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A Realistic Model of Biphasic Calcium Transients in Electrically
Nonexcitable Cells
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ABSTRACT In many electrically nonexcitable cells, the release of calcium from internal stores is followed by a much slower
phase in which the intracellular calcium concentration decreases gradually to a sustained value higher than the concentration
before stimulation. This elevated calcium plateau has been shown to be the result of calcium influx. The model presented in
this work describes a system consisting of a cytoplasmic calcium store and a plasma membrane calcium channel, both
excitable by a membrane receptor; a fast cytoplasmic calcium buffer; and calcium pumps in both the calcium store and
cellular membranes. Inherent difficulties in the numerical evaluation of the model, caused by very large calcium fluxes across
the store membrane, were overcome by analytically separating the fast processes of calcium release from the slower
processes of calcium cycling across the plasma membrane. This enabled the simulation of realistic biphasic calcium
transients similar to those observed experimentally. The model predicted 1) a strong correlation between the rate of calcium
cycling across the plasma membrane and the rate of calcium decay; and 2) a dependence on the level of cell excitation of
the maximum rise in cytoplasmic calcium concentration, the level of the elevated calcium plateau, and the rate of calcium
decay. Using the model, we simulated the washout of agonist from the bathing solution and the depletion of the calcium store
by a pharmacological agent (such as thapsigargin) under several experimental conditions.

INTRODUCTION

Many cellular events are triggered by changes in the cyto-
plasmic concentration of calcium ions (Berridge, 1993).
Calcium ions bind to many different cellular proteins, mod-
ifying their activity and consequently affecting the behavior
of the entire cell. Elevation of the cytoplasmic calcium
concentration ([Ca2+]i) is required for the proper function
of the cell, yet, unlike with other second messengers, pro-
longed high [Ca2+]i can lead to cell death. Therefore, a
dynamic integrated system for the regulation of cytoplasmic
calcium concentration at rest and after stimulation has
evolved. The [Ca2+]i at rest (-0.1 ,uM) is four orders of
magnitude lower than the extracellular calcium concentra-
tion (-2000 ,uM). To sustain this enormous gradient, the
cell actively extrudes calcium ions from the cytoplasm into
the extracellular medium. Calcium ions flow down this
concentration gradient through many types of calcium chan-
nels in the plasma membrane (Tsien and Tsien, 1990).
These cations are also removed from the cytoplasm by
sequestration in specialized intracellular storage compart-
ments, where their concentration can reach that found in the
external medium. These storage compartments also contain
channels through which calcium ions enter the cytoplasm
(Pozzan et al., 1994). Thus, during rest, calcium homeosta-
sis in the cytoplasm is maintained by the counteraction of
passive calcium entry into the cytoplasm, with active extru-
sion of calcium ions from the cytoplasm into the store and
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the external solution. Activation of the cell leads to an
increase in the conductance of calcium channels in both the
cellular membrane and the membrane enclosing the calcium
store, causing a rise in [Ca2 ]j. This increase in [Ca2 ]i is
moderated by the action of calcium buffers in the cytoplasm
(Zhou and Neher, 1993; Berlin et al., 1994) and by the
active extrusion of calcium into the calcium store and the
external medium. Because of the highly dynamic nature of
this integrated system, a spectrum of fast, slow, and oscil-
latory cytoplasmic calcium transients has been observed.

In electrically nonexcitable cells such as epithelia, the
predominant second messenger responsible for calcium re-
lease from intracellular stores is inositol 1,4,5-trisphosphate
(1P3) (Berridge, 1993). Binding of an agonist to a membrane
receptor induces the synthesis of this molecule from mem-
brane lipids. This second messenger then induces the release
of calcium from its storage organelles by activating a li-
gand-gated channel located on the organelle surface. After
this initial rise in [Ca2+]j, a much slower phase is observed.
The influx of calcium through the plasma membrane has
been observed to increase over prolonged periods of time
(Rasmussen and Rasmussen, 1990). The cellular mecha-
nisms regulating this calcium influx vary between cell
types. The influx may be induced by activation of a recep-
tor-operated calcium channel (Benham and Tsien, 1987), a
second messenger-regulated calcium channel (Luckhoff and
Clapham, 1992), or a second messenger generated by the
depletion of the calcium stores (Putney, 1990; Ran-
driamampita and Tsien, 1993). It has been suggested that
the increased calcium concentration in the vicinity of the
plasma membrane is due to an increased influx of calcium
while the remainder of the cytoplasm remains at a lower
calcium concentration (Rasmussen and Rasmussen, 1990;
Alkone and Rasmussen, 1988).
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The physiological significance of this prolonged calcium
influx is great. The cell utilizes this mechanism to retain a
high level of activation without maintaining harmfully high
cytoplasmic calcium concentrations. We have observed, in
ciliary cells from rabbit tracheal epithelium stimulated by
purinergic agonists, that the transient rise in the cytoplasmic
calcium concentration decays to a stable [Ca2+]i level
higher than the level before stimulation. The physiological
response of these cells, an increase in ciliary beat frequency
after stimulation, remains high for the duration of the stim-
ulus (Korngreen and Priel, 1994, 1996). The level of the
elevated calcium plateau and the rate of [Ca2+]i decay to
that elevated level are sensitive to the concentration of the
purinergic agonist. Moreover, reducing the flux of calcium
into the cell from the extracellular medium by lowering the
extracellular calcium concentration (Korngreen and Priel,
1996) or by calcium channel blockers (Korngreen and Priel,
1993) abolishes the elevated calcium plateau. Elevated
[Ca2+]i plateaus have also been observed in ciliary cells
from frog palate (Tarasiuk et al., 1995; Alfahel et al., 1996;
Levin et al., 1997) and human nasal epithelia (Korngreen
and Priel, 1993). Prolonged cellular activation, induced by
calcium influx, has also been observed for aldosterone and
insulin secretion (Rasmussen and Rasmussen, 1990).

Elevated calcium plateaus may contain information on
the duration and magnitude of the calcium influx responsi-
ble for the prolonged activation of the cell. The retrieval of
this information is not trivial, because, in most cases, the
calcium concentration is measured as an average over the
whole cell. Although a great deal of theoretical work has
been done describing cytoplasmic calcium oscillations, only
very recently have nonoscillating calcium transients in elec-
trically nonexcitable cells been investigated (Wiesner et al.,
1996). Hence we set out to model mathematically the bi-
phasic calcium transients to construct a tool that might help
in the analysis of the biphasic calcium transients observed in
ciliary cells. A model consisting of simplified basic ele-
ments of the cellular calcium signaling mechanism is pro-
posed. Following an analytical treatment of the model, we
were able to produce computer simulations of biphasic
calcium transients similar to those observed in ciliary cells.

