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The Renewal of the Epidermis: A Topological Mechanism

B. Dubertret and N. Rivier
Laboratoire de Dynamique des Fluides Complexes, Université Louis Pasteur, Strasbourg 67084, France

ABSTRACT Using a topological approach, we study the dynamics of the basement membrane of the mammalian epidermis
when basal cells detach or divide. A theoretical characterization of the steady state of the tissue, in very good agreement with
experimental data, includes for the first time the division and the disappearance of cells in a two-dimensional random cellular
structure. We predict a strong correlation between the size of the attachment of basal cells to the basement membrane and
their biological behavior (division or detachment). This suggests that the main factor determining the fate of basal cells, and

thus controlling the renewal of the epidermis, is the cells’ surface tension and adhesion.

INTRODUCTION

Many natural or engineered materials are disordered space-
filling cellular structures. Common examples are bone tis-
sues, plant stem, cork, food (bread, meringue, etc.), or
polyurethane foams. Their simple topology and mechanical
properties (obtainable from dimensional analysis; Gibson
and Ashby, 1988) make them useful models in scientific
fields as various as biology (epidermal tissues; Lewis, 1928;
Rivier et al., 1995), metallurgy (polycrystals; Aboav, 1970),
fluid interfaces (soap froth; Weaire and Phelan, 1994; Gla-
zier and Weaire, 1992), and geography (administrative di-
visions; Pignol et al., 1993). The structural similarities be-
tween these different systems (despite the different forces
involved) suggest that their topology may play a central role
in their evolution.

During the last 10 years, many experimental, numerical,
and theoretical studies have been made of the structural
properties of cellular systems. Because of the complexity of
three-dimensional structures, most of the work concerns
two-dimensional (2D) systems (Rivier, 1994; Telley, 1989;
Lemaitre et al., 1993).

The fact that tissue geometry and evolution can be de-
scribed by simple physical or mathematical (filling space at
random) models was recognized early on by Hales (1727),
Errera (1886), Matzke (1950), Lewis (1928), and others
(Dormer, 1980; Smoljaninov, 1980). So far, despite some
interesting results (Rivier et al., 1995), the limitation to two
dimensions did not allow a realistic description of the dy-
namics of biological tissues.

Our purpose in this paper is to take advantage of the
layered structure of the epidermis of mammals to charac-
terize its steady state and to model its renewal solely by
topological means. The theory—which includes the detach-
ment and mitosis of basal cells—predicts a strong correla-
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tion between the size of the attachment of basal cells to the
basement membrane (an extracellular matrix rich in laminin
and collagen isoforms) and their biological fate (division or
detachment). The very small number of hypotheses and the
topological description of the system imply that the results
obtained are necessary conditions for the tissue to remain in
steady state.

TOPOLOGICAL REPRESENTATION OF
BIOLOGICAL TISSUES

To a first geometrical approximation, the epidermis of
mammals can be regarded as a fluid of cells, filling at
random the space between the dermis and the outer surface.
Cells transit through the Malphigi layer from the one-cell-
deep basal layer, where they are born (through mitosis), to
the corneum layer, where they die (Montagna and Parakkal,
1974) (Fig. 1). The constant supply of cells needed for the
renewal of the tissue is provided by the basal layer through
the division and the detachment of its cells (the basal cells).
They are the only cells of the epidermis that can divide.
Modeling the dynamics of the renewal of the epidermis is
thus tantamount to modeling the evolution and the dynamics
of the basal layer.

The basal layer completely covers the dermis. Structur-
ally, it consists of three-dimensional cells joined together
without gaps. The space occupied by a leaving cell is
automatically filled by its neighbors (T2 process of Fig. 4).
Flat when the rate of division is low (epidermis of the chest
or the ear), the basal layer becomes more corrugated as the
rate of division increases (e.g., the skin of the palm of the
hand). Because it is difficult to model the behavior of 3D
cells (even when they all lie on a plane), we focus on the
two-dimensional membrane that separates the dermis and
the basal layer: the basement membrane.

Each basal cell is attached to the basement membrane
through a polygonal facet (pentagon, hexagon, heptagon,
etc.). If one assumes that the basement membrane is flat, the
arrangement of the cells on the basement membrane looks
like a jigsaw puzzle with polygonal pieces. Because no free
space is left, this puzzle of simple geometrical elements fills
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FIGURE 1 Vertical schematic cut of human epidermis (after Montagna
and Parakkal, 1974).

the two-dimensional basal layer completely and, at first
sight, randomly (Fig. 2).

