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Analytical Debye-Huckel Model for Electrostatic Potentials around
Dissolved DNA
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ABSTRACT We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the
surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling
DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with
the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and
the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information
in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces,
dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a
smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the
potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing
distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more

rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.

INTRODUCTION

Electrostatic interactions play a critical role in many funda-
mental biochemical, intermolecular processes (Anderson
and Record, 1990; Davis and McCammon, 1990; Sharp and
Honig, 1990a; Honig and Nicholls, 1995). The electrostatic
properties of DNA are important in DNA-DNA (Vologod-
skii and Cozzarelli, 1994; Duguid and Bloomfield, 1996)
and protein-DNA interactions (Misra et al., 1994a,b), as
well as in determining the nature and structure of the con-
densed counterions around DNA (Manning, 1978; Mills et
al., 1985; Fenley et al., 1990; Klement et al., 1991; Stigter,
1995). As such, the electric fields and potentials of DNA,
and the details of the DNA-solvent interface, have been the
subject of a great deal of theoretical research as well as
comparison to experimental measurements of the electro-
static potential (Shin and Hubbell, 1992; Hecht et al., 1995).
These investigations are relevant to experimental efforts to
image DNA (Lyubchenko et al., 1992, 1993; Lee et al.,
1994) and measurements of DNA-DNA repulsive forces
(Rau and Parsegian, 1992).

Electrostatic models of the DNA-solvent system neces-
sarily include idealizations due to the complexity of the
system. Past investigations have used idealized geometries
and charge distributions (Hill, 1955; Stigter, 1975; Schell-
man, 1977; Weisbuch and Gueron, 1981), and idealized
models for the dielectric constant, ranging from no distinc-
tion between the inside and the outside of the macromole-
cule to a distant-dependent, composite dielectric function
(Pullman and Pullman, 1981; Klein and Pack, 1983; Pack
and Klein, 1984; Hingerty et al., 1985; Pack et al., 1990,
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1993; Edwards et al., 1994; Lin-Chung and Rajagopal,
1995; Hochberg et al., 1997).

To account for the contribution of the counterions to the
potential, many of the theoretical treatments of the poten-
tials and the counterion concentrations make use of some
form of the Poisson-Boltzmann equation, including the full
nonlinear equation, its series approximation, and its linear-
ized form, known as the Debye-Huckel model (Soumpasis,
1978; Pack et al., 1986; Gilson et al., 1987; Jayaram et al.,
1989; Jayaram and Beveridge, 1990; Sharp and Honig,
1990b). Linearization of the Poisson-Boltzmann equation,
invalid when the electrostatic energies are not much smaller
than the thermal energies, conveniently allows the use of the
superposition principle for the electrostatic potentials.

There have been several theoretical methods developed to
calculate the potentials based on an all-atom model for
DNA. Notably, Klein and Pack (1983; Pack and Klein,
1984) have calculated the potentials using an iterative
method based on Coulomb’s law and the Poisson-Boltz-
mann equation to determine a self-consistent set of poten-
tials and ion concentrations. Jayaram et al. (1989) have also
used an all-atom model to determine the electrostatic po-
tential of B-DNA by using a finite-difference method to
solve the nonlinear Poisson-Boltzmann equation. Later, Ja-
yaram and Beveridge (1990) analytically solved the linear-
ized Poisson-Boltzmann equation (Debye-Huckel approxi-
mation) for a finite length of DNA to determine the free
energies of various conformations.

Hochberg et al. (1994) analytically determined the elec-
trostatic potentials and fields around DNA in a phosphate-
only, dielectric-layer model using a Green-function tech-
nique and later extended the model to include all of the
atoms of DNA (Edwards et al., 1994). The method incor-
porates the symmetries of DNA; in particular, the atoms of
DNA will form sets of parallel lines on the surfaces of
concentric cylinders (Record, 1967). The solvent was



22 Biophysical Journal

treated as a uniform dielectric medium. Bailey (1973) per-
formed a similar calculation of the potential on the inside of
DNA, accounting for the surrounding solvent in the Debye-
Huckel approximation, but including only the phosphate
charges.