THE MODEL

When the intracellular calcium concentration is measured
from a single cell by a photomultiplier or from a population
of cells by a spectrofluorimeter, the [Ca2+]i measured is an
average value. Under these conditions, areas of high cal-
cium concentration in the cytoplasm (caused by either cal-
cium discharge from intracellular stores or calcium influx
from the external solution) are summed together with areas
of low calcium concentration, yielding a distorted view of
the system. An accurate description of this system really
requires both spatial and temporal variables. However, the
calcium signaling system is highly complex, consisting of
many functional units expressed by different cells. To de-

scribe such a system accurately in electrically nonexcitable
cells would require a prohibitive number of equations and
parameters, which would make it almost impossible to
analyze the system. Instead, we have chosen to create a
simple, spatially uniform model incorporating the changes
in the average [Ca2+]i, using the minimum number of
calcium signaling system functional units needed to do so.
This simple model, which can be successfully analyzed
quantitatively, provides a solid cornerstone upon which to
build more complex models.
As already mentioned, the processes involved in biphasic

calcium transients are the release of calcium from intracel-
lular calcium stores and a subsequent prolonged calcium
influx across the plasma membrane. Therefore, our model
contains 1) a plasma membrane with a calcium channel, and
2) an intracellular calcium store bounded by a membrane
containing a calcium channel. These calcium channels per-
mit free passage of calcium ions dependent only on the
gradient of calcium across the membrane they are incorpo-
rated into. Hence the rate constants of calcium efflux and
influx through the store channel can be set equal to each
other (k, = k_1, in Fig. 1). We have modeled the channel as
a simple pore because we want as general a picture of
biphasic calcium transients as possible. Such a simplifica-
tion of the release mechanism from the calcium has been
successfully applied in recent modeling of calcium oscilla-
tions in neurons (Friel, 1995). In addition to this simple
pore, the calcium store membrane also contains a pump
responsible for the calcium uptake from the cytoplasmic

1(12 t-t

FIGURE 1 Schematic description of the dynamic model. Chemical equi-
libria are designated by solid arrows with appropriate rate constants written
alongside. Variables are identified both by their names in the text and as

mathematical symbols. Because the calcium channels in both the plasma
membrane and the store membrane were modeled without preference to
vectorial flow of the calcium, the arrows in the chemical equilibrium are
bidirectional and the rate constants equal (k1 = k_, and k5 = k_5).
Activation of calcium channels in the calcium store and the plasma mem-
brane is indicated by dotted arrows. Designation of the receptor in quota-
tion marks is to denote the fact that the receptor was modeled as a linear
activation term rather than as an agonist binding curve.
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compartment into the store. The rate of calcium pumping
has been set to depend on the cytoplasmic calcium concen-
tration according to the Hill equation. The calcium channel
in the plasma membrane has been modeled in a manner
similar to that of the store channel, with the rate constants of
calcium influx and efflux assumed to be equal (k5 = k_5).
Although the calcium channels in both the plasma and
calcium store membranes have been defined as bidirectional
pores with equal rate constants in both directions, the cyto-
plasmic calcium concentration is always much smaller than
the calcium concentration in either the external solution or
the calcium store, so the actual rate of calcium passage
through these channels against the chemical gradient is
negligible. Therefore, even if k_ I were 1O times larger than
kl, or k_5 were 10 times larger than k5, there would be no
significant change in the dynamics of the model. A calcium
pump has also been incorporated into the plasma mem-
brane. The plasma membrane calcium channels and pumps
differ from those of the store membrane by the choice of
parameters used in the simulations (Table 1). For both
pumps, the Hill coefficient has been set to 2. A fast calcium
buffer has been defined for the cytoplasm, serving as a
temporary receiver for the large amounts of calcium enter-
ing the cell directly after stimulation and simulating both the
endogenous buffer and the buffering properties of the flu-
orescent calcium indicators.

TABLE I Typical values for the parameters used in the
simulations

Parameter Definition Value

k, Rate of calcium release from the 7.5 s-'
store

k2 Rate of calcium association with 601 uM -'s-'
the buffer

k-2 Rate of calcium dissociation from 97 s-1
the buffer

V3 Maximum rate of calcium pumping 500 ,uM/s
into the store

K4 Dissociation constant of the store 0.1 ,uM
calcium pump

k5 Rate of calcium influx from the 0.000158 s-'
external medium

V6 Maximum rate of the plasma 1.5 ,uM/s
membrane calcium pump

K7 Dissociation constant of the plasma 0.6 ,uM
membrane calcium pump

xout Extracellular calcium concentration 1500 p.M
btotal Total concentration of the calcium 300 p.M

buffer
XS ,i Initial calcium concentration in the 180 p.M

store
xc'i Initial calcium concentration in the 0.108 p.M

cytoplasm
To Basal fractional activity of the 0.2

channels in the store and plasma
membrane

T Fractional activity of the channels 0.8
in the store and plasma
membrane (To ' T ' 1)

We assumed activation of the plasma membrane calcium
channel and release of calcium from the stores to be under
the control of a cytoplasmic second messenger. To mini-
mize the number of parameters, the concentration of this
second messenger has been defined as a linear function of
the fractional excitation level of the cell rather than by a
receptor binding curve. It is extremely important that the
model produce a steady-state solution both before stimula-
tion and after the decay of the initial [Ca2+]i transient. To
achieve this, the partial activation of the channels in the
plasma membrane and calcium store has been divided into
two terms: a constant term, representing activity at rest (To);
and a variable term, representing activity above To after
stimulation (1). The constant term produces passive calcium
leakage from both the store and the extracellular solution
into the cytoplasm. Thus a balance between influx and
efflux of calcium ions is established, constituting the basis
for the steady-state basal [Ca2+]i. The variable term (with a
range from To to 1) represents the fractional activation of
the store and plasma membrane channels induced by mem-
brane receptor mediated activation of the cell. Basal and
variable activation values were the same for the calcium
channels in both the store and plasma membranes. The
above assumptions for the stimulation mechanism in the
modeled cell are intended to permit investigation of the
dynamics of biphasic calcium transients under the simplest
conditions. The components of the model and their interac-
tions are shown schematically in Fig. 1. The kinetic model
is described by the following equations:

dx k,(T+ To)(xs-xc) + V3
X2

dt

d =k(T + TO)(x -x )-V3 K2-+x - k2x b

+ k-2(btotal- b)

+ k5(T + To)(xout-xc) - V6 K +

db
dt

(1)

(2)

(3)= -k2xcb + k-2(btotal-b)

where xc is the average cytoplasmic calcium concentration,
XS is the calcium concentration in the intracellular calcium
store, and b is the concentration of calcium free buffer in the
cytoplasm.
The processes involved in the release of calcium from the

store and its active pumping into the store are defined in Eq.
1. The simple scheme of calcium ion binding to the calcium
buffer is described by Eq. 3. The dynamics of the calcium
concentration in the cytoplasm, described by Eq. 2, in-
cludes, in addition to the terms described by Eqs. 1 and 3,
the terms describing calcium influx from the external me-
dium and active pumping of this calcium back to the exter-
nal medium. Constants used in the above equations are
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defined in Table 1 together with typical values used in the
simulations.