The link with physics is now more apparent: each cell’s
attachment can be compared to a topological cell, and the
imprint of basal cells on the basement membrane to a
two-dimensional topological foam (Fig. 3). Only the num-
ber of sides s of a polygon is relevant, not its specific shape
or size.

Because both mitosis and detachment affect the attach-
ment of basal cells, it is possible to reproduce the dynamics
of the basal layer with the topological foam introduced
above. When a basal cell leaves the basal layer, its attach-
ment to the basement membrane disappears (the topological
polygon representing this attachment disappears). The to-
pological foam loses one cell and six interfaces. When a
basal cell divides, its attachment also divides into two
daughter cells (only vertical division is relevant; Dover and

FIGURE 2 Horizontal cut of the basal layer of a stained sample of
human epidermis, viewed with an optical microscope. The polygonal shape
of the attachment of basal cells appears clearly in the focal plane. By
changing the focal plane slightly and moving the sample around, we were
able to obtain the frequency of the numbers of sides of the bottom of basal
cells. The statistics are from 500 cells. The mean number of sides per cell
is 5.99, in agreement with Euler’s relation. The frequencies of s-sided cells
are: 0.012 (s = 4); 0.208 (s = 5); 0.566 (s = 6); 0.194 (s = 7); 0.020
(s = 8).
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FIGURE 3 Schematic view of a cut of the epithelium of the cucumber
(after Lewis, 1928). It is a typical example of a two-dimensional topolog-
ical foam.

Wright, 1991). The two-dimensional cell representing this
attachment also divides. It thus appears that the steady state
of the basal layer (and hence the renewal of the epidermis)
can be studied through the evolution of a two-dimensional
topological foam that symbolizes a schematic but realistic
view of the imprint of the attachment of basal cells on the
basal layer (Figs. 2 and 3).

STATISTICS OF 2D TOPOLOGICAL FOAMS

A topological foam (an example of which is shown Fig. 3)
may be characterized statistically at different levels of so-
phistication. The simplest characterization—and the one
most often used—is the frequency (or probability distribu-
tion) p, of the number of sides s of the cells. Such a
topological approach focuses on elementary, relevant fea-
tures of the system. It gives geometrical information on the
various ways the plane may be broken into jointed polygons
(with the only rule that three polygons meet at every vertex).
In our case, it also gives some information on the dynamic
processes that drive the system during its evolution (here
mitosis and detachment).

The set of all possible arrangements of the topological
polygons is explored through local topological transforma-
tions of the cellular structure: disappearance and fragmen-
tation of topological cells. These elementary topological
transformations play the role of the collisions between the
gas molecules. They shuffle the local, random variable s,
and are responsible for the randomness and the steady state
of the foam.

CHARACTERIZATION OF THE STEADY STATE OF
THE BASEMENT MEMBRANE

The stage is now set for the calculation of the stationary
distribution p,. This can be done by using rate equations,
which allow a local approach of the variation of cells’
population. Used with success to model the equilibrium
state of the cucumber’s epithelium (Rivier et al., 1995), it
gives (as we will see) a realistic description of the dynamics
of the epidermis. :
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Four hypotheses are necessary:

1. The basal layer is flat (and so is the basement mem-
brane).

2. No neighbors of a detaching (or dividing) cell divide or
detach until detachment (or division) is over. This hypoth-
esis enables us to study locally the influence of the dynam-
ics of a cell on its neighbors.

3. The tissue is in statistical equilibrium (dp/dt = 0).

4. The horizontal pressure on the basal layer is isotropic
(we need this to be able to calculate the way the neighbor-
hood of a detaching cell is affected).

The prints of basal cells constitute a foam with N, s-sided
.cells. The probability of finding a cell with an s-sided
attachment is p;, = NJ/N, where N = Z.N; is the total
number of foam cells. The system is assumed to be in
statistical equilibrium; thus,

S VR
=4 ~NMa Par @

Rate equation due to mitosis

When a cell divides, the population of s-sided cells is
affected if 1) an s-sided cell divides, 2) a dividing k-cell has
an s-sided daughter, 3) a neighboring s-sided cell is affected
by the division, or 4) the affected neighbor had (s — 1) sides
before division.

