Recovery of Ca²⁺ Current, Charge Movements, and Ca²⁺ Transients in Myotubes Deficient in Dihydropyridine Receptor β_1 Subunit Transfected with β_1 cDNA

Maryline Beurg,* Manana Sukhareva,* Caroline Strube,* Patricia A. Powers,[#] Ronald G. Gregg,[#] and Roberto Coronado*

*Department of Physiology, University of Wisconsin School of Medicine, and *Waisman Center, University of Wisconsin, Madison, Wisconsin 53706 USA

ABSTRACT The Ca²⁺ currents, charge movements, and intracellular Ca²⁺ transients of mouse dihydropyridine receptor (DHPR) β_1 -null myotubes expressing a mouse DHPR β_1 cDNA have been characterized. In β_1 -null myotubes maintained in culture for 10–15 days, the density of the L-type current was ~7-fold lower than in normal cells of the same age (l_{max} was 0.65 ± 0.05 pA/pF in mutant versus 4.5 ± 0.8 pA/pF in normal), activation of the L-type current was significantly faster (τ activation at +40 mV was 28 ± 7 ms in mutant versus 57 ± 8 ms in normal), charge movements were ~2.5-fold lower (Q_{max} was 2.5 ± 0.2 nC/ μ F in mutant versus 6.3 ± 0.7 nC/ μ F in normal), Ca²⁺ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of β_1 -null cells by lipofection with β_1 cDNA reestablished spontaneous or evoked contractions in ~10% of cells after 6 days and ~30% of cells after 13 days. In contracting β_1 -transfected myotubes there was a complete recovery of the L-type current density (l_{max} was 6.7 ± 0.4 nC/ μ F), and the amplitude and voltage dependence of Ca²⁺ transients evoked by depolarizations. Ca²⁺ transients of transfected cells were unaltered by the removal of external Ca²⁺ or by the block of the L-type Ca²⁺ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in β_1 -transfected β -null myotubes shows that the β_1 subunit is essential for the functional expression of the DHPR complex.

INTRODUCTION

Excitation-contraction (EC) coupling is the process whereby muscle cell depolarization increases the Ca²⁺ permeability of the sarcoplasmic reticulum (SR) resulting in a transient increase in myoplasmic Ca²⁺. Two molecular complexes involved in this transduction are the dihydropyridine receptor (DHPR), which functions as a voltage sensor in the transverse tubular membrane, and the ryanodine receptor (RyR), which releases Ca²⁺ from the SR. The DHPR of skeletal muscle is composed of α_{1S} , β_1 , α_2/δ , and γ subunits. The α_1 subunit contains the binding site for the DHPs, the Ca²⁺ pore, and the voltage sensor (Hofmann et al., 1994). EC coupling is thought to be controlled by tetrads of four DHPRs juxtaposed to tetrads of four RyRs (Flucher and Franzini-Armstrong, 1996).

The β subunit of the DHPR is an ~55 to 65-kDa cytoplasmic protein which interacts with the α_1 subunit (Pragnell et al., 1994). β subunits are encoded by four different genes and several splice variants have been described. The predominant isoform of adult skeletal muscle is β_{1a} , herein called β_1 (Ruth et al., 1989; Pragnell et al., 1991). The properties of L-type Ca²⁺ channels determined by the interaction of β and α_1 subunits have been investigated in

© 1997 by the Biophysical Society

0006-3495/97/08/807/12 \$2.00

heterologous systems. When β_1 and α_{1S} were expressed in L-cells, the activation kinetics of the coexpressed current was faster than that found in clonal cell lines expressing α_1 alone (Lacerda et al., 1991; Varadi et al., 1991; Lory et al., 1992). Furthermore, a higher DHP binding site density was consistently observed in L-cells expressing both subunits (Lacerda et al., 1991; Varadi et al., 1991). In contrast, increases in Ca²⁺ current density or shifts in voltage dependence were not observed in all cloned cell lines expressing α_{1S} and β_1 subunits. Coexpression of the cardiac isoform α_{1C} and β_1 either stably in L-cells (Lory et al., 1993), or transiently in oocytes (Singer et al., 1991; Wei et al., 1991), CHO cells (Nishimura et al., 1993) and HEK cells (Perez-Garcia et al., 1995; Kamp et al., 1996) invariably resulted in Ca²⁺ currents with densities much higher than those of control cells expressing α_{1C} alone. These results show that DHPR β subunits contribute to fundamental electrophysiological properties of Ca²⁺ channels.

The participation of the α_1 subunit in EC coupling has been investigated in dysgenic myotubes that lack the α_{1S} subunit and also lack EC coupling (Tanabe et al., 1988; Powell et al., 1996; Flucher and Franzini-Armstrong, 1996). Expression of α_{1S} restores the L-type Ca²⁺ current and the electrically evoked cell contraction. EC coupling persists in the absence of external Ca²⁺, consistent with the properties of EC coupling in normal skeletal muscle. These results and others involving expression of α_{1C} have solidified the view that α_1 determines to a large extent the type of EC coupling expressed in the muscle cell (Adams et al., 1990; Tanabe et al., 1990).

Received for publication 26 February 1997 and in final form 9 May 1997. Address reprint requests to R. Coronado, Dept. of Physiology, University of Wisconsin, 1300 University Ave., Madison, WI 53706. Tel.: 608-263-7487; Fax: 608-265-5512; E-mail: blmlab@vms2.macc.wisc.edu.

Volume 73 August 1997

The involvement of the β subunit in EC coupling has been examined in β_1 -null cells from knock-out mice carrying a null mutation in the β_1 gene (Gregg et al., 1996; Strube et al., 1996). Intercostal β_1 -null myotubes, like dysgenic myotubes, fail to contract in response to electrical stimulation despite the presence of normal action potentials, SR Ca^{2+} storage and caffeine-induced SR Ca^{2+} release capacities. Strube et al. (1996) showed that β_1 -null cells have a low density of charge movements and do not generate Ca²⁺ transients in response to depolarization. Evidently, β_1 -null cells fail to transduce depolarization into SR Ca^{2+} release due either to the low density of voltage sensors or to the specific absence of β_1 from the voltage sensor. Gregg et al. (1996) suggested that the β_1 subunit may have additional roles related to the targeting of α_{1S} subunits to the transverse tubular membrane, since β_1 -null cells are deficient in α_{1S} subunits, whereas dysgenic cells are not deficient in β_1 subunits.