Here we extend the all-atom analytical method to account
for the surrounding counterions through the Debye-Huckel
approximation, where the use of the linearized equation
maintains the validity of the superposition principle. In
addition, the present work also applies the theory to various
conformations and sequences. Furthermore, we report a
computational method for visualizing the analytical expres-
sions for the electrostatic potential, based on color-coded
cylinders in three dimensions, coaxial with a rendering of
DNA.

THEORY

The general approach can be introduced by first considering
just the phosphate charges associated with a single DNA
strand (Hochberg et al., 1994). These charges lie along a
single helix contained on a cylindrical surface centered
about the longitudinal axis of an infinite, straight DNA
molecule. It is advantageous to recast the geometry of this
helix of discrete charges to account for the atoms by view-
ing them as a set of parallel lines, each containing charges
separated by the helix pitch.

The potential due to each line of discrete charges can be
readily calculated by summing the potentials of the series of
point charges on the line; this is the merit of the alternative
geometry. The potential due to all of the lines of discrete
charges can then be summed, giving the potential due to the
phosphates of a single strand of DNA. A similar process
accounts for the phosphate charges of the complementary
strand, where the symmetries of DNA simplify the forms of
the resulting analytical expressions. This approach was then
generalized for an all-atom model (Edwards et al., 1994),
because the atoms of the sugars and bases can also be
treated as described above.

In this paper we treat the solvent in a more sophisticated
manner, replacing the uniform external dielectric layer with
the Debye-Huckel formalism. The model of DNA in a 10
mM NaCl solution is depicted in Fig. 1 and consists of three
cylindrically concentric regions. The radius of the inner
cylinder, a;, varies with the atom of interest, and its surface
contains the line of charge associated with that atom. Re-
gion II extends from the surface of the inner cylinder to the
surface of DNA at p = b. The outer region contains the
condensed counterions; it has been proposed that the con-
centration in this region will vary with conformation (Man-
ning, 1978; Klement et al., 1991). To determine the poten-
tial of a point charge, Poisson’s equation,
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FIGURE 1 Geometry of the DNA-solvent system. The outer cylindrical
surface represents the DNA surface, which lies just beyond phosphate
groups. The inner cylindrical surface contains a helix of one type of interior
atom, e.g., C,’ of the sugar group. The heavy line indicates one line of
discrete charges. P indicates the helix pitch. Regions I and II have the same
dielectric properties in this model. Region III corresponds to the condensed
layer of counterions and is treated with the Debye-Huckel model.

is solved in regions I and II (see Fig. 1), where €, = 2 is the
dielectric constant of these two regions and p; accounts for
the fixed discrete charges. The Debye-Huckel equation has
the conveniently simple form

(V2 =X = —4mpile; €))

and is solved in region III, where p; is again the fixed charge
density. x~!, the Debye length, is determined by e, the
dielectric constant of the region outside DNA, and the
counterion concentration calculated from the predictions of
condensation theory (Manning, 1978). More specifically,
we have modeled the solvent to account for partial dielectric
saturation of water (Stogryn, 1971), recognizing that con-
densation increases the counterion concentration; the result-
ing potentials vanish at ~20 A as expected. The parameters
for the model calculations are listed in Table 1. Using the
Green-function formalism (Jackson, 1975) and expanding
in cylindrical coordinates (Hochberg et al., 1994), for a

TABLE 1 Model parameters for the solvent

Conformation B B’ A Z
Counterion concentration (M) 1.2 1.32 2.59 0.95
Dielectric constant 59.2 57.7 44.2 62.5
Debye length (A) 2.4 2.3 1.4 2.8
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single charge at (p’, ¢, z’), Eq. 1 becomes
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and Eq. 2 becomes
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where the primed coordinates are those of the fixed charges
and the prime on the sum over m indicates division of the
zero (m = 0) term by 2 to avoid overcounting. We have
taken the coordinates for the atoms from x-ray studies
(Arnott and Hukins, 1972; Wang et al., 1981; Chandraseka-
ran et al., 1989; Chandrasekaran and Radha, 1992).
The solutions to Eq. 3 will be of the form
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where g, is a function of the modified Bessel functions
K..(kp) and I (kp). The solutions of Eq. 4 will be of the
form