The distribution of the number of sides of the topological
cells is a function of P, (k) (conditional probability that an
existing k-sided cell divides), the break-up kernel I'(k—s)
(conditional probability that a k-sided dividing cell has an
s-sided daughter), and the rate of cell division D,,(k) (num-
ber of mitosis of k-sided cells per unit of time). Altogether,
Eq. 1 reads:

0= > pPr(k)Dy(k)
N )

[—8ks + T(k —s) + /)M, (k) — M(k) - p,]

where the first four terms in the brackets correspond, re-
spectively, to the topological mechanisms 1) through 4)
described above. M((k) is the mean number of k-sided cells
neighboring an s-sided cell. The last term expresses the
production of one extra cell during mitosis.

Rate equation due to the departure of basal cells

Apart from cell division, there is another topological pro-
cess that allows the tissue to reach statistical equilibrium or
to respond to local demand in cells: the departure from the
basal layer (Fig. 4). When an s-sided cell leaves the basal
layer, its attachment disappears and the attachment of its
neighbors on the basement membrane may be topologically
affected by losing or gaining sides. When a three-sided cell
disappears, each neighbor loses one side; when a four-sided
cell leaves, two of its neighbors lose one side, two are left
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FIGURE 4 (A) Elementary topological transformations T1 (exchange of
neighbors) and T2 (disappearance of a three-sided cell), along with the
modification of the neighbor’s sidedness, and division of a topological cell.
Note that during the process, one m-sided cell is lost, two cells are gained,
and two neighbors gain one side. (B) Topological scars left after the
departure of a four-, five-, and six-sided cell, respectively. Note that the
sum of the number of sides given (or taken) to the neighbors of an n-sided
leaving cell is equal to 6 — n. Disappearance of a cell is tantamount to the
local disappearance of six sides; the global topological flatness of the tissue
is conserved.

unchanged; etc. (Fig. 4). On the whole, the departing cell
takes exactly six sides with it, ensuring the global flatness of
the tissue. The number of sides redistributed to its neigh-
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borhood is n — 6, a term proportional to the topological
curvature of the leaving cell. One can understand this phe-
nomenon as a local conservation of the topological curva-
ture of the foam.

The detachment can be modeled on the topological foam
through a cascade of two elementary topological process
(see Fig. 4): the exchange of neighbors (T1 process) and the
disappearance of a three-sided cell (T2 process). Actually,
these two elementary transformations can be obtained from
Alexander moves (Alexander, 1930) and may easily be
generalized to higher dimensions. To model this cascade of
topological processes, we choose a mean-field approach.
We suppose that the pressure surrounding a departing cell is
isotropic. Thus, during detachment, the sides of the polygon
will move parallel to themselves and the smallest one will
disappear first. This hypothesis enables us to compute an-
alytically the conditional probability a;(k) that a k-sided
detaching cell gives i sides (—1 = i = k — 3) to one of its
neighbors:

ay(k) = [(k — 3)a_,(k — 1) + 1Jk,
fork>4

ak) = [(k — 3a(k — 1) + 2a;_,(k — Dk,
fork>i+5 (3

The initial condition is a_;(3) = 1. Three-sided cells
always take one side from each of their neighbors when
going through a T2 process.

Incidentally, the problem of redistributing the sides of a
disappearing topological cell was first analytically tackled
by Le Caér (1991a,b). We preferred the mean field approx-
imation because it is biologically realistic.

When a topological cell disappears, it leaves a “topolog-
ical scar” (Fig. 4), which is actually a rearrangement of the
neighborhood. Following the same reasoning as in the pre-
ceding paragraph, during the process of detachment, the
population of s-sided cells is affected if 1) an s-sided cell
detaches, 2) an s-sided neighbor of a detaching cell gains or
looses sides, 3) a disappearing k-cell gives i sides to an
(s — i)-sided neighbor, 4) a disappearing k-cell takes one
side from an (s + 1)-sided neighbor.

For detachment, Eq. 1 reads:

0 = 2 piPa(k)Dy(k)[ = 8 — My(k)(1 — ay(k)) )

u

s=3
+ 2 M (Ba(k) + My, (K)a_,(k)+p]

i=1 iv

iii

The distribution of the number of sides of the topological
cells is also a function of P4(k) (conditional probability that
an existing k-sided cell leaves) and the rate of cell departure
Dgy(k) (number of disappearing k-sided cells per unit of
time).
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Rate equation of the prints of basal cells

By adding Egs. 2 and 4, one obtains the system of rate
equations whose solution represents the steady state of the
prints of basal cells upon renewal of the tissue:

0= 2 pPu(KD(K)[— 8 + Tk — ) + (2/k) (M, (k)

- s(k)) —-plt

S P PDR) [~ 8 - MB(1 — k) O
k

s—3

+ 2 Ms—i(k)ai(k) + Ms+1(k)a—l(k) + ps]

i=1

Let us recall the parameters of the system:

1. P (k)D_,(k) and P4(k)D(k): the conditional probabil-
ities that a k-sided cell divides or detaches.

2. I'(k—s), which depicts the way cells divide.

3. M(k), the mean number of k-sided cells neighboring an
s-sided cell. In the next section, we will give an analytical
expression for M (k), based on the principle of maximum
entropy. This expression depends on a single structural
parameter 0.