In the present study, we investigated EC coupling in β_1 -null cells after transfection with a cDNA encoding the missing β_1 subunit. Expression of β_1 in β_1 -null myotubes results in a quantitative recovery of the Ca²⁺ current density seen in normal cells of the same age, the intramembrane charge movement density, the amplitude and voltage dependence of intracellular Ca²⁺ transients, and an extracellular-Ca²⁺-independent skeletal-type EC coupling within 4 to 13 days following transfection. Part of these results appeared in abstract form (Beurg et al., 1997).

MATERIALS AND METHODS

Primary cultures of mouse myotubes

Primary cultures were prepared from hindlimbs of 18-day-old mouse fetuses as described elsewhere, with some changes (Takekura et al., 1994). Homozygotes (*cchb1^{-/-}*) for the β_1 -null mutation, hereafter called β_1 -null or mutant, were recognized as described (Gregg et al., 1996). Controls, hereafter called normals, were either heterozygotes $(cchb1^{+/-})$ or wild type (+/+). Dissected muscles were incubated for 9 min at 37°C in Ca²⁺/Mg²⁺-free Hanks balanced salt solution (136.9 mM NaCl, 3 mM KCl, 0.44 mM KH₂PO₄, 0.34 mM NaHPO₄, 4.2 mM NaHCO₃, 5.5 mM glucose, pH 7.2) containing 0.25% (w/v) trypsin and 0.05% (w/v) pancreatin (Sigma, St. Louis, MO). After centrifugation, mononucleated cells were resuspended in plating medium containing 78% Dulbecco's modified Eagle's medium with low glucose (DMEM, Gibco BRL, Gaithersburg, MD), 10% horse serum (HS, Sigma), 10% fetal bovine serum (FBS, Sigma), 2% chicken embryo extract (CEE, Gibco) and plated on plastic culture dishes coated with gelatin at a density of $\sim 1 \times 10^4$ cells per dish. Cultures were grown at 37°C in 8% CO₂. After the fusion of myoblasts (7 days), the medium was replaced with a FBS-free medium (88.75% DMEM, 10% horse serum, 1.25% CEE) and cells were incubated in 5% CO2. All media contained 0.1% v/v penicillin and streptomycin (Sigma).

Transfection of cultured myoblasts

 β_1 -null cells were transfected with an expression plasmid encoding the mouse β_{1a} subunit of the DHPR. A full-length mouse β_{1a} cDNA was subcloned into the pSG5 expression plasmid (Stratagene Inc., La Jolla, CA) containing the early simian virus-40 (SV40) promoter. Transfections were performed by lipid-mediated DNA transfer using a mixture of DOTAP

(*N*-[1-(2,3-dioleoyloxy)propyl]-*N*,*N*,*N*-trimethylammonium methyl sulfate) and DOPE (dioleoyl phosphatidylethanolamine) provided by the Vector Core Laboratory at the Waisman Center, University of Wisconsin. Cells were exposed for 2–3 h to a transfection solution prepared by mixing DOTAP and DNA in a ratio of 20 μ g lipid to 5 μ g plasmid DNA per each 35-mm plate of cells.

Ca²⁺ current and charge movements

Whole-cell recordings were performed as described previously (Strube et al., 1996). We used an Axopatch 1D amplifier and a headstage with a 50 MΩ feedback resistor (Axon Instruments, Foster City, CA). Linear capacitance and leak currents were compensated with an analog circuit. Effective series resistance was compensated up to the point of amplifier oscillation with the Axopatch circuit. All experiments were performed at room temperature. The external solution was (in mM) 130 TEA (tetraethylammonium) methanesulfonate, 10 CaCl₂, 1 MgCl₂, 10⁻³ TTX (tetrodotoxin), and 10 HEPES titrated with TEA(OH) to pH 7.4. The pipette solution consisted of (in mM) 140 Cs aspartate, 5 MgCl₂, 0.1 EGTA (when Ca²⁺ transients were recorded) or 5 EGTA (all other recordings), and 10 MOPS titrated with CsOH to pH 7.2. Patch pipettes had a resistance of 2-5 $M\Omega$ when filled with the pipette solution. For recordings of charge movement, the external solution was supplemented with 0.5 mM CdCl₂ and 0.1 mM LaCl₃ to block the ionic Ca²⁺ currents. A prepulse protocol similar to that described by Adams et al. (1990) was used to measure the immobilizationresistant component of charge movement. This protocol was the same as protocol B of Strube et al. (1996). Voltage was first stepped from holding potential -80 mV to -20 mV for 1 s, then to -50 mV for 5 ms, then to test potential P for 25 ms, then to -50 mV for 30 ms and finally to the -80mV holding potential. Subtraction of linear components was assisted by a P/4 procedure following the test pulse. P/4 pulses were in the negative direction, had a duration of 25 ms, and were separated by 500 ms. Currents were sampled at 200-250 μ s per point, filtered with a low-pass Bessel filter at 2 KHz, and analyzed with pClamp (Axon Instruments) and Sigmaplot-Jandel (San Rafael, CA) softwares.

Intracellular Ca²⁺ transients measurement

Intracellular Ca²⁺ was monitored with the fluorescent Ca²⁺ indicator fluo-3 (Molecular Probes, Eugene, OR) in a setup described previously (Strube et al., 1996). We used an inverted microscope equipped with a monochromator for probe excitation and photomultiplier tube for epifluorescent emission detection. Cells were loaded with 1 μ M fluo-3 AM (Molecular Probes) for 20–30 min at room temperature. Fluorescence excitation was set at 488 nm. A dichroic mirror centered at 505 nm and an emission barrier filter centered at 535 nm were used to separate excitation from emission. During voltage-clamp protocols, the emission sampling frequency was 200 Hz. Background fluorescence from a field without cells was subtracted from the sampled emission.