RESULTS

Analytical

Elevated calcium plateaus, after the decay of the initial rapid
increase in [Ca2+]j, are characteristic of biphasic calcium
transients. A crucial test of the integrity of our model is
whether it produces such steady-state solutions during stim-
ulation and rest. This steady state should be controlled by
the rates of calcium entry and extrusion across the plasma
membrane. At steady state, the time derivatives of the
model's variables are zero (dxs/dt = dxc/dt = db/dt = 0).
Under these conditions, Eqs. 1-3 produce the following
relations:

0 = V3 K2
x2 -kl(T +To)(xs-xc) (4)

K+ (

Xc2
= ks(T+TO)(xout -xc) -V6K+2 (5)

O = k_2(btotal- b) - k2xcb (6)

Equation 4 describes the equilibrium between the rates of
calcium release from and calcium pumping into the store.
Equation 5 describes the equilibrium between the rate of
calcium influx from the extracellular medium and the rate of
calcium extrusion from the cytoplasm by the plasma mem-
brane calcium pump. Equation 6 describes the balance be-
tween the bound and free forms of the cellular calcium
buffer. Because the equations are linear for x, and b, for
every solution of Eq. 5 there is only one corresponding
solution of Eq. 4 and of Eq. 6. Furthermore, because k5(T +
TO)xout- xc) decreases as a function of xc and V6(X2/(K2 +
xc2)) increases as a function of xc, Eq. 5 has a unique solution
(xC,s). Therefore, there exists a unique steady state for the
kinetic model defined by Eqs. 1-3 (given by the steady-state
values xc5, xS,, ba). Recalling that under physiological con-
ditions x,; << xout, it is possible to obtain the following
accurate approximation for xc,s from Eq. 5, which can be
used to calculate xs s and bs:

k5(T + TO)xOut
Xc,s K7 V6- k(T + To)xOut

((~ 4T+V3xTX k+ k-2btotal
Xs's= t(K42+ xc2 )(+T)l+ xcs; bs k2S+k2

The error in the steady-state values obtained with this ap-
proximation, estimated by numerically solving Eq. 5, is less
than 0.001%. In Eq. 7 the inequality V6 > k5(T + T0)x0u,
must be maintained for the steady-state value xc

,
to be a real

number. In other words, to generate a steady state, the
maximum rate of pumping must be greater than the rate of
calcium influx. The same rationale applies to the calcium

store, where the inequality V3 > k1(T + To)x5s must be
maintained so xss will be a real number. A steady state
should also exist before stimulation of the cell (T = 0). That
steady state represents the balance between the passive
leakage and active pumping of calcium across the mem-
branes of both the cell and the calcium store. Because the
term T + To is linear in Eqs. 4 and 5, the set of equations
defining the steady state after stimulation (Eqs. 4-6) also
describe the equilibrium state before stimulation. Therefore,
there exists a unique set of solutions to Eqs. 1-3 before
stimulation, which is the set of initial values of the model's
variables (xc5,iXSi, b1).

These initial values of the model's variables present an
obstacle to the numerical evaluation of the model. The
resting value of the intracellular calcium concentration in
many types of cells is -0.1 p,M, whereas the calcium
concentration in the calcium store is on the order of 10-
1000 ,uM. This large difference among the initial values of
the model's variables and the large rate constant of calcium
release from the stores (Table 1) cause the rate of calcium
release from the intracellular store (appearing in Eqs. 1 and
2) to be considerably faster than the rest of the processes
defined in the model. Although the calcium gradient across
the cell membrane is greater than the one across the store
membrane, the rate of calcium cycling across the cell mem-
brane is much smaller than that across the store membrane
(Table 1). Thus it is safe to consider the entry of calcium
from the extracellular medium as a slow process. Applying
techniques commonly used for the numerical evaluation of
ordinary differential equations to this equation set could
lead to large computational errors. Therefore we have
sought a way to uncouple this fast calcium cycling from the
slow one. We accomplished this by introducing the follow-
ing dimensionless variables:

Xc = Xs + xc Xs + Xc b

Xc,ij XSj; + xcji Xs,i btotal

These variables are of the same order of magnitude. The
initial values for the simulations based on Table 1 and Eqs.
7 and 8 would be in the new variables x = 1, y = 1, z = 0.6.
Substitution of these variables in Eqs. 1-3 results in the
following dynamical system:

dx x2
y =K(y-2yx) -yK3 2 + 82X2 YK2XZdt K

x2
+ yK2(1 -Z) + K5(a -YX) YK6K2 + 2X2

(9)

dt - -YK2XZ + zK-2(1 - Z) + K5(a - yx)

K 2x (10)

-'K6KK2 + 2X2J
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dz
=

+6K (1-z)
dt - 6btotal btotal~ (1 1)

(The full derivation of this system and the definitions of the
new parameters appear in the Appendix.)

In this set of equations, all of the processes occurring at
the calcium store appear only in Eq. 9, thus separating the
faster variable x from the other variables. The above singu-
larly perturbed system can be investigated in several ways
(Aggarwal, 1971). Because the dimension of this equation
system is greater than 2, the methods of the quantitative
theory of differential equations are generally difficult to
apply. Numerical analysis is also of little help when applied
to models containing variables that differ by several orders
of magnitude. This is exactly as in the case for singularly
perturbed systems because of the "stiffness" of the system.
In the present work we have used the approach recently
suggested by Gold'shtein and Sobolev (1992) for the anal-
ysis of such a system based on the theory of integral
manifolds (Mitropol'skii and Lykova, 1973; Strygin and
Sobolev, 1988). The approximation y dx/dt = 0 leads to a
modification of the quasi-steady-state approximation. The
coefficient -y is defined as the ratio between the initial
values of the calcium concentrations in the cytoplasm and in
the calcium store. The smaller -y is, the better the approxi-
mation -y dx/dt = 0. In our simulations we have used y =
55 X 10-4, which is sufficiently small to provide an accu-
rate approximation. This approximation transformed the
system of Eqs. 9-11 from three differential equations into
two differential equations (Eqs. 10 and 11) and an algebraic
one (Eq. 9) defining a surface in x, y, z space. In our case
this surface is a graph of the function x = h(y, z), thus
expressing the fast variable as a function of the slow vari-
ables. The slower processes in the model are thus defined as
trajectories on this slow surface. When the method of the
quasi-steady-state concentrations is used, x = h(y, z) is
inserted into the slower equations, which are then analyzed.
When the method of integral manifolds is being used to
solve a specific problem, a central question is the exact
calculation of this manifold. Because an exact calculation is
generally impossible, various approximations are necessary.
In this paper we use only the zero term of the asymptotic
expansion of the manifold in powers of the small parameter
-y. Because Eq. 9 is nonlinear with respect to x, the repre-
sentation x = h(y, z) exists only formally. Therefore, for the
explicit calculation, the representation of the slow surface as
y = F(x, z) has been used. From this equation it is possible
to reobtain dx/dt by using the following relationships:

