of PROSAIL model. 

Symbol Parameter Range Std. References 

Leaf Model: (PROSPECT-D) 



N Leaf structure index 1.2-1.8 1.8 Chai et al. (2021) 

Cab Leaf chlorophyll content 20-70 
18-22 

(Step size: 1) 
Guo et al. (2023) 

Car Total carotenoid content 4-15 
3.5-4.5 

(Step size: 0.5) 

Huang et al. (2023) 

Chai et al. (2021) 

 

Cbrown Brown pigments 0 0 Huang et al. (2023) 

Cw Leaf water content 0.01-0.05 
0.01-0.02 

(Step size: 0.004) 

 

Guo et al. (2023) 

Cm Dry matter content 0.004-0.0075 
0.004-0.005 

(Step size: 0.0001) 
Guo et al. (2023) 

Canopy Model: (4SAIL) 

LAI Leaf area index 0.5-7 
0.5-1.2 

(Step size: 0.05) 

Kayad et al. (2022) 

Nie et al. (2023) 

ALA Average leaf angle 20-70 
20-21 

(Step size: 1) 
Koetz et al. (2005) 

hspot Hot-spot parameter 0.001-0.450 
0.25-0.4 

(Step size: 0.05) 

Sun et al. (2021) 

Su et al. (2019) 

psoil Soil brightness 

0.4-0.7 

(Filling period) 

0.8-1 

(Milk period) 

0.655 Nie et al. (2023) 

tts Solar zenith angle \ 30 

Sun et al. (2021) tto Observation zenith angle \ 0 

psi Azimuth \ 0 

*Range: Range in literatures; Std.: Optimized standard value. 
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Fig.S6 Comparison between simulated spectra and measured spectra. 



 

Fig.S7 Leaf biomass prediction model based on practical constraints. 

S4. Discussion 

(a) (b) (c)

 

Fig.S8 Prediction models based on sensitive bands for the (a) original spectrum, (b) first-order 

differential spectrum, and (c) second-order differential spectrum. 

 

 

Fig. S9 Autocorrelation peak extracted from the filling-milk-2T2DCOS synchronous spectrum. 
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Fig. S10 Average simulated spectra within different leaf biomass range under (a) real range 

constraints and (b) NRBO-AL constraints. 

  



References 

CHAI, L. N., JIANG, H. Y., CROW, W. T., LIU, S. M., ZHAO, S. J., LIU, J. & YANG, S. Q. 2021. 

Estimating Corn Canopy Water Content From Normalized Difference Water Index (NDWI): An 

Optimized NDWI-Based Scheme and Its Feasibility for Retrieving Corn VWC. Ieee 

Transactions on Geoscience and Remote Sensing, 59, 8168-8181. 

GUO, A. T., YE, H. C., HUANG, W. J., QIAN, B. X., WANG, J. J., LAN, Y. B. & WANG, S. Z. 2023. 

Inversion of maize leaf area index from UAV hyperspectral and multispectral imagery. 

Computers and Electronics in Agriculture, 212, 14. 

HUANG, X., GUAN, H. D., BO, L. Y., XU, Z. Q. & MAO, X. M. 2023. Hyperspectral proximal sensing 

of leaf chlorophyll content of spring maize based on a hybrid of physically based modelling and 

ensemble stacking. Computers and Electronics in Agriculture, 208, 15. 

JACQUEMOUD, S., VERHOEF, W., BARET, F., BACOUR, C., ZARCO-TEJADA, P. J., ASNER, G. 

P., FRANçOIS, C. & USTIN, S. L. 2009. PROSPECT plus SAIL models: A review of use for 

vegetation characterization. Remote Sensing of Environment, 113, S56-S66. 

KAYAD, A., RODRIGUES, F. A., NARANJO, S., SOZZI, M., PIROTTI, F., MARINELLO, F., 

SCHULTHESS, U., DEFOURNY, P., GERARD, B. & WEISS, M. 2022. Radiative transfer 

model inversion using high-resolution hyperspectral airborne imagery - Retrieving maize LAI 

to access biomass and grain yield. Field Crops Research, 282, 12. 

KOETZ, B., BARET, F., POILVé, H. & HILL, J. 2005. Use of coupled canopy structure dynamic and 

radiative transfer models to estimate biophysical canopy characteristics. Remote Sensing of 

Environment, 95, 115-124. 

NIE, C. W., SHI, L., LI, Z. H., XU, X. B., YIN, D. M., LI, S. K. & JIN, X. L. 2023. A comparison of 

methods to estimate leaf area index using either crop-specific or generic proximal hyperspectral 

datasets. European Journal of Agronomy, 142, 11. 

NODA 1993. Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and 

Other Types of Spectroscopy. Applied Spectroscopy. 

NODA, I. 2018. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting 

useful information from a pair of spectra. Journal of Molecular Structure, 471-478. 

QIAO, K., ZHU, W. Q. & XIE, Z. Y. 2020. Application conditions and impact factors for various 

vegetation indices in constructing the LAI seasonal trajectory over different vegetation types. 

Ecological Indicators, 112. 

R., I., CUKIERT, K. & SHULER 1977. Nonlinear sensitivity analysis of multiparameter model systems. 

The Journal of Physical Chemistry, 81, 2365-2366. 

SOBOL, I. M. Sensitivity Estimates for Nonlinear Mathematical Models. 1993. 

SOWMYA, R., PREMKUMAR, M. & JANGIR, P. 2024. Newton-Raphson-based optimizer: A new 

population-based metaheuristic algorithm for continuous optimization problems. Engineering 

Applications of Artificial Intelligence, 128. 

SU, W., ZHANG, M. Z., BIAN, D. H., LIU, Z., HUANG, J. X., WANG, W., WU, J. Y. & GUO, H. 2019. 

Phenotyping of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images. Remote Sensing, 

11, 19. 

SUN, B., WANG, C. F., YANG, C. H., XU, B. D., ZHOU, G. S., LI, X. Y., XIE, J., XU, S. J., LIU, B., 

XIE, T. J., KUAI, J. & ZHANG, J. 2021. Retrieval of rapeseed leaf area index using the 

PROSAIL model with canopy coverage derived from UAV images as a correction parameter. 



International Journal of Applied Earth Observation and Geoinformation, 102, 10. 

ZHANG, Y., ZHENG, L. H., LI, M. Z., DENG, X. L. & JI, R. H. 2015. Predicting apple sugar content 

based on spectral characteristics of apple tree leaf in different phenological phases. Computers 

and Electronics in Agriculture, 112, 20-27. 

 