External stimulation

The cell culture media was replaced with Krebs solution consisting (in mM) of NaCl (136), KCl (5), CaCl₂ (2), MgCl₂ (1), HEPES (10), and titrated with Na0H to pH 7.4. Cells were placed between two platinum wires separated at the tip by a distance of $\sim 100 \ \mu$ m. A single test pulse of fixed duration (5 ms) and intensity (>20 V) was applied with a Grass stimulator (Model S48, W. Warwick, RI). Cell movement was visualized under phase contrast at $\sim 100 \times$ magnification. To establish the yield of rescued cells in dishes of β_1 -transfected β_1 -null cells, we determined the voltage threshold for observing a twitch in cultures of normal cells run in parallel. The test voltage for dishes of transfected cells was set $\sim 10\%$ above the threshold estimated for normal cells.

TABLE 1 Contractile response of normal, p_1 -null, and p_1 -transfected my	yotubes
--	---------

	Cell Culture (Days)					
	8–9	10–11	12–13	14–15	16–17	
Normal						
Contracting cells/tested cells	81/149	157/284	278/410	165/185	20/25	
% Contracting cells	54.3	55.3	67.8	89.2	80	
Total cultures	3	6	7	5	1	
β_1 -null						
Contracting cells/tested cells	0/240	0/200	0/460	0/210	0/90	
% Contracting cells	0	0	0	0	0	
Total cultures	6	7	11	4	2	
β_1 -transfected						
Contracting cells/tested cells	17/218	26/280	101/472	63/234	21/75	
% Contracting cells	7.8	9.3	21.4	26.9	28	
Total cultures	6	7	11	4	2	

Cell contraction was confirmed by visual inspection. Transfection was performed on day 3 or 4 of cell culture. Each cell culture was prepared from a separate litter of mouse embryos.

Chemicals

Deionized glass-distilled water was used in all solutions. All salts were reagent grade. Nifedipine and Bay K 8644 were made as 10-mM and 5-mM stocks in absolute ethanol. Nifedipine and TTX were from Sigma. Bay K 8644 was from Calbiochem (La Jolla, CA).

Curve fitting

For each cell, the voltage dependence of charge movements (Q), Ca²⁺ conductance (G), and peak intracellular Ca²⁺ (*F/Fo*) was fitted according to a Boltzmann equation, $A = A_{max}/\{1 + \exp[-(V_{-} V_{2/2})/k]\}$ as described previously (Strube et al., 1996). A_{max} was either Q_{max} , G_{max} , or *F/Fo*_(max),

FIGURE 1 Ca^{2+} currents from a normal, β_1 -null and β_1 -transfected myotube in response to a 1-s depolarizing voltage step from a holding potential of -40 mV to the indicated potential. The lower trace at -30 mV shows the Ca^{2+} current in the same cell in response to a 300-ms voltage step from a holding potential of -80 mV. Cell capacitance was 540, 395, and 323 pF for the normal, β_1 -null, and β_1 -transfected cells, respectively.

 V_{2} is the potential at which $A = A_{\max}/2$, and k is the slope factor. The time constant τ_1 , describing activation of Ca^{2+} current, was obtained from a fit of the pulse current at each voltage according to $I(t) = K[1 - (\exp - t/\tau_1)] \exp - t/\tau_2$, where K is constant and τ_2 describes inactivation. All averages are presented as mean \pm SE.

RESULTS

Previous observations showed that neither muscles (Gregg et al., 1996) nor single myotubes (Strube et al., 1996) from end-gestation β_1 -null mice were able to contract in response to external electrical stimulation or during depolarizing potentials under whole-cell clamp. The reappearance of the electrically evoked twitch was therefore conveniently used to identify individual cells in dishes of β_1 -transfected cells that were successfully rescued. Table 1 shows the percentage of myotubes in a culture that transiently contract in response to external stimulation. As expected, the number of normal cells responding to the stimulation increased with the age of the culture, reflecting the stage of maturation of the myotubes. After a week of culture, contractions were seen in $\sim 50\%$ of normal myotubes. After 14 or 15 days, \sim 90% of normal cells responded to the stimulation. Similar results have been described by others (Grouselle et al., 1991; Romey et al., 1989). In β_1 -null myotubes, contraction was not observed at any stage of cell culture, indicating that the missing subunit is essential for normal myotube function. In cells transfected with the β_1 cDNA, there was recovery of EC coupling beginning at day 8 or 9 of cell culture (3 or 4 days following lipofection). In young transfected cells, mechanical activity was often slow and localized. The percentage of contracting cells increased with the age of cultures and reached between 21 and 28% after 2 weeks. In older transfected cells, twitches were usually fast and global. In 2-week-old cultures, the percentage of mutant cells rescued by the transfection, relative to the activity of normal cells of the same age, was $\sim 30\%$ (26.9/89.2). All cells identified below as β_1 -transfected were selected on the basis of their ability to contract in response to external stimulation.

Fig. 1 shows whole-cell Ca^{2+} currents in response to 1-s depolarizing test pulses from a holding potential of -40 mVin a normal, β_1 -null, and β_1 -transfected myotube at day 12 to 15 of culture. The charge carrier was 10 mM Ca²⁺ throughout this work. In all whole-cell recordings of normal (50 cells) and rescued (29 cells) myotubes, we consistently observed a high-voltage-activated sustained Ca²⁺ current, typical of skeletal muscle previously identified in normal myotubes in culture as the L-type Ca²⁺ current (Cognard et al., 1986; Beam and Knudson, 1988). The sustained Ca²⁺ current of β_1 -null myotubes was considerably smaller than that of normal cells (54 of 69 cells) and in some cells, this current was undetectable (15 of 69 cells). The low density of the sustained Ca^{2+} current in β_1 -null myotubes agreed with previous results (Strube et al., 1996). When the holding potential was -80 mV, we observed in all cases a lowvoltage-activated T-type Ca^{2+} current. These are shown in

Fig. 1 in response to a shorter test pulse (300 ms) to -30 mV. Robust T-type Ca²⁺ currents were seen in ~40% of normal, 70% of β_1 -null, and 50% of transfected cells. In order to compare cells from different cultures, we investigated the extent to which the Ca²⁺ current density varied with cell age. Fig. 2 shows Ca²⁺ current densities of normal, β_1 -null, and β_1 -transfected myotubes kept in culture for up to 16 days. On average, the maximal current density remained unchanged after 8 days of cell culture. Based on these results, the data from cells kept in culture between 8 to 16 days were pooled and averaged.