dy a'D dxc aF dz
= + 12)dt ax dt az dt

dx (dy/dt) - (AF/&z) (dz/dt)
dt a1/ax

Because Eq. 10 is the same dy/dt that appears in Eq. 13, it
is possible to reduce the original system of three differential

equations to a new set of only two differential equations:

(-yK2XZ + YK-2(0 - Z) + K5(a - yx)
dCx -zK6 (x2/K7 + 82x2)) - (aF/az) (dz/dt)
dt A?D/3x

dz- - PI

K (2
dt - btotal (1I - z)

(14)

(15)

Numerical

In reviewing the literature, we encountered a high degree of
variability in the parameters describing the various compo-
nents of the calcium signaling system. For example, the
maximum rate of calcium pumping into the calcium store
ranges from 0.9 ,uM/s (Keizer and De Young, 1994) to 1038
p,M/s (Tang and Othmer, 1994). A similar problem has been
encountered in the parameterization of three other important
elements of the model: the rate of calcium release from the
stores, the rate of calcium influx, and the maximum rate of
calcium extrusion from the cell by the plasma membrane
calcium pump. Thus the maximum rate of the store mem-
brane calcium pump has been taken to be in the middle of
the range found in the literature. The approximate rate of
calcium influx was estimated from the rate of fura-2
quenching by Mn2+ influx (Jacob, 1990; Morgan and Jacob,
1994). The rate of fura-2 quenching was evaluated from the
average value of [Ca2+]j. Therefore, the value extracted
from these measurements is considered to be the best for use
in the numerical simulations. The binding constants of the
plasma membrane calcium pump and the store membrane
calcium pump have been set in the middle of the range
found in the literature. It has been shown (Jafri and Keizer,
1995) that the fluorescent dye used for the evaluation of
[Ca2+]i can affect the values obtained because of its binding
kinetics to calcium ions. Therefore, the calcium ion associ-
ation and dissociation constants of the buffer were initially
set to be those of fura-2 (Kao and Tsien, 1988). The two
remaining parameters of the model, the rate of calcium
release from the stores and the maximum rate of calcium
pumping by the plasma membrane calcium pump, were
estimated from the basal steady state of the model (Eqs. 4
and 5). This estimation requires a knowledge of the values
of the model's variables during rest. Whereas the resting
cytoplasmic calcium has been measured in many cell types
with high reproducibility (-0.1 ,IM), exact information on
the concentration of calcium ions in the storage compart-
ment is still lacking. Recently it has been shown that
[Ca2+Istore is higher than the values previously obtained
(Kendall et al., 1992). Therefore we have used the value of
180 ,tM as the initial calcium concentration in the storage
compartment during rest (xs,i) and have decided to keep this
value constant in all of the simulations carried out in this
work. Using this value, it was possible to obtain the value of
x,i from Eq. 4. The initial concentration of the unbound
calcium buffer (bi) was calculated from Eq. 6.
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To test the assumptions made in the analytical treatment
of the model, we investigated the behavior of the model
directly after the onset of stimulation (Fig. 2). Because Eqs.
14-15 define a trajectory on the slow surface defined by Eq.
9, the numerical integration of these equations should be
initiated with values residing on this surface. The result of
setting y dx/dt = 0 in Eq. 9 is a fifth-order polynomial in x
that is first order for y and z. Knowing the initial calcium
concentration in the stores and the concentration of the free
calcium buffer before stimulation, it is possible to calculate
the initial value of the cytoplasmic calcium concentration on
the slow surface by solving Eq. 9 numerically for x. For the
parameters in Table 1, this gives a [Ca2+]i initial value on

this surface of 0.118 ,uM, which is not far from the resting
[Ca2+]i of 0.108 ,uM. The results of the simulation carried
out with the parameters listed in Table 1 are shown in Figs.
2 and 3. The initial fast change in [Ca2+]i, directly after the
stimulation of the system (Fig. 2 A), corresponds to a
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decrease in the concentration of the [CaI2+store (Fig. 2 B)
and in [buffer]free (Fig. 2 C). Because the approximation
used to derive Eqs. 14-15 is of zero order, these changes
carry little information on the kinetics of the model during
the first seconds after stimulation. Moreover, because the
activation of the cell was modeled as a step from To to To +
T, the changes observed in the variables of the model are by
nature faster than the ones observed in the living cell, where
the level of IP3 may increase gradually. The changes in the
three variables trace a fast trajectory on the slow surface
defined by Eq. 9 (Fig. 2 D). This trajectory clearly shows
the intimate relationship between the three variables:
[buffer]free and [Ca2+]store decrease as [Ca2+]i increases;
[Ca2 ] store reaches its minimum when the fluxes of calcium
release from and calcium pumping back into the store are

equal.
After this initial rapid change, a much slower phase is

observed. To view this phase in full, the same simulation is
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FIGURE 2 Simulation of the initial rapid changes in the variables of the model. The changes in the cytoplasmic calcium concentration (A), the
concentration of calcium in the store (B), and the concentration of the free buffer (C) as a function of time are shown. The solid line in these three
illustrations marks the values of the variables at rest. The initial values used for the numerical integration were the resting values of [Ca2]s,tore, the resting
value of [buffer]free, and the value of [Ca21]1 on the slow surface defined by the algebraic form of Eq. 9. This value was calculated by numerical evaluation
of the real roots of the polynomial form of Eq. 9. The three-dimensional surface defined by the algebraic form of Eq. 9 is shown in (D). The values of the

variables at rest (0) were plotted on this slow surface and the trajectory traced on following the integration of the model (line). All of the simulations were
carried out on an IBM RS-6000-390 computer using custom-made programs in standard C language. Numerical integration was carried out by a fourth-order
Runge-Kutta routine with adaptive step control (Press et al., 1992). The roots of Eq. 9 were determined by finding the eigenvalues of the companion matrix
of this polynomial (Press et al., 1992). The parameters used for this simulation are from Table 1.
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FIGURE 3 A typical biphasic calcium transient produced by numerical
integration of the model. The changes in the concentrations of the cyto-
plasmic calcium (A), store calcium (B), and the calcium free buffer (C) are

displayed. The parameters used are from Table 1.

shown in Fig. 3 over a much longer time scale. The simu-
lated curve in Fig. 3 A is characteristic of biphasic calcium
transients, similar to results we have observed experimen-
tally (Kormgreen and Priel, 1996). The [Ca2+]i decays, over

several minutes, from the maximum value reached in the
initial rapid phase to a stable value greater than the resting
[Ca2+]i, whereas [Ca2+]store (Fig. 3 B) and [buffer]free (Fig.

