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Mesoscopic full-field homogenised formulation

In this section, we present the full-field homogenisation formulation of the mechano-electrical response
of 3D printed PLA/CB composites at the mesoscopic scale. This model aims to obtain the homogenised
material properties of the printed samples depending on mesostructural features (e.g., inter-layer/inter-
filament adhesion planes or voids direction and size). To this end, the governing equations of the problem
are solved in a Representative Volume Element (RVE) of the mesostructure, considered as the union of
four filaments.

Mechanical behaviour of constituent phases

The mechanical constitutive behaviour of the pure filament and adhesion zones was modelled with an
elasto-viscoplastic rheological model. We decompose the deformation gradient into an elastic component,
Fe, and a plastic one, Fp, as:

F = Fe · Fp . (1)

Due to the high brittleness of conductive PLA/CB composite compared to pure PLA, the hardening
caused by the network resistance of the polymer at high strains can be neglected [1]. The proposed
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Supplementary Figure 1. Diagram of the four phases of the mesoscopic RVEs.
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rheological model consists of a unique branch, with a hyperelastic spring in series with a viscoplastic
dashpot. The considered energy strain function is based on a compressible Neo-Hookean model, obtaining
the following Piola-Kirchhoff stress:

P(F,Fp) = [µ(Be − I) + λln(Je
F )I] · F

−T , (2)

where µ and λ are the Lamé constants, Be = Fe(Fe)T , Je
F = det(F e) and I is the second order identity

tensor.The evolution of the plastic deformation Fp is governed by a yield function with plastic hardening
defined as:

f = σ − σY − k , (3)

where σY is the yield stress and σ =
√
3J2 with:

J2 =
1

2
σdev : σdev . (4)

Where σdev denotes the deviatoric part of the Cauchy stress tensor, defined as the difference between the
total stress and its hydrostatic part (σdev = σ − (tr(σ)/3)I). The hardening law k is defined as:

k = (σs − σY)[1− exp(−Hξp)] , (5)

where ξp =
√

2
3e

p : ep is the equivalent plastic strain, that depends on the plastic deviatoric deformation

tensor ep = dev
(
1/2

(
Fp · (Fp)T − I

))
. σs is the saturation stress and H is the hardening parameter.

The plastic surface derives from:

N =
∂f

∂σ
=

σdev√
4
3J2

. (6)

The plastic strain rate is defined as:

ε̇
p
=

{
ε̇o(exp[

1
C (

σ
σY+k )− 1]− 1) f > 0

0 f <= 0
(7)

with C being a model parameter describing the strain rate dependency and ε̇o the reference strain
rate. The former parameter is calibrated using experimental data obtained from uniaxial tensile tests
performed to PLA/CB filament samples at three different strain rates (10−4,10−3 and 10−2 s−1). The
latter parameter is defined as the lowest strain rate used in those experiments (10−4 s−1). The time
variation of the plastic deformation gradient follows:

Ḟp = (Fe)−1 · ε̇pN · F . (8)

The experimental results show weaker mechanical properties of the adhesion interface with respect to the
filament itself. To model this, the mechanical parameters of adhesion zones are initially degraded taking
as reference the ones obtained for the pure filament. This degradation was set by the parameter γ for the
inter-filament adhesion and η for the inter-layer adhesion, both smaller than 1. The degradation applies
to yield stress and Young’s modulus, following:

σref,inter-fil
Y = (1− γ)σref,fil

Y ; σref,inter-lay
Y = (1− η)σref,fil

Y , (9)

Eref,inter-fil = (1− γ)Eref,fil ; Eref,inter-lay = (1− η)Eref,fil, (10)

where σref,inter-fil
Y , σref,inter-lay

Y and σref,fil
Y are the yield stress at reference temperature of the inter-filament

adhesion zone, inter-layer adhesion zone and filament, respectively. Eref,inter-fil, Eref,inter-lay and Eref,fil are
the Young’s modulus at reference temperature of the inter-filament adhesion zone, inter-layer adhesion
zone and filament, respectively (see Supplementary Fig. 1 for a schematic representation of each phase).
The mesostructural voids were modelled and meshed but, due to their null stiffness, a negligible Young’s
modulus was defined in this phase. The elasto-viscoplastic parameters of the three phases are detailed in
Supplementary Table 1 whereas the thermo-mechanical parameters are detailed in Supplementary Table
5.
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Electrical behaviour of constituent phases

From an electrical perspective, every phase was considered to have an electrical conductivity Σ defining
the relation between the electric current density and electric field as:

j = Σe, (11)

where j is the electric current density and e is the electric field, both of them in the current configuration.
In conductive polymer composites, the distance between the particles is crucial, as it enables the creation
of conductive paths in the composite. To model this dependence, the relation of conductivity with
mechanical deformation was set as linearly dependent with the first invariant of deformation gradient,
IF1 (see [2]):

Σ(F) = Σref (1− CF (I
F
1 − 3)), (12)

where CF is the strain sensitivity parameter of the conductivity.
Analogously to the degradation of the mechanical properties in adhesion zones, the same is set for the
electrical parameters. In this case, we define a logarithmic degradation1 of properties using the parameter
α for the inter-filament adhesion and β for the inter-layer adhesion, both smaller than 1.