Fig. 3 A shows Ca²⁺ current-voltage relationships in normal, β_1 -null, and β_1 -transfected myotubes. Measurements correspond to the peak current and current at the end of the 300-ms pulse from a holding potential of -80 mV. In all cell types, the T-type current activated at $\sim -40 \text{ mV}$ and had a maximum density at -20 mV, and the L-type current

FIGURE 2 Maximum density of Ca^{2+} current at different days in cell culture. Current was measured at +20 mV from a holding potential of -40 mV in the indicated number of cells, each represented by a single dot. A linear regression of the maximum Ca^{2+} current density is shown by the line.

β₁-NULL

β₁-TRANSFECTED

FIGURE 3 Voltage dependence of the average Ca^{2+} current in normal (13 cells), β_1 -null (12 cells), and β_1 -transfected (12 cells) myotubes. Curves in (A) are in response to voltage steps of 300 ms from a holding potential of -80 mV for the peak Ca^{2+} current and the current at the end of the pulse. Curves in (B) are for the same voltage step from a holding potential of -80 mV or -40 mV for the current at the end of the pulse. The maximum Ca^{2+} current density in (B) is $4.5 \pm 0.7 \text{ pA/pF}$ in normal, $0.65 \pm 0.05 \text{ pA/pF}$ in mutant myotubes, and $4.0 \pm 0.9 \text{ pA/pF}$ in β_1 -transfected cells.

activated at ~ -10 mV and had a maximum density at +20mV. Normal and rescued cells had T-type current densities lower than those of β_1 -null cells. This reflected the lower percentage of normal and rescued cells with measurable T-type currents. Fig. 3 B shows the voltage dependence of the end-pulse current from a holding potential -80 mV or -40 mV. The sustained L-type Ca²⁺ current was invariant with holding potential, indicating there was no contamination of the end-pulse current with T-type Ca^{2+} current. Consequently, the current at the end of a 300-ms pulse was used to estimate the density of the sustained Ca^{2+} current in normal, β_1 -null, and β_1 -transfected cells. Normal myotubes had a large end-pulse Ca^{2+} current with a maximum density of 4.5 \pm 0.7 pA/pF (13 cells) at +20 mV. In β_1 -null cells the density was $0.65 \pm 0.05 \text{ pA/pF}$ (12 cells), a reduction of ~7-fold. In β_1 -transfected cells, the end-pulse Ca²⁺ current recovered to a maximum density of 4 ± 0.9 pA/pF (12 cells). This value was statistically indistinguishable from that of normal cells (unpaired *t*-test, p < 0.05). The reduction in end-pulse current of β_1 -null cells was significantly less than the \sim 13-fold reduction seen in myotubes from end-gestation β_1 -null embryos (Strube et al., 1996). Fig. 4 shows Ca^{2+} conductance-voltage (G-V) curves computed by extrapolation of currents to the reversal potential. The lines correspond to a Boltzmann fit to the population average. The fitted G-V curve of β_1 -transfected cells was similar to that of normal cells, whereas that of β_1 -null cells was less steep and was shifted ~ 9 mV toward positive potentials.

NORMAL

Averages of Boltzmann parameters fitted to each cell separately are shown in Table 2. From these results we conclude that the functional expression of the β_1 subunit in

FIGURE 4 Voltage dependence of the average Ca²⁺ conductance in normal (13 cells), β_1 -null (12 cells), and β_1 -transfected myotubes (12 cells). Conductance was normalized according to the mean maximum conductance (G_{max}) of each group of cells. Curves correspond to a Boltzmann fit of the population mean *G-V* curve. Parameters of the fit were $V_{V_2} = 11.0 \text{ mV}$, 20.3 mV, and 11.1 mV; k = 4.1 mV, 8 mV, and 4.71 mV for normal, β_1 -null, and β_1 -transfected myotubes, respectively.

	G-V			Q-V			F/Fo-V		
	G _{max} (pS/pF)	V _{1/2} (mV)	k (mV)	$Q_{\rm max}$ (nC/ μ F)	V _{1/2} (mV)	k (mV)	F/Fo _(max)	V _{1/2} (mV)	k (mV)
Normal	98.2 ± 13.2 (13)	11 ± 2.4	4.1 ± 0.6	6.3 ± 0.7 (10)	3.8 ± 3	13.7 ± 0.8	1.5 ± 0.1 (14)	-2.6 ± 1.8	5 ± 0.6
β_1 -null	$22 \pm 3.6(12)$	20.3 ± 1.3	8 ± 0.7	2.5 ± 0.2 (13)	-12.3 ± 4.2	11.4 ± 1		_	_
β_1 -transfected	109.4 ± 7.8 (12)	11.1 ± 1.8	4.7 ± 0.6	6.7 ± 0.4 (8)	1.9 ± 4.5	13 ± 0.7	1.4 ± 0.1 (17)	0.7 ± 1.6	6.3 ± 0.8

TABLE 2 Boltzmann parameters of Ca²⁺ conductance, charge movements, and Ca²⁺ transients in normal, β_1 -null, and β_1 -transfected myotubes

Boltzmann parameters G_{max} , $V_{1/2}$, and k (mean \pm SE) were fitted to the G-V, Q-V, and F/Fo-V curves of each cell. The number of cells is shown in parentheses.