3 C) level off on the same time scale. These slow changes
trace a trajectory on the slow surface defined by Eq. 9 (not
shown). Inserting the model's parameters into Eqs. 4-6, it
is possible to calculate the steady-state solution for the
simulation in Fig. 3. The values obtained agree with the
results of the numerical simulation. Because we are inter-
ested in the characteristics of biphasic calcium transients, all
of the simulations have been carried out on a time scale of
minutes. Within this time scale, the initial rapid rise appears

to be a single jump from the initial values to the maximum
change in the physiological variables.
The combined effect of discharging the calcium store and

opening the calcium channel in the plasma membrane is
coordinated by the excitation level of the cell. Increasing the
excitation level (7) from rest (To) to the maximum value
(T + To = 1) increases both the maximum rise in [Ca2+]i
and the elevated calcium plateau (Fig. 4 A). At the same
time, the amount of calcium discharged from the store
increases (Fig. 4 B) while the [buffer]free decreases (Fig. 4
C). Performing the simulation with T = 0 results in no
changes at all in any of the model's variables (Fig. 4 A-C,
dotted lines). This confirms the prediction made by Eqs.
4-6 that the model has a steady-state solution at rest. We
have observed, in rabbit ciliated epithelium, that the value
of the elevated calcium plateau and the rate of calcium
decay to that plateau increase with the level of cell excita-
tion (Korngreen and Priel, 1996). This pattern has been
reproduced by the present model (Fig. 4 A). The apparent
rate of decay (kapp) was calculated by fitting an exponential
decay to the traces in Fig. 4 A. The results are shown in Fig.
4 D. As expected from the linear definition of the level of
cell excitation in the model, the dependence of the maxi-
mum rise in [Ca2+]i, the elevated calcium plateau, and the
apparent rate of decay are all linear (Fig. 4 D). The depen-
dence of kapp on the level of cell excitation is explained by
the model in the following manner. Because the plasma
membrane calcium pump is of the Hill type, the greater the
rise in [Ca2+]i, the faster it will be pumped from the
cytoplasm, resulting in a larger kapp.

It has been suggested (Alkone and Rasmussen, 1988;
Rasmussen and Rasmussen, 1990) that after stimulation
there is an increase in both the influx of calcium and its
extrusion from the cytoplasm by the plasma membrane
calcium pump. To examine the behavior of the model under
conditions of increased calcium cycling, the values of both
k5 and V6 were changed while their ratio was kept constant.
This did not change the value of the elevated calcium
plateau (Fig. 5 A), but did affect the kinetics of the [Ca2+]i
decay from its maximum value. Fast calcium cycling pro-
duced fast decays, reaching a steady value in less than 2
min, whereas slow calcium cycling produced slow decays
that took more than 15 min of simulation to reach a steady
value. The apparent rate of decay was linearly dependent on
both k5 and V6 (Fig. 5 B).

Because no inactivation of the calcium channel in the
calcium store membrane has been incorporated into the
model, the store remains partially depleted for the duration
of cellular excitation. Once the excitation level is reduced
from its maximum value (T = 0.8) to the resting level (T =
0), the [Ca2+]i decreases from the elevated plateau to a
value slightly lower than its value at the beginning of the
simulation (Fig. 6 A), followed by a slow increase in [Ca2+]i
to its initial value. The amount of calcium in the store
increased almost to its initial value (Fig. 6 B), and the
concentration of the free calcium buffer increased to a value
above its initial value (Fig. 6 C). It is clear from this
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simulation that the calcium store is refilled primarily by
calcium released from the fast buffer, with only a small
amount coming from the extracellular medium. When Eq. 9
was transformed into an algebraic form, the parameters
determining the form of the simulated calcium transient
were fixed for the duration of the simulation, defining a

specific slow surface. To change the excitation level of the
cell, it was necessary to recalculate the change in [Ca2+]i
from the polynomial form of Eq. 9 and restart the simula-
tion. As initial conditions for this calculation, the values of
y and z at the elevated steady state were taken.
When calcium concentration in the extracellular solution

was lowered to 0.1 ,uM, the initial rise in [Ca2+]i was not
affected, but the elevated calcium plateau was abolished
(Korngreen and Priel, 1996). Performing the simulation at
an extracellular calcium concentration of 0.1 ,AM (x0ut =

0.1) results in the elimination of the elevated calcium pla-
teau (Fig. 7 A). After the rapid decay of the initial transient,
the [Ca2+]i (Fig. 7 A) and the [Ca2+Istore (Fig. 7 B) continue
to decay slowly. When the simulation is run for 30 min, it
is observed that this decay continues until most of the
calcium remaining in the store is depleted (data not shown).
In experiments carried out on ciliary epithelium (Korngreen

and Priel, 1996), we have shown that increasing the calcium
concentration back to the physiological level of 1500 ,uM
results in an increase in [Ca2+]i to the same elevated plateau
observed under normal conditions. Increasing external cal-
cium to 1500 AmM after 15 min of the simulation gives
essentially the same result as obtained experimentally. As
seen in Fig. 7 A, there is a slow increase in [Ca2+]i that
levels off to the same elevated plateau value observed in the
simulation performed at normal extracellular calcium con-

centration (cf. Fig. 6 A). In addition, both the [Ca2+]store
(Fig. 7 B) and the [bufferifree (Fig. 7 C) slowly approach
steady-state values identical to those calculated from Eqs.
4-6. The kapp calculated for the calcium decay in Fig. 6 A
(xout = 1500 ,uM) was 0.658 min-m, whereas the kapp
calculated from the decay in Fig. 7 A (xout = 0.1 ,uM) was

1.09 min-m. This 1.65-fold increase is in good agreement
with the experimental result of a 2.4-fold increase (Korn-
green and Priel, 1996).
A widely used tool for the investigation of calcium tran-

sients is the pharmacological agent thapsigargin, a highly
potent and specific inhibitor of the calcium store pump
commonly found in the endoplasmic reticulum. After the
inhibition of this pump, the calcium passively leaks out of