Σref,inter-fil = exp(αln(Σair) + ln(Σref,fil)) ; Σref,inter-lay = exp(βln(Σair) + ln(Σref,fil)) , (13)

where Σair, Σref,inter-fil and Σref,inter-lay are the conductivity of the air (i.e., mesostructural void), inter-
filament adhesion zone, inter-layer adhesion zone and filament, respectively.

Homogenisation framework and governing equations

The postulated full-field homogenisation finite element framework accounts for finite deformations. The
different outcomes (i.e., electrical and mechanical) depend on the deformed shape and volumetric changes,
defined in terms of the deformation gradient:

F(x) = I+∇Xu . (14)

Considering periodic fields and boundary conditions, the total displacement field u(X) can be decomposed
into a macroscopic variation and a fluctuating displacement field ũ(X) as:

u = (F− I) ·X+ ũ , (15)

where F is the macroscopic deformation gradient and X is the position in the reference configuration.
Substituting the previous equation into Eq. 14 and discarding second-order terms:

F = ∇Xu+ I = ∇X[(F− I) ·X+ ũ] + I = F+∇Xũ . (16)

To solve the mechanical problem, the linear momentum balance is described in the reference configuration
as:

∇X ·P = 0 ∀X ∈ Ω0 , (17)

where the first Piola-Kirchhoff stress field P is defined by the different constituent phases inside the
RVE. Typically, a strain-controlled test is imposed via the macroscopic deformation gradient F. To
impose the stress-controlled components macroscopically, the spatial average Piola-Kirchhoff stress tensor
components are enforced to be equal to the imposed ones. This imposition is set using a Lagrange
multiplier for each stress component to be controlled:(

1

|Ω0|

∫
Ω0

P (F,Fp, θ,X) dΩ0 −P

)
: λm = 0 . (18)

This mechanical Lagrange multiplier matrix modifies the original expression of the solution deformation
gradient as:

F = F+∇Xũ+ λm . (19)

Analogously with the mechanical contribution, the electric potential field ϕ can be decomposed into a
macroscopic contribution and a fluctuating electric potential field ϕ̃ as:

ϕ = ∇Xϕ ·X+ ϕ̃ = −E ·X+ ϕ̃ , (20)

1The changes in orders of magnitude for electrical conductivity are more likely to occur than for Young’s modulus or
yield stress. Thus, using a linear degradation would have led to values of α and β close to 1.
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where E is the (imposed) macroscopic electric field. The microscopic (solution) electric field reads as:

E = −∇Xϕ = ∇XE ·X+ E · ∇XX−∇Xϕ̃ = E−∇Xϕ̃ . (21)

The governing equations for the electric problem correspond to the Maxwell equations (in the absence of
magnetic field):

∇X ·D = Q ; ∇X ×E = 0 ; ∇X · J = 0 (22)

with Q being the charge accumulated within the body and D the electric displacement. Note that the
second equation in 22 is imposed by defining the electric field as E = −∇Xϕ, and the third equation is
obtained by applying the divergence operator to Ampere’s circuital law and assuming∇X·ϵ0 ∂E∂t = ∂Q

∂t = 0.
By performing a pull-back of the Eulerian electric current density (j) and electric field (e), the relation
between those variables at the spatial and material configurations can be written as:

J = JFF
−1 · j ; E = FT · e . (23)

Thus, the electric current density and electric field in the reference configuration can be related as follows:

J = ΣJFF
−1 · F−T · E . (24)

By considering this relation between the electric field and electric current density, as well as the split
shown in Eq. 20 and Eq. 21, it is possible to solve the electrical governing equation in the reference
configuration, Eq. 22.
Gathering the previous strong form formulations, we can summarise the residual expressions used to solve
the coupled non-linear system of equations in our finite element model, which consists of the periodic
RVE and periodic boundary conditions. From a mechanical perspective, we account for the mechanical
equilibrium, Eq. 25, the residual of the plastic deformation gradient (as we consider it as an independent
variable), Eq. 26, and the residual of the mechanical Lagrange multiplier, Eq. 27:

Rm =

∫
Ω0

P(F,Fp, θ,X) : ∇X(δũ) dΩ0 = 0 (25)

Rp =

∫
Ω0

(Fpn+1 − Fpn −∆t(Fe)−1 · ε̇pN · F) : δFp dΩ0 = 0 (26)

Rλm = −
(

1

|Ω0|

∫
Ω0

P(F,Fp, θ,X)dΩ0 −P

)
: δλm = 0 . (27)

From an electrical viewpoint, we solve the electrically stationary continuity equation in terms of electric
current density:

Re = −
∫
Ω0

J · ∇X(δϕ̃) dΩ0 = 0 . (28)

These four equations are solved in a finite element mesh consisting of a representation of the composite
mesostructure. Macroscopic values of the deformation and electric field are imposed to solve the boundary
value problem under periodic boundary conditions2. A Newton-Raphson non-linear solver is employed to
achieve the solution with a relative tolerance of 10−5. All the equations were implemented in the FEniCs
python module and, therefore, the derivatives are symbolically calculated by the module. The resulting
non-linear system of equations is solved implicitly via monolithic scheme, accounting for every Jacobian
submatrix, which reads as:

Kuu Kup Kuλm
0

Kpu Kpp Kpλm 0
Kλmu Kλmp Kλmλm 0
Kϕu 0 Kϕλm

Kϕϕ




∆u
∆Fp
∆λm
∆ϕ

 = −


Ru

Rp

Rλm

Re

 (29)

where Kxy represents the derivative of the residual Rx with respect to the variable y.