SOLUTION IN THE CASE OF A FLAT TISSUE
Calculation of M,(k)

We have assumed that the tissue is in statistical equilibrium.
Indeed, the human epidermis is invariant over a lifetime,
whereas each cell divides or detaches every week. For an
experimental verification of statistical equilibrium, see
Lewis (1928).

Statistical equilibrium is a state of maximum entropy. It
is the overall spatial arrangement that can be realized by the
largest number of local configurations of cells and their
neighbors. It is the state of maximum disorder allowed
within a given set of constraints. For topological foams,
there are three constraints:

2p.=1 )
> sp, =6 )
2 Mk) = X Np, =k 8)

The first constraint normalizes the distribution p,. The
second states that the mean number of sides of the cells is
exactly six. This comes from the fact that three edges meet
at one vertex and from the Euler relation: for a cellular
system, the number of cells minus the number of edges plus
the number of vertices is a topological invariant. Equation 8
states that k-sided cells have k neighbors. It features the
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correlator Ny = N, which is six times the probability that,
given a k-sided cell and an s-sided cell, they are neighbors.

N, is inferred by maximum entropy arguments to vary
linearly as a function of s for structures in statistical equi-
librium (Rivier and Lissowski, 1982; Peshkin et al., 1991):
If the last constraint (Eq. 8) is a linear combination of the
first two, it duplicates them, reduces the number of inde-
pendent constraints, and thus increases the entropy.

The duplication yields the equation of state for N,

Ny=(k—6)o(s—6)+s+k—6 &)

o is a structural parameter (Lagrange multiplier) resulting
from the duplication condition. ¢ is in general negative and
found to be approximatively —1/u, in natural structures
(Rivier, 1993). u, = 2 p,(n — (n))? is the second moment
of the distribution p,,.

M (k) can then be written:

Solution

The constrained system (Eq. 5) is a system of algebraic
nonlinear equations. Up to now, to our knowledge, no
efficient methods have been available for solving such
systems. We choose to use the module HYBRD from the
package MINPACK (retrieved from NETLIB). This code
finds a zero of a system of n nonlinear functions in n
variables by a modification of the Powell hybrid method.
It turns out that the range of parameters giving a mathe-
matical solution (1 = p, = 0) for the system of equations in
Eq. § is very restricted. The best physical solution given by
the solver is obtained for D, (k)P (k) = (|5.11 — k|)%,
Dy(k)Py(k) = (Jk — 7.01))%, 0 = —1.3, and a kemel of
division I'(k—s) that is fully symmetrical. This solution
reproduces very well the experimental data shown in Fig. 5.

Methods and discussion

Because of the high number of parameters, we decided to
investigate the possible solutions using a functional form for
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FIGURE 5 Experimental (shaded) and theoretical (black) distributions.
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the families of parameters Pg4(k)Dy(k) and P, (k)D,,(k)
(hereafter referred to as F1(k) and F2(k)). The other param-
eters (o and the kernel of division) are, in a first step, set to
the experimentally known values: o = —1.3 and a fully
symmetrical division kernel. This method, which may ap-
pear arbitrary and restrictive, was applied with great success
to solving the rate equation for mitosis alone (Eq. 2). In
particular, we were able to check very precisely the analyt-
ical results found by Delannay and Le Caér (1994).

We tried several classical functions (exponential, loga-
rithmic, polynomial) for F1(k) and F2(k). The only ones for
which the numerical solver gives acceptable solutions are of
the type Fi(k) = (|la; — k|)", where a; and n; (i € 1, 2) are
four real parameters characterizing Fi(k).

Within this class of acceptable solutions, we then search
for the ones that verify the topological constraints (Eqs. 6
and 7) and the steady-state condition (number of leaving
cells equals the number of dividing cells).