A
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a function of V6 and k5 (B). All of the parameters used in the simulations
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the store until the store eventually empties. This enables the
direct activation of calcium-dependent cellular processes
without activation of the cell by the membrane receptor.
Experiments with thapsigargin are routinely carried out with
extracellular solutions that do not contain calcium, a proce-
dure established after it was found that store depletion with
thapsigargin could activate a calcium influx (Takemura et
al., 1989). Activation of the cell by a membrane receptor

12

180

140

100

60
0 5 10 15

time [min]

20 25

FIGURE 6 Rapid refill of the calcium stores after reduction in the level
of cell stimulation. Fifteen minutes after the beginning of the simulation,
the value of T was lowered from 0.8 to 0, leaving the model at a resting
activity of 20%. The resulting changes in [Ca21]i (A), the calcium con-
centration in the store (B), and the free calcium buffer (C) are shown.

after such calcium store depletion usually does not result in
a noticeable rise in [Ca2+]j. To simulate the depletion of the
stores by thapsigargin, the value of the maximum rate of
calcium pumping into the stores (V3) was lowered by 95%,
and the extracellular calcium concentration was lowered to
0.1 ,uM. Because the cell is not being activated by the
receptor, the activity of the calcium channels of the calcium
store and of the plasma membrane were also set at the basal
activity of 20% (T = 0). The rise in [Ca2+]i induced by this
simulated store depletion was greater than that commonly
seen with thapsigargin (Fig. 8 A). The action of thapsigargin
is longer than the activation of the cell by the membrane
receptor, because of the slow accumulation of the drug in
the cell, producing relatively slow rises in [Ca2+]j. This is a
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the release and refill of calcium. The simulation was carried out with the
parameters listed in Table 1, except for V6 = 2 and xo0t = 0.1. The [Ca2+]i
decayed back to its initial value (A). Fifteen minutes after the beginning of
the simulation, the value of xout was increased from 0.1 to 1500 ,uM,
resulting in an increase in [Ca21]i to an elevated plateau. The changes in
[Ca21]i (A), the calcium concentration in the store (B), and the unbound
calcium buffer (C) are displayed.

likely cause for the difference between simulated and ex-

perimental traces. After the [Ca2+]1 had decayed to its initial
value (15 min from the beginning of the simulation), the
activation level of the cell was increased to 100% (T = 0.8),
simulating the activation of the cell by agonist binding to
the membrane receptor. This resulted in a small increase in
[Ca2+]i due to the release of the residual calcium left in the
store (the residual calcium concentration was 9 ,uM). Per-
forming the same simulation with the normal concentration
of extracellular calcium (xout = 1500 ,AM) produced the
graph shown in Fig. 8 B. Thus after store depletion, increas-
ing the level of cell excitation to 100% resulted in a small

jump in [Ca2+]i due to release of residual calcium from the
store and a slow increase in [Ca2+]i to the elevated plateau
induced by calcium influx.
A third scenario, termed capacitative calcium entry

(CCE), involves the activation of calcium influx through
depletion of the calcium stores rather than by the membrane
receptor. Thus the excitation level of the calcium channel in
the plasma membrane was set at maximum (T = 0.8) from
the beginning of the simulation. The simulation, shown in
Fig. 8 C, was carried out at normal extracellular calcium
concentration. Therefore, after the discharge of calcium
from the store, [Ca2+]i decayed to an elevated plateau.
Further stimulation of the modeled cell by the membrane
receptor (accomplished by increasing the activation of the
store calcium channel from 20% to 100%) resulted in dis-
charge of the residual amount of calcium from the store.

It is possible that depletion of the stores will activate a
calcium influx via a nonreceptor-activated pathway. To
examine this possibility, we performed the same simulation
as described in Fig. 8 C, except that when the cell was
stimulated by the agonist (15 min after the beginning of the
simulation), the excitation level of the plasma membrane
calcium channels was further increased from T = 0.8 to T =
1.6. This simulated the opening of the receptor-operated
calcium channel in the plasma membrane in addition to the
capacitative entry of calcium activated by thapsigargin at
the beginning of the simulation. As expected, the calcium
concentration did not decay to the level before receptor
stimulation as in Fig. 8 C, but rather increased to a more
elevated plateau (Fig. 8 D). The four simulated experiments
shown in Fig. 8 suggest a possible experimental protocol for
distinguishing between receptor-activated calcium influxes
and store depletion-activated calcium influxes. With small
modifications, our model has been able to simulate com-
plete experiments carried out in many previous investiga-
tions of the dynamics of intracellular calcium.
The final aspect of calcium transients we have investi-

gated with our model is the role of cytoplasmic calcium
buffering. It is clear from the definition of the steady state
of the model (Eqs. 4-6) that any changes in buffering
capacity should not influence the steady-state solution.
However, it seems reasonable to assume that changing the
rate of calcium ion association with or dissociation from the
buffer might alter the kinetics of the calcium transients in
the cytoplasm. To examine this, the calcium buffer binding
constants initially set at the values for fura-2 were changed
to those for indo-1 and rhod-2. The rates of association for
these materials were assumed to be similar (k2 = 601 tkM- 1

s- 1). The rates of dissociation (k-2) were calculated from
the equilibrium constants of these fluorescent calcium dyes
(230 nM for indo-1 and 570 nM for rhod-2). As predicted by
the steady-state equations, changing the properties of the
buffer changed neither the value of the elevated calcium
plateau (Fig. 9 A) nor the steady-state value of the
[Ca2+]store (Fig. 9 B). However, changing k-2 changed both
the maximum rise in [Ca2+]i and the decay kinetics (Fig. 9
A). It is interesting to note that changing k-2 from that of
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fura-2 (97 s-1) to that of indo-I (138 s-1) elicited a small
change in the kinetics of [Ca2+]i decay and a small decrease
in the maximum rise in [Ca2+]i, whereas increasing k-2
further to that of rhod-2 (342 s- 1) resulted in an increase in
the maximum rise in [Ca2+]i (Fig. 9 A). When k-2 was
varied from 60 s to 400 s- 1, the rise in [Ca2+]i reached a
minimum at k-2 = 140 s-1 (not shown). The probable
explanation for this minimum is simply that buffering sys-
tems are at maximum capacity when the bound and un-
bound buffer species are present in equal concentrations.
When k-2 is slower than 140 s- 1, the majority of the buffer
is in the calcium-bound form, with little in the unbound
form. When k-2 is faster than 140 s-1, the majority of the
buffer is in the unbound form, with little in the bound form.
In both cases, the result is a higher rise in [Ca2+]. The
decrease in the buffer capacity as k-2 increases is clearly
seen in Fig. 9 C, which shows the changes in the [buffer]free
concentration. Because the initial values of [buffer]free differ
from buffer to buffer, the [bufferifree has been normalized to

its initial value, so that relative changes will be more clearly
visible. When both binding constants were changed without
changing the equilibrium constant, no effect on either the
magnitude or the kinetics of the calcium transients was
observed (not shown).