 β_1 -null cells is sufficient to rescue the density and the voltage dependence of the L-type Ca²⁺ current.

We verified that the rescued Ca²⁺ current had the pharmacological characteristics of an L-type current by determining the increase in end-pulse current when cells were exposed to the DHP agonist Bay K 8644. Fig. 5 shows that 5 μ M Bay K8644 produced a characteristic increase in maximum Ca²⁺ current and a moderate negative shift of the *I-V* curve in the three cell types. The percentage of stimulation of the end-pulse current measured at the peak of the *I-V* curve was 36 ± 11% (6 cells) in normal cells, 38 ± 14% (6 cells) in rescued cells, and 135 ± 21% in β_1 -null cells (13 cells). The stimulation of the rescued Ca²⁺ current by Bay K 8644 and the inhibition by 5 μ M nifedipine (data not shown) showed that the Ca²⁺ current of β_1 -transfected cells was sensitive to DHPs to the same extent as the normal L-type Ca²⁺ current.

To further verify that the L-type Ca^{2+} current in normal and transfected myotubes is identical, we compared the kinetics of activation. We used test pulses of 1 s from a holding potential of -40 mV to fit the entire activation phase of the L-type current and to suppress the T-type current if present. Fig. 6 A shows scaled traces of L-type current at +20 mV in normal, β_1 -null, and β_1 -transfected myotubes. The Ca²⁺ current activated much slower in the normal and β_1 -transfected myotubes than in the β_1 -null myotube. Furthermore, inactivation was clearly present in the normal and transfected cell but not in the β_1 -null cell. The pulse current was fit in each case with I(t), described in Materials and Methods. This equation was derived from a linear kinetic scheme consisting of three states: closed, open, and inactive. A fit of I(t) to the pulse current is shown by the continuous curve superimposed on the digitized data. In all cell types, there was a good agreement between the fit and the data, indicating that the three-state model was sufficient to represent the L-type Ca^{2+} current in the range of potentials analyzed. Fig. 6 B shows the time constant of activation of the L-type Ca^{2+} current obtained from the fit of I(t) in the range of 0 mV to +40 mV. The time constant of activation of the β_1 -null current was significantly smaller than that of normal or β_1 -transfected Ca²⁺ cells at the same potential (unpaired t-test, p < 0.05). Furthermore, the acti-

 β_1 -NULL

β_1 -TRANSFECTED

FIGURE 5 The stimulation of the average Ca^{2+} current by Bay K 8644 is shown in normal (6 cells), β_1 -null (13 cells), and β_1 -transfected (6 cells) myotubes. Ca^{2+} current was measured at the end of a voltage step of 300-ms during a control period and 10 min after addition of 5 μ M Bay K 8644.

A

FIGURE 6 Scaled traces of Ca^{2+} current in response to a 1-s depolarizing voltage step from a holding potential of -40 mV to +20 mV are shown in (A). Curves correspond to a fit of the current at +20 mV using the equation $I(t) = K[1 - (\exp - t/\tau_1)] \exp -t/\tau_2$ with parameters K =-0.95, $\tau_1 = 52.8 \text{ ms}$, $\tau_2 = 2068 \text{ ms}$ for normal; K = -0.83, $\tau_1 = 25.7 \text{ ms}$, $\tau_2 = 8230 \text{ ms}$ for β_1 -null; and K = -1.1, $\tau_1 = 57.3 \text{ ms}$, $\tau_2 = 2742 \text{ ms}$ for β_1 -transfected myotubes. (B) shows the time constant of activation of the Ca^{2+} current obtained from a fit of I(t) for the indicated number of cells in response to a 1-s depolarization voltage step in the range of 0 mV to +40 mV from a holding potential of -40 mV.

vation time constants of normal and β_1 -transfected myotubes at the same potential were not significantly different. We also compared the inactivation time constant, τ_2 , in normal and transfected cells at a test potential of +20 mV (not shown). The inactivation time constant was 4.6 ± 1.5 s for normal myotubes (7 cells) and 4.5 ± 1.3 s for β_1 transfected myotubes (6 cells). These results demonstrated that the kinetics of the L-type current in normal and rescued cells were indistinguishable.

The recovery of the L-type Ca²⁺ current in β_1 -transfected myotubes was paralleled by a similar recovery of charge movements. Fig. 7 *A* shows recordings of nonlinear charge movements in normal, β_1 -null, and β_1 -transfected myotubes. In normal cells, the onset of ON and OFF components of charge movements occurred at ~-40 mV and increased with voltage until a plateau was reached at potentials more positive than +40 mV. In β_1 -null cells, the amplitude of the charge movement was severely depressed at all positive potentials, in agreement with previous results (Strube et al., 1996). In β_1 -transfected cells, the amplitude of charge movements was similar to that of normal cells. In Fig. 7 *B*, Q_{max} was calculated by integration of the ON component and was plotted as a function of test potential. The Q_{max} of normal myotubes was ~6.5 nC/ μ F, in agreement with previous determinations (Garcia et al., 1994; Strube et al., 1996). The population Q_{max} of β_1 -transfected myotubes was the same as that of normal cells and, furthermore, the averages of Boltzmann parameters fitted separately to each cell were indistinguishable (Table 2).