The steady-state condition yields u,, = Z,p Py(k)Dy(k) =
D Prk)D (k) = pgy. This is equivalent to setting dN/ds = 0
in Eq. 1.

The steady-state condition is drastic. To satisfy it, o must
be negative (o = —1/u,), a; must be close to 5.1, a, must
be close to 7.0, and n; must be equal to n,. An increase or
decrease in either a; by less than 2% drives the system
completely out of steady state (setting a, to 5.0 instead of
5.1 gives a ratio m, /4 equal to 2). The evolution of the
system is therefore very sensitive to the parameter g;. To fix
n;, we referred to the experimental distribution. n; = n, =
8 gives the best value for pg, the maximum of the distribu-
tion. Decreasing n; gives flatter distributions; increasing it
drives the system out of steady state. However, this param-
eter is very much less crucial than a;, as shown in Fig. 6 A.

Finally, Fig. 6 B depicts the influence on the steady-state
distribution by the way cells divide. Only a few changes in
the kernel of division are allowed if one wants to satisfy the
steady-state condition. I'(k—s) therefore appears to be an-
other highly sensitive parameter of the system.

THE FATE OF BASAL CELLS

From the theoretical solution, we calculate the model pre-
dictions for the sidedness of the attachment of basal cells
just when they are about to leave or divide. Biologically
speaking, we are looking for a correlation between the
fate of basal cells and the sidedness (i.e., topological size)
of their attachment. P,(s) = pPiD4(s)/ g (or Py(s) =
PsPmD.(s)/ 1) is the probability that a cell about to leave
(or divide) has an s-sided attachment to the basement mem-
brane. These two distributions are plotted in Fig. 7. The
relevant information of the plot is threefold: cells that will
leave have a four- or five-sided attachment (smaller than
average) before they start detaching; cells about to divide
have a seven, eight, or nine-sided attachment (bigger than
average) before they start dividing; six-sided cells neither
divide nor detach. It is interesting to note that these prop-
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a

FIGURE 6 Influence of the variation of the different parameters. The
theoretical (gray columns) and experimental (black columns) distributions
of Fig. 5 are shown for comparison on both figures. (A) White columns,
Distribution obtained for F1(k) = (|5.11 — k|)*, Dy(k)P4(k) = (|k — 7.01))*,
o = —1.3, and kernel of division I'(k—s) fully symmetrical. (B) White
columns, Distribution obtained for Fi(k) = (|5.11 — k|)%, Dy(k)P,(k) =
(k = 7.01)% o = —1.3, and kemnel of division I'(k—>s) not fully
symmetrical.

erties stay valid for all of the parameters we tried. Even
solutions out of steady state give this result.

Although the model is purely topological, its solutions
are the ones expected in 2D foams whose dynamics are
driven by the surface tension of the cells; the results of Fig.
7 are in perfect agreement with von Neumann’s law (von
Neumann, 1952). As pointed out by Rivier (1993), it is
energetically favorable for a topological cell (with surface
tension) of more than six sides to increase its surface,
whereas it is the opposite if it has less than six sides.

The surface tension of basal cells may therefore be an
intrinsic signal sufficient to drive the cells toward division,
detachment, or the resting state. Although this may not be
the only mechanism involved in the process of the tissue
renewal, it is—in the point of view of physicists—sufficient
to explain the steady state of the basal layer.
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FIGURE 7 Gray columns, Distribution of the number of sides of the
cells about to detach. Black columns, Distribution of the number of sides of
the cells about to divide.

CONCLUSIONS

Although the renewal of the epidermis is a complex process
that is not yet fully understood, this work shows that, by
means of elementary topology, and by using the layered
structure of the epidermis, one is able to characterize (at the
crudest level) the steady state of the system.

We model the renewal of the basal layer using the 2D
prints of the cells on the basement membrane. We made the
following hypotheses: 1) the basement membrane is flat and
is in statistical equilibrium, 2) the horizontal pressure on the
basal layer is isotropic, 3) no neighbors of a detaching (or
dividing) cell divide or detach until detachment (or division)
is over. Although the problem features many parameters,
only a few are relevant, and their range is drastically re-
duced by the steady-state constraint.

All solutions imply that the larger the attachment of a
basal cell to the basement membrane, the more likely it is to
divide. Cells with a smaller attachment than average are
likely to detach and ascend in the epidermis. This suggests
that a cell’s surface tension and adhesion (Graner and
Sawada, 1993; Jones et al., 1995) play a paramount role in
the renewal of the epidermis.
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