Macroscopic formulation

In this section, we propose an orthotropic formulation for the thermo-electro-mechanical response of 3D
printed PLA/CB composite at a macroscopic scale. Due to the diverse printing orientations considered,
this framework will make use of rotation tensors to work in a reference orientation configuration, i.e.,
longitudinal orientation. As for the homogenised approach, this formulation is set considering finite
deformations.

2To study the thermal effect on the mechanical or electrical contributions, a temperature can be prescribed in the whole
RVE. Yet, it is not considered as a field variable in the boundary value problem.
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Orthotropic mechanical behaviour of printed PLA/CB

The mechanical constitutive behaviour of the composite was modelled with an orthotropic thermo-elasto-
viscoplastic rheological model [3]. As for the homogenised approach, the rheological model consists of a
unique branch with a hyperelastic spring in series with a viscoplastic dashpot. The considered energy
strain function is based on an orthotropic Saint Venant-Kirchhoff model [3, 4]:

ψ(Ce) =
1

2

3∑
i,j

λij(θ)tr(E
e · Lii)tr(Ee · Ljj) +

3∑
i,j ̸=i

µij(θ)tr(E
e · Lii ·Ee · Ljj), (30)

where Ee = 1
2 (C

e − I) is the elastic Green-Lagrange strain tensor, λij are the Lame’s constants in
each direction, µij are the shear moduli in each direction, and Lii are the so called structural tensors
that allow to define principal directions within the model. To obtain the structural tensors related to
the principal material directions, we consider a set of orthogonal unit base vectors coinciding with the
desired directions:

Lii = li ⊗ li i ∈ {1, 2, 3} (31)

l1
l2

l3

Supplementary Figure 2. Diagram of the orthogonal unit base vectors of the reference orientation
configuration Ω̂, i.e., longitudinal (l1).

The Second Piola-Kirchhoff stress can be obtained by deriving the strain energy function with respect to
the elastic Green-Lagrange strain tensor as:

S =
∂ψ

∂Ee =

3∑
i,j

λij(θ)tr(E
e · Ljj)Lii + 2

3∑
i,j ̸=i

µij(θ)Lii ·Ee · Ljj (32)

The Piola stress can be alternatively obtained as:

P = F · (Fp)−1 ·S · ((Fp)−1)T = Fe ·

 3∑
i,j

λij(θ)tr(E
e · Ljj)Lii + 2

3∑
i,j ̸=i

µij(θ)Lii ·Ee · Ljj

 · ((Fp)−1)T ,

(33)
To allow the use of this formulation for any printing orientation, rotation tensors (Q) were added to
transform current variables to the reference orientation configuration (Ω̂), that is set as the longitudinal
printing direction. The proposed algorithm, which calculates the Piola Kirchhoff stress at the current
orientation configuration (Ω), consists in [5]:

1. Transform the elastic Green-Lagrange strain from the current orientation configuration to the ref-
erence orientation configuration.

Ê
e
= QT ·Ee ·Q . (34)

2. Compute the Second Piola-Kirchhoff stress at the reference orientation configuration.

Ŝ =

3∑
i,j

λij(θ)tr(Ê
e
· Ljj)Lii + 2

3∑
i,j ̸=i

µij(θ)Lii · Ê
e
· Ljj . (35)

3. Transform the Second Piola-Kirchhoff stress to the current orientation configuration.

S = Q · Ŝ ·QT . (36)
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The rotation matrix used in the previous expressions is defined as the product of the rotation matrix
along each coordinated axis in the reference orientation configuration:

Q = QX̂ ·QŶ ·QẐ (37)

Where each rotation tensor reads as:

QX̂ =

1 0 0
0 cos(φx) −sen(φx)
0 sen(φx) cos(φx)

 ;QŶ =

 cos(φy) 0 sen(φy)
0 1 0

−sen(φy) 0 cos(φy)

 ;QẐ =

 cos(φz) sen(φz) 0
−sen(φz) cos(φz) 0

0 0 1

 ,

(38)
where φx, φy and φz are the rotation angles with respect to l1, l2 and l3 respectively.
To obtain the plastic deformation, Fp is calculated following the same methodology as the one presented
in the homogenisation formulation.