To establish if charge movements in rescued cells were significant for EC coupling, we investigated the voltage dependence of intracellular Ca²⁺ transients. Fig. 8 shows Ca²⁺ transients monitored by fluo-3 fluorescence in cells stimulated by a 50-ms test pulse from a holding potential of -40 mV. The fluorescence intensity ratio F/Fo corresponds to the cell fluorescence normalized according to the resting fluorescence. In normal myotubes, Ca²⁺ transients were produced by depolarizations more positive than -10 mV. The onset of the Ca^{2+} transient was simultaneous with the onset of the pulse, which is indicated by P in the traces of fluorescence. The amplitude of the Ca^{2+} transient increased with the pulse potential and reached a plateau at potentials more positive than +10 mV. As shown in the middle panel, no Ca²⁺ transients were produced in the β_1 -null cell. Increasing the duration of the pulse to 500 ms also failed to produce a Ca²⁺ transient (not shown). In β_1 -transfected cells, Ca²⁺ transients had the same threshold as in normal cells, the onset was fast, and the amplitude at each voltage was within the normal range. For the test pulse shown in Fig. 8 to +30 mV, the time to the peak of the Ca²⁺ transient was \sim 70 ms in normal and transfected cells. The decay time constants at the same potential were fit to a single exponential and were 297 ms and 310 ms, respectively. Such values are in agreement with studies in normal rat and mouse myotubes (Grouselle et al., 1991; Garcia and Beam, 1994). The right panel of Fig. 8 shows Ca²⁺ currents in the same β_1 -transfected cell simultaneous with the cell fluorescence. A decrease in the Ca^{2+} current was obvious at +50 and +70 mV. However, no decline was observed in the amplitude of the Ca^{2+} transient at these potentials. The same observation was made in normal cells (not shown). The voltage dependence of the fluorescence ratio F/Fo measured at the peak of the Ca^{2+} transient is shown in Fig. 9 A for normal and β_1 -transfected cells. The curves correspond to a fit of the population average F/Fo-V curve according to a Boltzmann equation. In both cell types, F/Fo increased in a sigmoidal manner, reaching a maximum at depolarizations more positive than +30 mV. In β_1 -transfected cells, F/Fo_{max} was slightly lower than in normal cells (Table 2), but this difference was not statistically significant. Averages of Boltzmann parameters fitted separately to each cell are shown in Table 2. These results are in agreement with previous studies using fluo-3 (Garcia et al., 1994). For the

FIGURE 7 Asymmetric currents produced by intramembrane charge movement are shown (A) in a normal, β_1 -null, and β_1 -transfected myotubes. Currents are during the test potential P of protocol B. Cell capacitance was 288, 312, and 348 pF for the normal, β_1 -null, and β_1 -transfected cells, respectively. The voltage dependence of the average charge movements are shown (B) in normal (10 cells), β_1 -null (13 cells), and β_1 -transfected (8 cells) myotubes. Curves correspond to a Boltzmann fit of the population mean Q-V curve. Parameters of the fit were $Q_{max} = 6.3, 2.5,$ and $6.7 \text{ nC}/\mu\text{F}; V_{1/2} = 3.8, -12.3,$ and 1.9 mV; k = 13.7,11.4, and 13 mV for normal, β_1 -null, and β_1 -transfected, respectively.

same cells, Fig. 9 *B* shows the voltage dependence of the Ca^{2+} current measured at the end of the 50-ms pulse used to stimulate the Ca^{2+} transient, and Fig. 9 *C* shows the voltage dependence of the total Ca^{2+} entry during the 50-ms pulse. Ca^{2+} currents and Ca^{2+} entry decreased to almost undetectable levels for the test depolarization to +70 mV. However, the amplitude of the Ca^{2+} transient at this potential was maximum. This observation confirmed that Ca^{2+} transients in β_1 -transfected cells, like those in normal cells, are entirely controlled by voltage without participation of the Ca^{2+} current.

In principle, a component of the intracellular Ca^{2+} transient triggered by Ca^{2+} entry into the cell could have been inactivated or damaged when the whole-cell configuration was established. To rule out this possibility, we subjected cells to external stimulation without establishing a wholecell patch. As shown in Fig. 10 *A*, removal of external 2 mM Ca^{2+} from the same normal or transfected myotube did not alter the intracellular Ca^{2+} transient. Controls indicated that Ca^{2+} transients were sensitive to TTX thus resulting from cell depolarization (not shown). Often, the amplitude of Ca^{2+} transients evoked in cells by external stimulation were larger than those evoked in cells by depolarizations under voltage-clamp. This could be due to the cell size and degree of maturation, since for patch recording we preferred smaller cells, whereas the larger cells were easier to stimulate by external electrodes. Fig. 10 B shows Ca^{2+} transients in 2 mM external Ca^{2+} followed by addition of 0.1 mM LaCl₃ to the external solution to block the Ca^{2+} current. The blocker had no effect on the amplitude of the subsequent Ca²⁺ transient in either cell type. Controls indicated that 0.1 mM LaCl₃ entirely blocked Ca²⁺ currents from a holding potential of -80 mV or -40 mV (not shown). Furthermore, if a Ca²⁺ current persisted in the presence of 0.1 mM LaCl₃, the OFF component of the charge movement would have been contaminated by the presumed LaCl₃-resistant tail current. The ON and OFF components of charge movements recorded in the presence of LaCl₃ were always similar. Thus, Ca²⁺ entry under these conditions was extremely unlikely. Finally, Fig. 10 C shows that Ca^{2+} transients stimulated externally in both cell types resulted from a release of Ca²⁺ from stores sensitive to thapsigargin (TG), consistent with the identification of the Ca²⁺ stores as the sarcoplasmic reticulum. These data dem-

FIGURE 8 Intracellular Ca²⁺ transients under whole-cell clamp in normal, β_1 -null, and β_1 -transfected myotubes. Ca²⁺ currents are for the same β_1 -transfected myotube. Ca²⁺ transients were elicited by voltage steps of 50 ms from a holding potential of -40 mV to the indicated potential. *P* indicates the onset of the voltage pulse. Fluorescence was normalized according to the fluorescence *Fo* immediately before the pulse.

onstrated that β_1 -transfected cells displayed EC coupling typical of skeletal muscle cells.