G(x, x")
©
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where gPH is still a function of the modified Bessel func-
tions, but the arguments of the Bessel functions will now be
pyk?*+ x? as discussed by Soumpasis (1978). In the limit
that y — 0, the solutions of the Debye-Huckel equation
reduce to those found by Edwards et al. (1994). Because the
fixed charges here are the DNA charges, which are treated
as point charges, the Green functions will be equivalent to
the potentials. Using trigonometric addition formulas and
extracting all of the constant terms, the general solutions for
the point charge potential in the three regions are

b= > J I, (kp)(Ay, x cos me + B, sin me)
®=0 o o)

* (Qmx Sin kz + B i cos kz) dk
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The usual boundary conditions on the electric field will
exist at each of the two boundaries: the perpendicular com-
ponents of the dielectric displacement will be discontinuous
by the amount of the surface charge and the parallel com-
ponents of the electric field will be continuous. These
boundary conditions can be written as

P, ady,
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where the charges of DNA on the inner surface, ¢, will be
represented by delta functions that can also be expanded in
the same basis set as the Green function.

The constants of Eqs. 7-9 are determined by matching the
boundary conditions of Eq. 10 such that the potentials due
to a single charge of DNA become

CDI = 2 f % m(kp)[rm,klm(kai) + Km(kal)]
w=0J, T (11)
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where g; is the charge of the atom under consideration, the
values for which are taken from Pearlman and Kim (1990),
and

T'm,k

_ &8+ XKu(kb)Kn(b \JE + ) — ekKn(kB)K (b \JE + XO)
Gk (kD)Kn(b I + XD — &I + XL (kD)K5(b \JE + )

(14)

The primes on the Bessel functions indicate differentiation
with respect to their arguments.

The m = 0 and k = 0 terms must be pulled out and treated
individually because of the special forms of zero-order
Bessel functions and Bessel functions of argument zero
(Abramowitz and Stegun, 1970). The z position of the nth
charge of type i on the sth line is z' = z; + nP + sAz, where
P is the pitch of the helix, Az is the rise per base pair, and
z; is the coordinate of the first atom above the z = 0 plane
on the s = 0 line. Summing the charges on a line will then
create a sum over n. If N is the number of bases per turn,
then there are s = N strands, each located at ¢’ = ¢, +
2ars/N (for a right-handed helix), where ¢; is the ¢ coordi-
nate of the first charge of type i on the s = 0 line. Summing
the lines on the cylindrical surface will then create a sum
over s.

Several identities derived from the Poisson summation
formula (Lighthill, 1970) will simplify the equations con-
taining the »n and s sums by introducing delta functions into
the integrals:
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where —o < £ < o, After some tedious but straightforward
algebra, the potential due to an entire right-handed single

Volume 73 July 1997

helix on the outside of the helix, which is the region of
interest to us, can be written as

2
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For a left-handed helix, the me terms that appear in the
cosines of the last two terms of the potential will change
sign. The first term of Eq. 16, corresponding to the m = 0,
k = 0 case, is equivalent to the potential of a uniformly
charged cylinder using the Debye-Huckel approximation
(Hill, 1955). The higher order terms will contribute helical
structure to the potential.

RESULTS

The potentials were calculated and rendered using the pro-
gram BlueGenes, described in the Appendix. A copy of the
BlueGenes software is available upon request from the



Wagner et al.

Vanderbilt Department of Physics and Astronomy WWW
site http://comped].cas.vanderbilt.edu/.

Fig. 2 a shows the potential around B-DNA polyd(AT)-
polyd(AT) based on Eq. 16. For comparison, Fig. 2 b also
shows the potential around B-DNA polyd(AT)-polyd(AT),
but calculated from the equations of Edwards et al. (1994),
which treat the solvent as a uniform dielectric medium. The
introduction of the Debye-Huckel approximation screens
the charges of the DNA, leading to enhanced contrast, and
as expected, the potential is smaller when the Debye-Huckel
approximation is used.