DISCUSSION

The present study shows that a kinetic model using realistic
parameters and assumptions produces biphasic calcium
transients similar to those observed experimentally (Korn-
green and Priel, 1993, 1994, 1996). The properties of the
simulated calcium transients were sensitive to the values of
the parameters of the model. The model predicted that the
maximum rise in [Ca2+]i, the elevated calcium plateau, and
the apparent rate of calcium decay were dependent on the
level of cell excitation (Fig. 4). The rate of calcium decay
was shown to relate to the rate of calcium cycling across the
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plasma membrane (Fig. 5). Experiments involving the
washout of an agonist from the solution bathing the cell
(Fig. 6), elimination of the elevated calcium plateau by
lowering of the extracellular calcium concentration (Fig. 7),
and calcium store depletion with thapsigargin (Fig. 8) were

simulated. Finally, the effect on temporal changes in
[Ca2+]i of several fluorescent dyes, acting as calcium buff-
ers, was examined (Fig. 9).

Accurate numerical integration of the model was made
possible by application of the analytical method proposed
by Gold'shtein and Sobolev (1992). This permitted the
computation of realistic biphasic calcium transients under
initial conditions ranging over more than four orders of
magnitude and uncoupled the fast calcium cycling of the
calcium store from the slower cycling of the plasma mem-
brane. Without such a separation, whether by physical or

mathematical means, it would be very hard to produce

accurate simulations. In the calculation of the initial [Ca2+]i
on the slow surface defined by Eq. 9, the computations
showed that for the parameters listed in Table 1 and for a
resting value of [Ca2+]i of 0.108 ,uM, the initial [Ca2+]i on
the slow surface was 0.1 18 ,uM, thus demonstrating that the
dynamic system at rest is not far from the reaction surface
that defines the behavior of the system during excitation.
Therefore, the system can be activated easily and without
the investment of much energy by the cell.

Another approach to solving the problem is to use cal-
cium diffusion through the cell, which has been employed
successfully to simulate the progression of calcium waves
(Dupont and Goldbeter, 1994; Sneyd et al., 1995; Jafri,
1995). We have preferred at this stage not to add the spatial
dimension to the model, to keep it as simple as possible.
After the uncoupling of the fast processes from the slow
ones, several key features of the model became apparent.
The most prominent one was that the calcium stores did not
completely deplete (Figs. 3 and 4), but remained as much as
one-third full, even at k, values that produced calcium
transients similar in magnitude to those observed experi-
mentally (Figs. 2 and 3). This is due to the high rate of
calcium cycling across the calcium store membrane. In
vivo, this is achieved by the spatial localization of the
discharge of calcium from the store. The high calcium
concentration adjacent to the store creates a local "hot spot"
of calcium that diffuses into the cytoplasm and induces the
calcium pump in the store's membrane to pump calcium
back into the store at a high rate. An additional prediction of
the model, closely related to the previous one, is that a large
portion of the calcium released from the store is maintained
in the cytoplasm bound to the cytoplasmic buffer. This was
readily observed in Fig. 6, where, upon removal of the
agonist, the initial refill of the stores was supplied by
calcium released from the calcium buffer. Only a relatively
small part of the store remained to be refilled by the calcium
influx from the extracellular medium. This prediction of the
model is more likely, in our opinion, than the suggestion
that most of the calcium released from the store is removed
entirely from the cell (Wiesner et al., 1996), which would
require a much larger investment of cellular energy.

Another problem resolved by the computational separa-
tion of fast events from slow events is the issue of the
influence on [Ca2+]i of the pumping rate of calcium into the
store. Because the model has no spatial dimensions, the
pump in the store and the pump in the plasma membrane act
on the same number of calcium ions. Therefore, when the
system in its original form (Eq. 1-3) was integrated, the
pump in the store membrane overpowered the weaker pump
in the plasma membrane, creating very fast and uncharac-
teristic decays in [Ca2+]i (simulations not shown). In vivo,
after the discharge of calcium from the store and the return
to near-equilibrium, the store becomes kinetically "invisi-
ble" because of the balanced rates of release and reseques-
tration. We believe that in the area juxtaposed to the store,
a membrane-localized, higher calcium concentration is es-

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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tablished, which does not extend far enough into the cell to
be detected.

These observations on calcium dynamics across the cal-
cium store membrane were used to examine some common
experimental protocols. In almost every study on the dy-
namics of calcium signaling by an agonist binding to a
membrane receptor, the response of the system is deter-
mined as a function of the concentration of that agonist.
Such a dose-response curve was simulated in Fig. 4. From
this simulation it was possible to predict that the maximum
rise in [Ca2+]i would be dependent on the level of cell
excitation. Furthermore, the level of the elevated calcium
plateau and the apparent rate of calcium decay were also
shown to be dependent on the level of excitation (Fig. 4 D).
This may prove beneficial in the analysis of experimental
biphasic calcium transients. If all three experimental param-
eters are found to be dependent on agonist concentration, as,
for example, in our research on ciliated airway epithelium
(Korngreen and Priel, 1996), this may serve to strengthen
the case for the dual activation of calcium influx and cal-
cium release. The model presented in this work incorpo-
rated, for the sake of simplicity, a linear term describing the
level of cell excitation (T + To). Hence the dependences of
both the maximum rise in [Ca2+]i and the elevated calcium
plateau were linear (Fig. 4 D). A relatively simple extension
of the model would be the conversion of this linear term to
one describing the binding curve of the agonist to the
receptor and the kinetics of 1P3 synthesis. There are exper-
imental conditions where the elevated calcium plateau is not
dependent on the concentration of the agonist, as, for ex-
ample, when calcium influx is activated by the depletion of
the calcium store rather than by agonist binding to the
receptor. Such calcium influx, induced by depletion of the
calcium store, can be achieved by pharmacological agents
such as thapsigargin. The simulations shown in Fig. 8
suggest a possible experimental protocol for differentiating
between calcium influxes activated by a receptor (Fig. 8 B),
by the calcium store depletion (Fig. 8 C), or by both
(Fig. 8 D).