Orthotropic electrical behaviour of printed PLA/CB

Due to the imperfect adhesion between filaments during the printing process, the electrical response of
conductive PLA/CB printed pieces is also orthotropic. As mentioned in the previous section, the reference
orientation configuration was the longitudinal one, considering as principal directions: l1, the direction
along filament; l2, the direction between adjacent filaments; l3, building direction. The conductivity
tensor is defined as follows:

Σ̂ =

Σ̂11 0 0

0 Σ̂22 0

0 0 Σ̂33

 . (39)

As observed in compressive mechano-electrical experimental results (see section: Additional mechano-
electrical tests ), there is a maximum conductivity that this material can reach at each direction (Σcritii ).
In addition, when the particles at the microscale are sufficiently separated to stop tunnelling effect, there
is a cease of conductive properties, i.e., Σ = 0 S/m. As the conductive properties vary with strain
between these two values, we proposed sigmoid-based functions to describe the conductivity variation at
each principal direction. Following this experimental evidence, the conductivity along l1 (i.e., filament
direction) is proposed dependent on the square root of the fourth invariant of the right Cauchy-Green
tensor along longitudinal direction (

√
I14 ) as well as with the constriction deformation (dA/dAo)[6]. The

former variable determines the deformation along the longitudinal direction, projecting the right Cauchy-
Green tensor (C = FT · F) with the longitudinal structural tensor (L11 = l1 ⊗ l1); I

l
4 = C : L11. The

latter variable determines the deformation caused by Poisson’s effect in the directions perpendicular to

the longitudinal one; dA/dAo = JF

√
(F−1)T · l1 · (F−1)T · l1. This conductivity is set as

Σ̂11 =
a11(Σ

crit
11 ,Σθ11)

b11(Σcrit11 ,Σθ11) + exp(CF11(
√
I14 − 1)− CFdA(1− dA/dAo))

, (40)

where CF11 is the sensitivity parameter related to the longitudinal deformation and CFdA is the sensitivity
parameter related to the constriction deformation.
In the case of the remaining principal directions l2 (i.e., adjacent filaments or transverse) and l3 (i.e.,
building direction or vertical), their conductivity is set to be dependent with the fourth invariant of the
right Cauchy-Green tensor along the studied direction as:

Σ̂ii =
aii(Σ

crit
ii ,Σθ11)

bii(Σcritii ,Σθii) + exp(CFii (
√
Ii4 − 1))

∀i ∈ {2, 3}, (41)

where CFii is the sensitivity parameter related to the ith deformation. As in Eq. 40, the variables
aii = ΣθiiΣ

crit
ii /(Σcritii − Σθii) and bii = Σθii/(Σ

crit
ii − Σθii) define the conductivity without any deformation

(Σθii) as well as the maximum conductivity allowed for each direction (Σcritii ).
Note that along the formulation of the different principal directions conductivities, the variable Σθii has
been used. This variable captures the conductivity dependence with temperature, and it is set as:

Σθii = Σrefii (1− αT (θ − θref )), (42)

where Σrefii is the conductivity at ith direction at the reference temperature (25◦C).
To transform the conductivity matrix to the chosen printing orientation, the rotation tensor was used:

Σ = QT · Σ̂ ·Q (43)
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Thermal behaviour of printed PLA/CB

Although the electric and mechanical behaviours were defined orthotropic, the thermal behaviour is
considered isotropic. This decision is motivated by the homogeneous thermal response observed in the
electro-thermal and thermo-mehano-electrical experiments. The thermal conductivity and specific heat
were assumed independent of temperature due to the low-temperature range considered in this work.
Regarding the thermal dependencies of the mechanical parameters, we proposed a decrease of Young’s
modulus, yield stress and hardening as stated in Eq. 44:

σY(θ) = σref
Y − CY(θ − θref)2 ; Ei(θ) = Eref

i − CE(θ − θref)2 ; H(θ) = Href + CH(θ − θref) (44)

where Cθ, CY and CH are constants that represent the decrease of stiffness, yield stress and hardening with
temperature respectively, whereas Eref

i , σref
Y and Href represent the values at the reference temperature.

Thermodynamics

The Helmholtz free energy is dependent on the deformation gradient, F, the electric field, E, the absolute
temperature, θ, and the plastic deformation gradient, Fp (disregarding the hardening), as

ψ(F,E, θ,Fp) = e− E · D− θη , (45)

where η is the entropy per unit volume, e is the internal energy per unit volume and D is the electric
displacement.
From the first law of thermodynamics, the internal energy is obtained as

ė = P : Ḟ+ E · Ḋ+ E · J+R−∇X ·Q , (46)

where R is the heat resource, Q is the heat flux, J is the electrical current density and P is the first
Piola-Kirchhoff stress tensor. The second law of thermodynamics reads

η̇ +∇X · (Q
θ
)− R

θ
≥ 0 . (47)

Combining both laws, Eqs. 46 and 47, it is possible to write the Clausius-Duhem inequality in terms of
the internal energy.