Fig. 3 shows the potentials due to just the bases of
B-DNA  polyd(AT)-polyd(AT), B’-DNA  polyd(A)-
polyd(T) (Chandrasekaran and Radha, 1992), A-DNA
polyd(G)-polyd(C), and Z-DNA polyd(GC)-polyd(GC).
The potential shells are 1 A from the atom of the helix with
the largest radial coordinate. All of the base potentials show
regions of positive and negative potential, reflecting the
spatial arrangements of the partial charges within the bases.

i -309 -212
| -207 -142
-105 -72.8
-3.17 (b) -3.17

FIGURE 2 (a) The potentials around B-DNA polyd(AT)-polyd(AT),
found by using a uniform dielectric layer approximation (Edwards et al.,
1994). (b) The potentials found from Eq. 16 around B-DNA polyd(AT)-
polyd(AT). The shells are located at 11.2 A, 13.2 A, and 15.2 A, or
equivalently, 1 A, 3 A, and 5 A from the charge having the largest radial
coordinate. The scales give the potentials in millivolts. The scale in a has
been renormalized because the potential around an infinite unshielded line
charge will tend to infinity as p approaches infinity.
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The negative (orange) regions of the B’-DNA polyd(A)-
polyd(T) lie toward the adenine side of the minor groove,
and the positive (purple) regions are toward the thymine
side of the major groove. The bases of this conformation
contain no noticeable structure along the grooves. In the
B-DNA polyd(AT)-polyd(AT) helix the negative regions
are also in the minor groove, and the positive regions,
because of the methyl group of the thymine, are on the outer
edge of the major groove. The minor groove of the A-DNA
contains the negative regions, where the more negative side
corresponds to the cytosine strand. The potential due to the
bases of Z-DNA is the strongest and shows the most struc-
ture, because the bases of this conformation lie very close to
the surface of the molecule. The positive features are chiefly
due to the C8 atom of the guanine, and the alternating
regions of negative structure are due mostly to the N1 atoms
of the cytosine.

Fig. 4 shows the potentials due to all of the atoms of the
double helix for the same conformations and sequences for
which the base potentials were shown. Once again, the
shells are located 1 A from the helix charge with the largest
radial coordinate. It is obvious from comparing Fig. 4 to
Fig. 3 that the bases are a small contributor to the overall
double-helix potential. The large negative regions corre-
spond to the phosphate groups and accurately reflect the
groove sizes.

Neither the B-DNA polyd(AT)-polyd(AT) nor the B’-
DNA polyd(A)-polyd(T) helix has regions of positive po-
tential. The contribution of the bases’ potentials to both of
these helices increases the magnitude of the negative poten-
tial in the minor groove. For the potential plot of B'-DNA
polyd(A)-polyd(T) double helix, the more negative of the
two phosphate strands corresponds to the thymine strand,
which has larger radial coordinates than the phosphate
strand attached to the adenines.

The positive (purple) regions that appear on the plot of
the A-DNA potential come from the sugar groups, which
are displaced in the z direction from the phosphates, as can
be determined by examining a plot of the potential due only
to the bases and phosphates (data not shown), where this
structure no longer exists. The minor groove of the A-DNA
is made more negative by the presence of the bases, whereas
the region of the major groove is made slightly more positive.

Only every other phosphate of the Z-DNA is easily seen,
because alternating phosphates are recessed in the p direc-
tion. The positive regions in the potential of the Z-DNA
double helix are due to both the sugars and the bases. By
comparing the potential of the backbone to that of the
double helix, it can be seen that the Z-DNA bases make the
potential in the areas around the phosphates more negative
and the potential in the minor groove more positive.

In all cases the phosphate groups are the strongest con-
tributors to the double-helix potentials. Because the phos-
phate groups carry the largest charge and are closest to the
surface of the molecule, the potential due to these groups
will initially fall off faster with p (starting from the mole-
cule’s surface) than the potentials due to the bases or sugars.
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FIGURE 3 The potentials due to the bases of (a) B-DNA polyd(AT)-polyd(AT) at 11.2 A; (b) B'-DNA polyd(A)-polyd(T) at 11.9 A; (¢) A-DNA
polyd(G)-polyd(C) at 11.6 A; and (d) Z-DNA polyd(GC)polyd(GC) at 9.8 A. The distances correspond to 1 A from the charge having the largest radial
coordinate in the given helix. The numbers on the scale are given in millivolts.

