Supplemental Material for Online Publication

for

Cooperative Binding of DNA and CBFβ to the Runt Domain of the CBFα Studied via MD simulations

Bahru Habtemariam, Victor M. Anisimov and Alexander D. MacKerell, Jr. Department of Pharmaceutical Sciences, School of Pharmacy University of Maryland, Baltimore, MD 21201, USA

System	Solute	Added	Total # of	Box
	Atoms	Ions	Atoms	Dimensions
CBFβ-RD-DNA	4621	15(Na ⁺)	34579	84x64x59
RD-DNA	2581	13(Na ⁺)	19754	79x57x48
CBFβ-RD	3989	3(Cl ⁺)	28700	81x67x58
RD	1949	5(Cl ⁺)	18544	76x57x47
CBFβ	2040	2(Na ⁺)	14072	65x52x46
DNA1*	632	18(Na ⁺)	7478	53x41x38
DNA2*	632	18(Na ⁺)	7478	53x41x38

Table S1. Simulation systems.

*Both DNA simulations used the same number of solvent atoms with the DNA1 simulation initiated from the experimental DNA-RD-CBF β ternary complex structure and the DNA2 simulation initiated from the canonical B-form.

Table S2. RMS difference for backbone atoms of selected CBF β residues in the vicinity of deleted residues 71 to 79 with respect to the crystallographic coordinates.

Residue	RMS, Å
L66	0.97±0.10
Q67	1.70±0.18
F68	2.45±0.20
F69	4.15±0.17
P70	4.96±0.16
T80	4.66±0.18
P81	1.93±0.06
S82	1.56±0.06
R83	1.00 ± 0.02
E84	1.03 ± 0.03

Time, ps RD-DNA	DNA	RD	CBFβ	RD-DNA	RD-CBFβ	CBFβ-
1000	1.53	4.10	2.04	2.46	3.05	2.58
1500	1.45	3.81	2.26	2.71	3.48	2.56
2000	1.65	3.28	2.30	2.97	4.00	2.76
2500	1.55	3.31	2.18	3.63	4.12	2.85
3000	1.62	3.74	1.99	3.09	3.79	2.88
3500	1.57	3.34	2.00	3.21	3.67	2.89
4000	1.89	3.74	2.18	3.54	3.31	2.98
4500	1.55	3.40	2.21	3.84	3.66	2.92
5000	1.73	3.28	2.24	3.65	3.59	2.83
Average	1.62±0.04 2.81±0.05	3.56±0.10	2.15±0.04	3.23±0.16	3.63±0.11	

Table S3. RMS difference of MD simulated structures with X-ray structure 1H9D.

Table S4. Total Energy and Energy Components for the Systems Studied.

System	G^{a}	G _{Solvation} ^b	E _{strain} c		Einteraction energies		Entropy
				RD-DNA ^e	RD-	CBFβ-	TS^d
					$\mathrm{CBF}\beta^{\mathrm{f}}$	DNA	
Trimer	-	-	-	-2623±13	-299±10	45±8	3424±5
	10683±7	5675±35	2132±32				
RD-DNA	-5719±6	-	745±15	-2513±12			1933±3
		3951±22					
CBFβ-	-8118±9	-	-		-239±3		2972±5
RD		3561±44	4319±51				
RD	-3159±3	-	-				1477±3
		1897±20	1262 ± 18				
CBFβ	-4877±4	-	-				1544±0
		1925±19	2952±18				
DNA1 ^g	-2559±1	-4457±4	1898 ± 5				505±0
DNA2 ^g	-2558±1	-4461±4	1903±4				

Energies in kcal/mol averaged over the MD simulations with standard errors reported. ^a Total free energy of each system based on equation 2 without entropy contribution; ^b Solvation energy of the system, including electrostatic and non-polar contributions; ^c Strain energy calculated as described in the methods; ^d TS calculated at 300 K. ^e Interaction energy between RD and DNA in the presence and absence of CBF β ; ^f Interaction energy between RD and CBF β in the presence and absence of DNA. ^g DNA1 and DNA2 represent the simulations initiated from the experimental DNA-RD-CBF β ternary complex structure and from the canonical B form, respectively.

Distances, in Å, between RD Glu116 and CBF β Arg33 atoms CA-CA and OE2-NH2 as a function of simulation time. Blue and cyan lines show distances for CA-CA atoms for the RD-CBF β binary and ternary complexes, respectively, while green and red lines show OE2-NH2 distances for the RD-CBF β binary and ternary complexes, respectively.