Another common experimental procedure used to probe
refilling kinetics of calcium stores is the "double-exposure"
technique. In such experiments, the calcium store is dis-
charged by an agonist that is subsequently washed out of the
solution. Then, at increasing time intervals, the store is
redischarged and the magnitude of the rise in [Ca2+]i is
compared to that of the first discharge. The rationale is that
after the first exposure, which causes the store to discharge
all or part of its calcium content, the store refills. The
second exposure to the agonist then determines the relative
content of the store at a given time during this refill process.
Our simulations have shown (Fig. 6) that after the washout
of the agonist, the initial refill of the stores is fast, on the
same time scale as the release, and that it is primarily due to
the calcium released from the buffer. After this fast change,
[Ca2+]store increases slowly toward its initial value, as seen
in Fig. 6 B. This slow increase is due to the contribution of

activity of the calcium pump in the store membrane. There-
fore, the second discharge in the "double-exposure" proto-
col should not be interpreted directly as the residual content
of the stores. Thus the experimental procedure of "double
exposure" may not present a complete picture of the kinetics
of calcium resequestration into the store.
The calcium signaling system is far more complex than

the model presented in this work. Several pharmacologi-
cally distinct calcium stores have been identified within the
same cell type (Tribe et al., 1995; Korngreen and Priel,
1996). Local increases in the calcium concentration have
been observed (Bootman and Berridge, 1995). It has been
shown that the cytoplasm contains both mobile and immo-
bile calcium buffers (Zhou and Neher, 1993). Calcium
imaging has established the existence of intracellular
(Lechleiter et al., 1991) and intercellular (Boitano et al.,
1992) calcium waves. In many cell types, oscillations in
[Ca2+]i have been observed (Tsien and Tsien, 1990). These
oscillations have been described extensively by many the-
oretical models over the last decade (Cuthberson and Chay,
1991; Eichwald and Keizer, 1993; Friel, 1995; Kraus and
Wolf, 1992; Mayer and Stryer, 1988; Tang and Othmer,
1995). Unfortunately, the large variability between the cal-
cium signaling systems of different cells has proved a great
obstacle to describing with a single model the dynamics of
even nonoscillating calcium homeostasis. This variability
can be seen in the different models suggested for various
systems. Recently a model describing the dynamics of non-
oscillating calcium transients in human umbilical vein en-
dothelial cells was presented (Wiesner et al., 1996). Several
features of this detailed model made comparison to our
proposed model difficult. The activation of the endothelial
cell was described by the irreversible activation of the
thrombin receptor, whereas in our model it was controlled
by the reversible activation of a linear receptor. The throm-
bin receptor directly activated only the calcium store,
whereas in our model the receptor activated both the release
from the store and the increase in the influx of calcium. As
a result, the elevated calcium plateau, a major element of
our proposed model, was not sensitive to the concentration
of thrombin in the model proposed for endothelial cells.
Because the rate of calcium influx was similar to the rate of
calcium release from the store in the endothelial cell model,
an increase in this rate resulted not only in a higher elevated
calcium plateau, but also in a considerable increase in the
magnitude of the maximum rise in [Ca2+]i. We have shown
experimentally that the maximum rise in [Ca2+]i in airway
ciliated epithelium is not affected by calcium influx, but is
due rather only to the release of calcium from stores. Based
on this observation, we selected a different set of parameters
(detailed in the results), which necessitated analytical treat-
ment of the model before numerical simulation could be
carried out. As more accurate data become available on the
parameters of the various components of the calcium sig-
naling system, it should become possible to compare dif-
ferent cell types more easily, which, it is hoped, will provide
a more unifying model for this essential signaling system.
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calcium leakage from the extemal medium rather than to the
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The model proposed here was intended to provide a solid
foundation on which to progress toward this more accurate
model. Because our model is based on relatively simple
mathematics, it is possible to use analytical tools to deter-
mine its validity. Having laid this cornerstone, it is now
possible to establish a working dialogue between experi-
ment and theory to revise the model and expand it. Only
such a dialogue will make possible the accurate expansion
of the model and verification of each addition.
The model presented in this work was able to reproduce

several key features of biphasic calcium transients observed
experimentally in rabbit ciliated airway epithelium (Korn-
green and Priel, 1996). The main feature reproduced was the
decay of the calcium concentration in the cytoplasm to a
steady plateau higher than its initial value after the initial
rise of calcium from the intracellular calcium store. The
dependence of the maximum rise in [Ca2+]i, the value of the
elevated calcium plateau, and the apparent rate of calcium
decay on the level of cell excitation (Korngreen and Priel,
1996) were also reproduced. Several simulated experiments
that might help identify the coactivation of calcium release
and calcium influx (similar to that observed by us in ciliated
cells) have been suggested. These experiments included the
depletion of the calcium store with pharnacological agents
and the effect of the concentration of the extracellular
calcium on the elevated calcium plateau. It is therefore our
belief that the model will be helpful to experimentalists
facing the problem of identifying and characterizing this
pattern of cellular activation.

APPENDIX

Transforming Eqs. 1-3 with the new variables,

Xc = Xs + Xc Xs + Xc b

Xc,i Xs, +Xc,i Xs,i btotal

results in the following system:

dx C_
XCidt k,(T + To)(xs,iy - 2xc,ix) - V3 K2 + x2 x2

- k2xcibtotalXZ + k-2btotal(l - Z) (Al)

x2_ ix2
+ k5(T + TO)(xout- xc, ix) - V6 2 + x2 x2

dy
(xc i + xs,) dt = - k2xc,ibtotalxz + k -2btota(-z)

x2.V2 (A2)
+k5(T + To)(xout-x ix) - V6 Ir

dz
btotai dt = -k xcibtotaz + k_2bta(1 - z) (A3)

Eq. Al is divided by x,,i and rearranged to produce the form

x)Jdt = k1(T + To)(y-2 )x)

V3 XCi(si)K2+ 2 X2 - 2 totalxz

+ (x-j(1-z) + k5(T + To)

(Xut - C\~~)v XC.i X2+ 2X (- X jX) V6Xc,i( 2j + Xc,i

From this equation the following new parameters are defined:

=y (XS 8 = Xcj, K1= k1(T+ To)q

k-2btotal
K-2 K2 = k2btotal, K3 = V3Xc,i

xc,i

K5 = k5(T + TO), K6 = V6aXci, =-

Insertion of these new parameters into Eq. A4 results in Eq. 9. Similarly,
Eq. A2 is divided by (xC,i + XS,j):
dy Xc i k-2btotaw Xci
dt = -Xk2bts,())xz + xc,i (xc j + Xsi)

*(1 -z) + k5(T + To) ((_ i + xC )

-V xc,i( ;+ Xs,i) )K7 + Xs,i-v6Xc ? )2 itX;2,X2 (A5)

Using the new parameters, it is possible to write

XCi 0 y
(XC,i + Xs,i) +1 1

and

Xout a
(xc,i + Xs,i) =y +1

Using this transformation with the rest of the new parameters Eq. A5 gives
Eq. 10. Using only the new parameters, Eq. A3 gives Eq. 11.
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