Farther from the DNA, where the decay and strength of the
phosphate potentials are less dramatic, the potentials of the
charges in the bases or sugars can contribute a larger per-
centage to the overall double helix potential relative to their
contribution closer to the double helix, where their poten-
tials were still overshadowed by the phosphates. When the
potentials are viewed farther from the helices (at ~17 A
from the helix center), the same general structure still exists
but is much weaker (where the difference between the
maximum and minimum potentials is only several milli-
volts) and more diffuse, and there are no longer positive
regions in the double-helix potentials, supporting the idea
that far from the helix the model of a uniformly charged
cylinder can adequately describe the system. However, as
stated before, the bases and sugars contribute slightly more
to the overall potential at greater distances.

Equipotential surfaces around B-DNA polyd(AT)-poly-
d(AT) are shown in Fig. 5. The inner surface is located at 1
kT and the outer surface at 0.1 k7. The flat red regions are
areas where the potential is either positive or, at the helix
surface, already less than the potential of the equipotential
surface.

These results should be compared with those of previous
model calculations. The linearization resulting from the

Debye-Huckel approximation is not strictly justifiable for a
highly charged polyion such as DNA. Stigter (1975) has
tabulated correction factors to compensate for the nonlinear
contribution, which is a smooth function of distance for a
uniformly charged cylinder. Relative to the Poisson-Boltz-
mann model, the Debye-Huckel approximation underesti-
mates the effect of screening and yields results that are too
negative (Hecht et al., 1995). Furthermore, the Poisson-
Boltzmann results are also too negative. This has been
attributed to neglect of ion-ion core repulsions and ionic
correlations (Klement et al., 1991) and to screening effects
by the ion atmosphere (Hecht et al., 1995), which is claimed
to be consistent with previous Monte Carlo calculations.
These observations indicate that the results presented here
are too strongly negative and underestimate contrast in the
electrostatic potential. Nonetheless, from Fig. 5 it can be
seen that our model predicts potentials 14 A from the minor
groove of B-DNA to be around —1 kT, apparently in better
agreement with experiment (Shin and Hubbell, 1992; Hecht
et al.,, 1995) than other Debye-Huckel calculations in 10
mM salt. Furthermore, Jayaram et al. (1989) examined the
potential on the surfaces of B-DNA polyd(A)-polyd(T) and
polyd(G)-polyd(C) using the Poisson-Boltzmann equation,
finding patterns of positive and negative potential within the
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FIGURE 4 The potentials due to the double helices (a) B-DNA polyd(AT)-polyd(AT) at 11.2 A; (b) B'-DNA polyd(A)-polyd(T) at 11.9 A; (c) A-DNA
polyd(G)-polyd(C) at 11.6 A; and (d) Z-DNA polyd(GC)-polyd(GC) at 9.8 A. The units of the scale are millivolts. The colored shells are located an

angstrom from the charge of the helix with the largest radial coordinate.

grooves; there were regions of large negative potential in
the minor grooves of both sequences and on the guanine
side of the major groove of the polyd(G)-polyd(C). Our
calculations for just the bases of polyd(G)-polyd(C) (data
not shown) and polyd(A)-polyd(T) reveal the same patterns
of negative and positive potential, although with less struc-
ture than that seen by Jayaram, because we are farther from
the surface, suggesting that the structure in the potential
near the surface indeed is due to the bases.

This version of a composite cylinder model neglects the
effects of grooves, more specifically the effect on the di-
electric constant in the region corresponding to the grooves.
Computational models have investigated groove effects,
finding a counterintuitive charge reversal effect in the sol-
vent (Montoro and Abascal, 1995). In addition, calculations
by Demaret and Gueron (1993) show that the phosphates of
Z-DNA have fewer condensed ions relative to the phos-
phates of B-DNA, supporting the proposition that phosphate
immersion is a key electrostatic contribution to the B-Z
transition. In our Fig. 4, a and d, the potential surfaces are
2.45 A from the (outer) phosphates: the potentials around
the outer Z phosphates are less than half the magnitude of
the potentials around the B phosphates, indicating that there

will be more condensed ions around the phosphates of the B
conformation. It should also be noted that the Z conforma-
tion is the only structure that shows substantial regions of
positive potential.