De = P : Ḟ+ E · Ḋ+ θη̇ + E · J− ė ≥ 0 . (48)

Accounting for the rate of the Helmholtz free energy

ψ̇ = ∂Fψ : Ḟ+ ∂Eψ · Ė+ ∂θψθ̇ + ∂Fpψ : Ḟp = ė− Ė · D− E · Ḋ− θ̇η − θη̇ , (49)

it is possible to substitute the internal energy from in Eq. 48. Thus, the Clausius-Duhem inequality in
terms of the free energy reads:

Dψ = (P− ∂Fψ) : Ḟ− (D+ ∂Eψ) · Ė− (η + ∂θψ)θ̇ + E · J− ∂Fpψ : Ḟp ≥ 0 (50)

By fulfilling the inequality it is possible to obtain the following constitutive relations:

P = ∂Fψ , D = −∂Eψ , η = −∂θψ , (51)

leaving a reduced inequality:

Dψ = E · J− ∂Fpψ : Ḟp ≥ 0 . (52)

The first term, referred to the Joule heating, always fulfil the condition, due to the definition of the electric
current density, J = ΣJFF

−1 · F−T · E, where the electrical conductivity is always positive. Regarding
the plastic deformation term, by considering an associative flow rule the inequality is fulfilled, note that
thermodynamic consistency is also ensured in the case of isotropic hardening.
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Governing equations

From a macroscopic mechanical perspective, the linear momentum balance is solved in the reference
configuration.

∇X ·P = 0, (53)

The plastic deformation component has been set as a degree of freedom and is computed by solving the
time variation of the plastic deformation gradient, see Eq. 8.
Analogously with the mesoscopic electrical contribution, the electric potential field ϕ can be obtained by
solving the continuity equation.

∇X · J = 0 (54)

For the thermal governing equation, the transient heat balance is set as

ϱθ̇ −∇X · (κJFF−1 · F−T · ∇Xθ)− J · E+ h(θ − θref) = 0 , (55)

where ϱ is the volumetric heat capacity (density in the reference configuration multiplied by heat ca-
pacity), k is the thermal conductivity, h is the convection coefficient and J · E is the volumetric heat
generation caused by Joule effect.
Gathering the previous strong form formulations, we can summarise the residual expressions used to solve
the coupled non-linear system of equations in our finite element model. From a mechanical perspective,
we account for solving the mechanical equilibrium, Eq. 56, and the residual of the plastic deformation
gradient (as we consider it as an independent variable):

Rm =

∫
Ω0

P(F,Fp, θ,X) : ∇X(δu) dΩ0 = 0 (56)

Rp =

∫
Ω0

(Fp
n+1 − Fp

n −∆t(Fe)−1 · ε̇pN · F) : δFp dΩ0 = 0 (57)

From an electrical viewpoint, we solve the electrically stationary continuity equation in terms of electric
current density:

Re = −
∫
Ω0

J · ∇X(δϕ) dΩ0 = 0. (58)

To obtain the solution of the temperature field, we solve the transient heat balance, Eq. 59:

Rth =

∫
Ω0

(ϱ
θ − θt
dt

)δθ+(κJFF
−1 ·F−T ·∇Xθ) ·∇X(δθ)− (J ·E)δθ dΩ0+

∫
Γ0

h(θ− θref)δθ dΓ0 = 0 (59)

Computational details of the optimisation algorithm

The Particle Swarm Optimisation algorithm used a velocity vector to evaluate possible optimal solutions.
This vector is determined by three components: i) a momentum component; ii) a cognitive component,
which influences the ith particle to search solutions near the best solution found so far by a specific
particle (PBESTj

i ); and iii) a social component, which leads the ith particle to search solutions near the
best solution found so far by all the particles (GBESTj). Thus, the velocity of the ith particle at the
jth iteration is set as:

Vj
i = Vj

mom,i +Vj
cog,i +Vj

soc,i . (60)

The momentum component decreases its importance over each iteration. This allows for a more precise
search near the best solutions during the last iterations, while performing a more general search during
the first iterations. This component reads as:

Vj
mom,i =

((
1− j

n

)
(wmax − wmin) + wmin

)
Vj−1
i , (61)

where n is the maximum number of iterations, wmax is a parameter that defines the maximum momentum
and wmin is a parameter that defines the minimum momentum.
The cognitive component allows for a specific particle to search for solutions near the best solution found
by that specific particle. This solution is known as personal best (PBESTj

i ). The expression is set as:

Vj
cog,i = c1R · (PBESTj

i −Xj−1
i ), (62)
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where c1 is a weight parameter for the cognitive component, R is a random vector which components
absolute values are smaller than 1, and Xj−1

i is the solution of the ith particle at the former iteration.
The social component allows for each particle to search for solutions near the best solution found by the
set of particles. This solution is known as global best (GBESTj). The expression is set as:

Vj
soc,i = c2R · (GBESTj −Xj−1

i ), (63)

where c2 is a weight parameter for the social component. Thus, the next position of the ith particle
within the solution space to evaluate the objective function is defined as:

Xj
i = Xj−1

i +Vj
i . (64)

Both PBESTj
i and GBESTj are changed over iterations (j ) when their evaluation in the objective

function is more optimal than the ones obtained before. Every optimisation problem employed an objec-
tive function defined as the root mean squared error (RMSE) between the experimental and model data.
Thus, an optimal solution consists of the minimisation of the objective function:

f(Xj
i ) < f(PBESTj

i ) =⇒ PBESTj+1
i = Xj

i ∀{i, j} (65)

f(Xj
i ) < f(GBESTj) =⇒ GBESTj+1 = Xj

i ∀{i, j} . (66)