DISCUSSION

The development of a skeletal muscle expression system for the β subunit of the DHPR is essential for understanding the participation of this subunit in muscle cell-specific functions such as EC coupling and transverse-tubule targeting of other DHPR subunits. Also, the mutant myotube may prove ideal for understanding the modulation of the L-type Ca²⁺ current by β subunits in a homologous expression system. The present results show that β_1 -null cells cultured for up to 3 weeks maintain the EC uncoupled phenotype. Expression of β_1 in these cells resulted in a rapid and complete recovery of the normal phenotype in 3 to 4 days after transfection. The phenotype of the rescued cells was one expected of skeletal muscle in which contractions were observed in the absence of Ca^{2+} entry into the cell. Furthermore, the density of the rescued Ca^{2+} current and charge movements were indistinguishable from those of normal cells, strongly suggesting that functional DHPR complexes were expressed at normal levels in the rescued cells. Based on the contraction evoked by external stimulation, the yield of rescued cells was \sim 30%. This value may represent a lower limit because at early stages of normal myotube development in culture, the Ca^{2+} transient is present but the resultant mechanical activity is not obvious under microscopic observation (Grouselle et al., 1991). As a function of time in culture, the contractions observed in rescued cells involved increasing amounts of cell volume, beginning with highly localized twitches after 2 days of transfection. This pattern is similar to that described in rescued dysgenic myotubes (Courbin et al., 1989; Franzini-Armstrong et al., 1991) and may be due to the expression of β_1 by only a few nuclei in the rescued β_1 -null cell. Since protein expression in the myoplasm of differentiating myotubes is controlled locally by each nucleus (Pavlath et al., 1989), the expression of β_1 and the assembly of Ca^{2+} release sites along the myotube may be heterogeneous.

Understanding how the β_1 subunit may modulate the functional expression of the L-type current in the β_1 -null myotube requires that we establish whether the L-type current of β_1 -null cells originates from DHPR complexes of α_{1S} without the β_1 subunit or from another α_1 subunit that could be expressed in the β_1 -null cell. Strube et al. (1997)

FIGURE 9 Voltage dependence of the Ca²⁺ transient and Ca²⁺ current in normal and β_1 -transfected myotubes. (A) shows peak fluorescence increase during the Ca²⁺ transient as a function of the step potential in normal (14 cells) and β_1 -transfected (17 cells) myotubes under whole-cell clamp. Ca²⁺ transients were elicited by voltage steps of 50 ms from a holding potential of -40 mV. Curves correspond to Boltzmann fit of the population mean peak fluorescence ratio. Parameters of the fit were $F/Fo_{max} = 1.5$ and 1.4; $V_{V_2} = -2.6$ and 0.4 mV; k = 8.2 mV and 8.4 mV for normal and β_1 -null, respectively. For the same cells, (B) shows the voltage dependence of the peak Ca²⁺ current, and (C) shows the integral of the Ca²⁺ current normalized according to the cell capacitance.

compared I_{dys} , the background L-type Ca²⁺ current of α_{1S} deficient dysgenic skeletal muscle (Adams and Beam, 1989), and the Ca²⁺ current of β_1 -null myotubes, herein called $I_{\beta null}$. In cultures of the same age, $I_{\beta null}$ and I_{dys} were expressed at similar densities. However, I_{dys} activated much faster and at more negative potentials than $I_{\beta null}$, and Bay K 8644 stimulated I_{dys} more strongly than $I_{\beta null}$. Also, when 10 mM Ca²⁺ was replaced by 10 mM Ba²⁺, the Ba²⁺/ Ca²⁺ peak current ratio for I_{dys} was ~2 (Adams and Beam, 1989) whereas that for $I_{\beta null}$ is closer to 1 (unpublished results). These observations suggest that $I_{\beta null}$ and I_{dys} have different molecular compositions. $I_{\beta null}$ could originate from β -less Ca²⁺ channel complexes involving α_{1S} and possibly γ and α_2/δ subunits. However, our results do not discard the possibility that $I_{\beta null}$ may represent a mixture of I_{dys} and current from skeletal-type DHPR complexes without the β_1 subunit.

In the following, we compare our results to observations made previously in L-cells (Lacerda et al., 1991; Varadi et al., 1991; Lory et al., 1992) under the assumption that a skeletal-type DHPR complex without β_1 is responsible for the bulk of $I_{\beta null}$. Bay K8644 produced a strong stimulation of $I_{\beta null}$ and a much weaker stimulation of the rescued and normal Ca²⁺ currents. These observations would be consistent with results in L-cells showing that Bay K 8644 produced a stronger stimulation of the Ca²⁺ current of cells expressing α_{1S} alone than the Ca²⁺ current of cells expressing α_{1S} and β_1 (Varadi et al., 1991, Lory et al., 1992). On the other hand, expression in L-cells of the α_{1S} subunit without the β_1 subunit results in Ca²⁺ currents with activation kinetics slower than those of L-cells, expressing both α_{1S} and β_1 subunits (Lacerda et al., 1991; Varadi et al., 1991). In skeletal myotubes, the β_1 -null Ca²⁺ current was found to be faster than the rescued Ca²⁺ current. Thus it appears that in our case the β_1 subunit slows rather than accelerates Ca²⁺ current activation. It may be possible that the slowing of the Ca²⁺ current produced by the β_1 subunit may be a manifestation of a muscle-specific event in which the β_1 subunit might play a permissive or a structural role. There are many known cases in which properties of expressed Ca²⁺ current varies depending on the expression system. For example, a moderate shift in the current-voltage curve of the coexpressed $\alpha_{1C}\beta_1 \text{ Ca}^{2+}$ current, amounting to $\sim 10 \text{ mV}$ in the negative direction, was observed in oocytes (Singer et al., 1991; Wei et al., 1991) but not in HEK cells (Perez-Garcia et al., 1995; Kamp et al., 1996). Negative shifts in the current-voltage curve of the Ca²⁺ current generated by the α_{1C} subunit have also been reported following coexpression with β_2 , β_3 , or β_4 subunits in oocytes (Perez-Reyes et al., 1992; Neely et al., 1993; Castellano et al., 1993). However, this was not the case when α_{1C} and β_3 were coexpressed in HEK cells (Josephson and Varadi, 1996). Taken together, these results suggest that different host cells may process Ca²⁺ channel subunits differently. Furthermore, β subunits may perform multiple functions, which are perhaps manifested differently, depending on the host cell.