Computational models indicate that the local ionic distri-
bution indeed does depend on conformation, sequence, and
salt concentration (Klement et al., 1991). Furthermore, un-
resolved issues regarding the mobility of water in the
grooves adds to the ambiguity for the specific choice of
dielectric constant for DNA systems. To test the sensitivity
of our model to this choice, we have varied the dielectric
constant for DNA. Whereas the qualitative pattern of the
near field is unchanged, increasing the dielectric constant
decreases the magnitude of the potential, with the strongest
effects observed near the phosphate groups, as expected.
More quantitatively, we compared the values 1, 4, 10, and
57.7 (no dielectric boundary) with the nominal value of 2
for the dielectric constant of the region corresponding to
DNA (results not shown). The maximum effect was a 1%
increase or a 2%, 7.6%, or 76% decrease, respectively.
Thus, as found by Pack et al. (1993) and Jayaram et al.
(1989), the inclusion of the dielectric boundary between the
low dielectric region inside the molecule and the high
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FIGURE 5 Equipotential surfaces around B-DNA polyd(AT)-poly-
d(AT). The inner surface is located at 1.0kT and the outer surface is at
0.1kT. The scale bar gives the distance from the helix center in angstroms.
The spatial position of the equipotential surface provides the same infor-
mation as the colors.

dielectric region outside increases the magnitude of the
calculated potential.

CONCLUDING REMARKS

The analytical model presented here makes it possible to
view the potentials and counterion concentrations around
various conformations and sequences of DNA in a clear and
rapid manner. The use of the Debye-Huckel approximation
is an improvement in the treatment of the solvent over the
earlier calculations of Edwards et al. (1994). However, the
treatment of the counterions through the Debye-Huckel
approximation must be viewed as suspect close to DNA,
where the electrostatic energy can be larger than the thermal
energy. In the future we intend to recalculate the potentials
using the full Poisson-Boltzmann equation (Garrett and
Poladian, 1988). In addition, this version of a composite
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cylinder model ignores the effects of grooves and will not
account for any focusing effects due to solvent penetration.

The conformation dependencies of the electric potentials
around DNA are apparent in the plots of potential and
equipotentials; notably through the potentials of the phos-
phates. The spatial arrangements of the partial charges of
the bases produce sequence-dependent structure in the
double-helix potential, as has been seen in other all-atom
calculations of the potentials (Jayaram et al., 1989). How-
ever, these effects are often overshadowed in the double-
helix potential by the significantly larger effects due to the
phosphates. Farther from the helix, the magnitude of the
potentials is much less, but the bases contribute proportion-
ally more to the double-helix potential. These sequence-
dependent affects are more obvious in the A and Z helices,
where the bases lie closer to the surface of the molecule.
These observations demonstrate the importance of the struc-
ture of the electric potential near the DNA surface.

APPENDIX

Recently an analytic model for the electrostatics of dissolved polynucle-
otides has been developed in which the DNA molecule is accounted for
with an all-atom model and the surrounding solvent is treated as a contin-
uum (Hochberg et al., 1994; Edwards et al., 1994). Initially the model was
implemented in Mathematica and was subject to certain computational
limitations. In particular, the calculation was slow, and the resulting graphs
were not ideally informative. This appendix summarizes our efforts to
upgrade the calculation engine, reducing the calculation time by several
orders of magnitude to just minutes on a desktop computer. In addition, a
visualization method has been developed to display these complex data sets
in an easily understandable fashion, allowing direct comparison of confor-
mations, sequences, various models of the solvent, etc. (Keyes, 1996). The
current implementation of this visualization method accommodates any
linear, periodic molecule with helical symmetry and is not model depen-
dent. The method can be generalized to periodic, nonhelical molecules.