Isotropic model for mechano-electrical response of conductive fil-
ament at the macroscale

As observed in the mechano-electrical tests at a previous work [2], the resistivity variation is only linear
during the elastic regime. Once plasticity is reached, this tendency slightly reduces during the initial
stages, to increase again in a linear way after that stretch values (λ ≈ 1.025). To capture this macroscopic
phenomena, we have proposed a relation between conductivity and the first invariant of the deformation
gradient, IF1 = tr(F). This proposal is set based on the microstructure of PLA/CB composite. The
microscopic CB particles do not form perfectly aligned paths, but they constitute a randomly dispersed
net of particles. Thus, the composite conductivity will not only depend on the deformation along the
electric field direction, but on the other two directions as well. To account for all the principal directions
deformations, we have made use of IF1 :

Σ(F) = Σref (1− CF (I
F
1 − 3)), (67)

where Σref is the conductivity at the undeformed state and CF is the strain-sensitivity parameter.

Model

Experimental

Σ

Supplementary Figure 3. Relation between the first invariant of the deformation gradient and the mechano-
electrical response of PLA/CB. In the left y-axis the conductivity during a mechano-electrical test of PLA/CB
filament (experiment) and the conductivity results following the proposed numerical model are plotted versus
the mechanical stretch. In the right y-axis, the evolution of the first invariant is represented. Experimental data
obtained from [2]

Due to the deviatoric nature of the plastic regime, once plasticity is reached the transverse components
of the deformation gradient decrease faster than during the elastic regime. Therefore, the IF1 is slightly
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reduced at this stage. In Supplementary Fig. 3 left y-axis, the average variation of conductivity during
the mechano-electrical testing at the filament scale is presented along with the conductivity obtained by
applying the proposed model. The variation of IF1 is represented in the right y-axis. It can be noticed
how at λ values near 1.015, where plasticity is reached in the elasto-plastic model a reduction in tendency
is found.

Identification of macroscopic elastic parameters via homogenisa-
tion

Unlike isotropic materials, orthotropic elastic properties cannot be fully related to each other (e.g., for an
isotropic material the shear modulus can be obtained if the Poisson’s ratio and the Young’s modulus are
known). In the proposed orthotropic hyperelastic model [3, 4], the orthotropic set of Lamé parameters
are needed, i.e., Lamé’s first parameters (λij ∀i, j ∈ {1, 2, 3}) and shear moduli (µij ∀i ̸= j ∈ 1, 2, 3).

Shear YZ

Scale factor: x30

0.0e+00 4.0e+0110 20 30
Stress Magnitude

Z
YX

Shear XY Shear ZX

0 8 16 24 32 40

Traction Z

S [MPa]

Traction YTraction X
3.9e-05 4.0e+015 10 15 20 25 30 35

Stress_rotated Magnitude

0.0e+00 4.0e+0110 20 30

3.3e-06 4.6e+0110 20 30
Stress Magnitude

1.3e-06 4.0e+0110 20 30
Stress Magnitude

Supplementary Figure 4. Stress results of each deformation state. In the first row every uniaxial tensile
simulation is presented. In the second row every pure shear simulation is presented. A macroscopic stretch value
of 0.005 is applied for every condition.

The former set of parameters can be obtained by knowing the principal directions Young’s moduli (i.e.,
along longitudinal, transverse and vertical directions) as well as knowing the Poisson’s ratios:

λii = Ei
1− νjkνkj

∆
, (68)

λij = λji = Ei
νij + νkjνik

∆
(k ̸= j ̸= i, ∀i, j ∈ {1, 2, 3}) (69)

where:

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13. (70)

It is important to remark that, in case of orthotropic materials, there is a relation between νij and νji,
based on the occupied Young’s moduli:

νij = νji
Ej
Ei

(71)

To obtain the Young’s moduli and Poisson’s ratios, uniaxial tensile simulations were performed at the
mesoscale to calculate each parameter based on the average of the desired solution fields. Ei is calculated
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as the slope between the macroscopic Second Piola-Kirchhoff stress at the ith direction (Sii) and the
macroscopic Green-Lagrange strain at the ith direction (Eii). To be consistent with the Hill-Mandel or
macro-homogeneity condition [7, 8], Sii and Eii were computed from the averaged deformation gradient
(Fij =

1
Ω

∫
Ωo

F ijdΩ ) and the first Piola-Kirchhoff stress (Pij =
1
Ω

∫
Ωo

P ijdΩ ). νji is calculated as the

slope between the average of Green-Lagrange strain in the jth direction with respect to the ith one, where
the uniaxial loading is applied.
In the case of the shear moduli obtention, pure shear conditions on each principal plane were applied
to RVEs. Then, they were calculated as the slope between the average of the ijth component of the
Second Piola-Kirchhoff stress tensor with respect to the desired tangential component of the average of
Green-Lagrange strain tensor.