To overcome previous computational limitations, the calculation engine
for the analytic model was reimplemented in C. Polynomial approxima-
tions and appropriate recursion formulas were used for the modified Bessel
functions composing the equations (Press et al., 1995). In addition, sym-
metries in the equations themselves were exploited to avoid recalculation
of functions over the course of evaluating multiple data points. The new
calculation engine scales better than linearly with the number of data
points, until overall loop structure combining intermediate results domi-
nates the running time, at which point linear behavior is approached, as shown
in Fig. 6. The net result was a speedup factor of ~8000 over the original
Mathematica implementation. On a current entry-level Power Macintosh, this
allows the full calculation of the electrostatic potential around DNA at better
than atomic resolution in minutes or less. Because the analytic expressions are
expressed in Fourier space, the spatial resolution is set by the truncation of the
infinite sums present in the analytic solution: we generally work with finite
sums corresponding to a resolution of 0.1 A

With such an excess of calculable data points, a more intuitive visual-
ization method was both possible and necessary. Because of the symme-
tries in the analytic expressions, it was computationally advantageous to
calculate data points on a regular lattice in cylindrical coordinates; this
greatly influenced the resulting visualization method. An intuitive method
for presenting electrostatic models of dissolved molecules can be based on
renderings of the potential on cylindrical surfaces: data points evaluated on
a regular grid at a constant distance from the symmetry axis of the
molecule. To provide spatial cues, the surface is presented in 3D space,
coaxial with a rendering of the molecule. The placement of the surface
provides an in-scale indication of the distance at which the data points were
evaluated. However, this approach reduces the number of dimensions
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FIGURE 6 Timing trials for the BlueGenes computer program as im-
plemented on a 80 MHz PowerMacintosh 6100. Average time required to
calculate the potential at a given point in space for B-DNA. The calculation
engine becomes more efficient with increasing number of data points n,
limiting to a computation time of 0.057 s/data point when the loop structure
saturates performance.

available to encode the actual data; consequently, color-coding the inten-
sity of the potential was adopted.

The result is the visualization presented in Figs. 2-5 and 7: a cylindrical
surface placed in space around a rendering of the molecule, color-coded
with the electrostatic potential at that particular point. This method has
several key advantages. It allows an immediate and intuitive matching of
molecular structure to features in the electrostatic potential; for example,
the influence of the highly charged phosphate groups is readily apparent.
Because of the periodic grid of data points, the method is fast to calculate,
and because of the simplicity of the 3D shapes used (flat-shaded spheres
and texture-mapped cylinders), it is fast to render. The method is relatively
simple, and thus is easy to implement for other models of the potential, on
any platform in which basic 3D visualization tools are available.

Because the same points in space can be evaluated from run to run, data
sets can be directly compared and subtracted, unlike the data from an
equipotential surface. For example, the contribution from the ribose groups
is clear from inspection of Fig. 7. The use of multiple cylindrical surfaces
at different radii effectively portrays the falloff of electrostatic features
with distance.

This visualization method has some limitations. The use of color-coding
to represent data is necessarily less accurate than more traditional graphs,
because of inherent inaccuracies in the reproduction of color by modern
devices. The method may be less intuitive than an equipotential plot, but
the use of color rather than shape to represent data gives finer levels of
detail. A possible extension to the method for black-and-white format
utilizing a contour plot of the potential mapped onto the cylindrical surface
may mitigate the dependence on color without losing spatially intuitive
features.

This visualization method, known locally by the program’s name,
BlueGenes, is model and platform independent, is quick to implement and
render, and is visually intuitive. Although other electrostatic models may
require the power of a workstation or even a supercomputer, implementing
BlueGenes requires only a desktop computer, with all of the advantages of
rapid feedback, and including the potential for animation. A copy of the
BlueGenes software is available upon request from the Vanderbilt Depart-
ment of Physics and Astronomy WWW site http://comped].cas.
vanderbilt.edu/.
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FIGURE 7 Potentials at 11.5 and 13.5 A due to (a) all atoms of
polyd(G)-polyd(C) A-DNA and (b) the contribution from the ribose groups
only. The solvent is 10 mM NaCl. The units are millivolts.
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