Macroscopic simulations of the electro-thermal response of PLA/CB

In this section the macroscopic simulation results for electro-thermal tests using electric fields of 125 V/m
and 187.5 V/m are represented against the experimental data in Supplementary Fig. 5, complementing
the experimental results presented in Fig. 3.c where an electric field of 250 V/m was applied. It can be
seen how the model captures the difference in heating depending on the printing orientation, as well as
the resistivity variation.

Longitudinal
Transverse
Purely oblique

Experimental

Model

E=125 V/m

Longitudinal
Transverse
Purely oblique

Experimental

Model

E=187.5 V/m

Supplementary Figure 5. Electro-thermal simulation results for electric fields of 125 and 187.5
V/m. The experimental results of wide rectangular samples employing gripping electrodes are displayed in grey.
The solid/dashed lines represent the average values of the response, whereas the shaded areas represent the
experimental deviation. Three samples were considered for each experimental condition. Only one simulation
was used for each condition, feeding the model with the average parameters calibrated via PSO algorithm.
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Macroscopic simulations of the thermo-mechanical response of
PLA/CB

In this section the macroscopic simulation results for thermo-mechanical tests imposing temperatures of
25 and 35 ◦C are represented against the experimental data in Supplementary Fig. 6, complementing
the experimental results presented in Fig. 3.a at 45 ◦C. The experimental results are obtained from wide
rectangular section samples.

λ
θamb

Longitudinal

Transverse

Oblique

Modelling
Longitudinal

Transverse

Oblique

Experiments

Exp. Deviation

    θ =25 ºC

Longitudinal

Transverse

Oblique

Modelling
Longitudinal

Transverse

Oblique

Experiments

Exp. Deviation

    θ =35 ºC

Supplementary Figure 6. Thermo-mechanical simulation results for temperatures of 25 and 35 ◦C.
The experimental results of wide rectangular samples are displayed in grey. The solid/dashed lines represent the
average values of the response, whereas the shaded areas represent the experimental deviation. Three samples
were considered for each experimental condition. Only one simulation was used for each condition, feeding the
model with the average parameters obtained from homogenisation.

Calibrated parameters for the simulations

In this section every parameter used for solving both the mesoscopic and macroscopic problems is dis-
played.

Mesoscopic problem

The elasto-viscoplastic parameters used in the homogenisation framework are presented in Supplementary
Table 1 dividing them into the four phases considered. The electrical and mechano-electrical parameters
are presented in Supplementary Table 2.
Both Young’s modulus and electrical conductivity at the reference temperature of the pure filament were
not calibrated via optimisation approaches. These values were obtained directly from experimental data.
The Young’s modulus was obtained from the stress-strain experimental curves of extruded filaments,
whereas the filament conductivity was measured from filaments extruded and deposited in the printing
bed.
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Supplementary Table 1: Elasto-viscoplastic parameters considered at the mesoscale for every phase
in the RVEs.

Mechanical parameters

Phases E [MPa] ν [-] σref
Y [MPa] ε̇o[s

−1] C [-] Href σs [MPa] γ [-] η [-]

Filament 2300 0.4 35 1 e-4 0.06 0.05 σY (θ)/1.15 - -
Inter-layer Eq. 10 0.4 Eq. 9 1 e-4 0.06 0.05 σY (θ)/1.15 0.3 -
Inter-filament Eq. 10 0.4 Eq. 9 1 e-4 0.06 0.05 σY (θ)/1.15 - 0.3
Void 1e-10 0.2 - - - - - - -

Supplementary Table 2: Electrical and mechano-electrical parameters considered at the mesoscale for
every phase in the RVEs.

Electro and mechano-electrical parameters

Phases Σ [ S
m
] CF [-] α [-] β

Filament 11.76 30 - -
Inter-layer Eq. 13 30 0.095 -
Inter-filament Eq. 13 30 - 0.096
Void 1e-12 - - -

Macroscopic problem

The orthotropic elasto-viscoplastic parameters obtained from the optimisation procedure and used for
macroscopic simulations in the macroscopic simulations are presented in Supplementary Table 3. The
electrical and mechano-electrical parameters are presented in Supplementary Table 4. The thermal,
thermo-electrical and thermo-mechanical parameters are presented in Supplementary Table 5.

Supplementary Table 3: Orthotropic elasto-viscoplastic parameters considered at the macroscopic
scale and obtained from the optimisation procedure.

E1 [MPa] E2 [MPa] E3 [MPa] µ12 [MPa] µ13 [MPa] µ23 [MPa] σref
Y [MPa]

2061 1728 1620 649 617 577 32

ν21 [-] ν31 [-] ν32 [-] ε̇o[s
−1] C [-] Href σs [MPa]

0.39 0.39 0.28 1.0 e-4 0.06 0.05 σY (θ)/1.15

Supplementary Table 4: Orthotropic electrical and mechano-electrical parameters considered at the
macroscopic scale and obtained from the optimisation procedure.

Electrical parameters Mechano-electrical parameters

Σ̂ref
11 [ S

m
] Σ̂ref

22 [ S
m
] Σ̂ref

33 [ S
m
] C11

F [-] CFdA [-] C22
F [-] C33

F [-]

10.28 5.95 4.92 60 70 62 52

Supplementary Table 5: Thermal, thermo-mechanical and thermo-electrical parameters at the macro-
scopic scale, obtained from the optimisation procedure.

Thermal parameters Thermo-mechanical parameters Thermo-electrical parameter

k [ W
mK

] ϱ [ J
m3K

] h [ W
m2K

] CY [MPa
◦C2 ] CE [MPa

◦C2 ] CH [-] αT [◦C−1]

1.5 2.0 e6 10.8 0.025 1.35 -0.31 0.015
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Additional mechano-electrical tests

This subsection presents additional experimental results of mechano-electrical tests. Firstly, the results
for compressive mechano-electrical tests for the three principal directions configurations (longitudinal,
transverse and vertical) are represented in Supplementary Fig. 7, with the aim of obtaining the maximum
conductivity achieved in PLA/CB samples during compression. Secondly, the results for tensile mechano-
electrical tests including the vertical printing orientation are presented in Supplementary Fig. 8.

∆R

Longitudinal

Transverse

Vertical

Supplementary Figure 7. Mechano-electrical compressive tests of PLA/CB samples. Uniaxial
compressive tests were carried out while measuring the electrical current flowing through the samples. The
solid/dashed lines represent the average values of the response, whereas the shaded areas represent the exper-
imental deviation. Three samples were considered for each experimental condition. The directions considered
for the tests are: longitudinal (l1), transversal (l2) and vertical (l3). A) The Cauchy stress is represented versus
stretch. B) The effective resistivity is represented versus the mechanical stretch.

∆R

Longitudinal

Transverse

Purely oblique

Vertical

Supplementary Figure 8. Experimental results of mechano-electrical tensile tests performed to
longitudinal, transverse, purely oblique and vertical samples. Uniaxial tensile tests were carried out
while measuring the electrical current flowing through the samples. Three samples of each printing direction were
employed during the testing. The solid/dashed lines represent the average of each orientation response, while
the shaded area represents the experimental data distribution. The effective resistivity is represented versus the
mechanical stretch.
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Thermo-electro-mechanical experimental setup

This subsection provides a detailed overview of the experimental setup used for conducting thermo-
electro-mechanical experiments, as depicted in Supplementary Fig. 9, along with the results obtained
from fully coupled tests. The setup was designed to collect three types of data: (i) mechanical data
(i.e. displacement and force), measured by using a universal testing machine (INSTRON 34TM-5, MA,
USA); (ii) electrical data (i.e. voltage drop in a known resistor), measured by using a data acquisition
system (DAQ DI-2008, OH, USA); and (iii) thermal data (i.e. surface temperature), measured by using
an infrared camera (Fluke TiS75+, WA, USA). To ensure precise data collection, we synchronised the
recording starting point of each machine by using a signal trigger which was controlled by an Arduino
board (Arduino UNO, NY, USA). To measure the electrical data accurately, the DAQ system was used
to measure the voltage values. For this purpose, a 1 Ω resistor was connected in series, and the voltage
drop was measured through this known resistor. By using a resistor with a much lower resistance value in
comparison to the sample’s one, we ensured a correct heating without an interference from the additional
resistor.

The proposed fully coupled experiment consisted of two steps. In the first step, an electro-thermal test
was conducted, in which a constant electric field of 187.5 V/m was applied using a DC power source,
resulting in an increase of the temperature of the filament. Both the infrared camera and the DAQ
system were used to collect data during this step. In the second step, five minutes after the beginning of
the experiment, a displacement ramp was applied to the filament while maintaining the applied electric
field. All three machines were used to collect data during this step.

∆V→∆R

1

2

V=15 V

i=0.01 A

DC SOURCE
4

3
5

67

8

Supplementary Figure 9. Complete experimental set-up diagram for thermo-electro-mechanical tests. 1)
Universal testing machine; 2) Infrared camera; 3) PLA/CB filament sample; 4) DC power source; 5) Known
resistor; 6) DAQ system; 7) Computer, recording voltage data from DAQ system; 8) Signal trigger to control the
electrical and mechanical recording

Heatable cartridge, thermal images and model data post-processing

This subsection provides an overview of the numerical and experimental post-processing of the tempera-
ture data taken from the heatable cartridge. As defined in the main manuscript, section ”Smart selector
of printing parameters to design multi-functional structural components”, an optimal set of printing di-
rections was sought to minimize the heating heterogeneity of the component. To this end, the standard
deviation of the nodal temperatures of the cartridge was defined as the objective function to minimize.
In this case, every node in the mesh was considered to calculate the temperature standard deviation.
Nonetheless, to correctly compare the numerical results with the thermal IR images, a different set of
nodes was selected. As shown in Supplementary Fig. 10.B, the IR images are taken from one side of
the heating cartridge. Therefore, we only used the side surface nodes to compute the average and the
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standard deviation of the temperatures during the heating process.
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Supplementary Figure 10. A) Nodal selection of the whole mesh to optimise the heatable cartridge printing.
B) Nodal selection of the side visible nodes, to correctly compare the IR image data with the numerical solution.
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