The Q_{max} of normal cells measured in this study (6.3 ± 0.7 nC/ μ F) agreed with measurements in dissociated rat myotubes (Beam and Knudson, 1988) and dissociated or cultured mouse myotubes (Garcia et al., 1994; Strube et al., 1996). In β_1 -null cells, the total charge movement was reduced ~2.5-fold. The lower density of charge movements in the mutant cell may be insufficient to initiate a transduction signal between the DHPR and the RyR channel, and could possibly be one factor determining the EC uncoupling. However, this may not be the only explanation because young normal myotubes with comparable charge movements often display Ca²⁺-independent EC coupling (Strube et al., 1994). Transfection with β_1 cDNA restored the normal charge movement density and rescued the functional state of the voltage sensor. It is possible that the recovery of the L-type Ca²⁺ current and the recovery of EC coupling may both require the assembly of DHPRs into

NORMAL

β₁-TRANSFECTED

3

2

F/Fo

3

A

1 2 mM CaCl 2 mM CaCl, 0 2 4 0 2 4 0 2 4 0 2 Time (s) Time (s) B 3 3 F/Fo F/Fo 2 2 1 1 6///100/01X1 2 mM CaC 2 mM CaC 2 2 4 0 2 4 0 2 0 4 0 Time (s) Time (s) С 3 3 2 2 F/Fo F/Fo 1 1 2 mM CaC 2 mM CaCl 2 2 2 0 0 2 0 4 0 4 4

FIGURE 10 Ca²⁺ transients elicited by extracellular stimulation in normal and β_1 -transfected myotubes. (A) shows the same myotube in Krebs solution and Krebs solution without CaCl₂. (B) shows a different myotube in Krebs solution before and after supplementation with 100 μ M LaCl₃. (C) shows a different myotube in Krebs solution before and after supplementation with 1 μ M TG.

tetrads and the establishment of functional interactions between DHPRs and RyRs. Nakai et al. (1996) showed in dyspedic skeletal muscle (RyR1-deficient), that Ca²⁺ currents and formation of tetrads are reduced. Thus, the β_1 subunit may be required for the assembly of DHPR complexes into tetrads or may be a critical component of the transduction itself. Both roles may be different from the proposed role of β subunits in the membrane targeting of the α_1 subunit (Chien et al., 1995).

Molecular interactions of DHPRs and RyRs result in local releases of Ca^{2+} or sparks from individual triads that have been measured by confocal microscopy (Tsugorka et al., 1995; Klein et al., 1996). Conklin et al. (1997) recently showed that Ca^{2+} sparks in β_1 -null cells are kinetically different from those of normal cells. Sparks in mutant cells are significantly larger in diameter and last longer than their counterparts in normal cells. Thus, the β_1 subunit may be a critical element controlling the kinetics of Ca^{2+} sparks. The β_1 expression system now appears indispensable for testing numerous hypotheses regarding the functions proposed for the β subunit in assembly of DHPR-RyR complex and functional aspects of EC coupling.

This work was supported by National Institutes of Health Grant HL-47053 (to R.C., P.A.P., and R.G.G.); National Science Foundation Grant IBN-93/9340 (to R.G.G. and P.A.P.), and grants from the Wisconsin Heart Association (to M.B.) and Philippe Foundation (to M.B. and C.S.).

Time (s)

REFERENCES

Time (s)

- Adams, B. A., T. Tanabe, A. Mikami, S. Numa, and K. G. Beam. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. *Nature*. 346:569–572.
- Adams, B. A., and K. G. Beam. 1989. A novel calcium current in dysgenic skeletal muscle. J. Gen. Physiol. 94:429-444.
- Beam, K. G., and C. M. Knudson. 1988. Calcium current in embryonic and neonatal mammalian skeletal muscle. J. Gen. Physiol. 91:781–798.
- Beurg, M., M. Sukhareva, P. Powers, R. Gregg, and R. Coronado. 1997. Recovery of excitation-contraction coupling and L-type calcium current in β_1 -null myotubes with β_1 dihydropyridine receptor subunit cDNA. *Biophys. J.* 72:377*a* (Abstr.).
- Castellano, A., X. Wei, L. Birnbaumer, and E. Perez-Reyes. 1993. Cloning and expression of a neuronal calcium channel beta subunit. J. Biol. Chem. 268:12359-12366.
- Chien, A. J., X. L. Zhao, R. E. Shirokov, T. S. Puri, C. F. Chang, D. Sun, E. Rios, and M. M. Hosey. 1995. Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca²⁺ channels. J. Biol. Chem. 270:30036-30044.

- Cognard, C., M. Lazdunski, and G. Romey. 1986. Different type of Ca²⁺ channels in mammalian skeletal cells in culture. *Proc. Natl. Acad. Sci.* USA. 83:517–521.
- Conklin, M., P. Powers, R. Gregg, and R. Coronado. 1997. Spontaneous calcium sparks in β_1 knock-out skeletal muscle in dihydropyridine receptor subunits. *Biophys. J.* 72:45*a* (Abstr.).
- Courbin, P., J. Koenig, A. Ressouches, K. G. Beam, and J. A. Powell. 1989. Rescue of excitation-contraction coupling in dysgenic muscle by addition of fibroblasts in vitro. *Neuron.* 2:1341–1350.
- Flucher, B., and C. Franzini-Armstrong. 1996. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. *Proc. Natl. Acad. Sci. USA*. 93:8101–8106.
- Franzini-Armstrong, C., M. Pincon-Raymond, and F. Rieger. 1991. Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. *Dev. Biol.* 146:364–376.
- Garcia, J., and K. G. Beam. 1994. Measurement of calcium transients and slow calcium current in myotubes. J. Gen. Physiol. 103:107-123.
- Garcia, J., T. Tanabe, and K. G. Beam. 1994. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J. Gen. Physiol. 103:125-147.
- Gregg, R. G., A. Messing, C. Strube, M. Beurg, R. Moss, M. Behan, M. Sukhareva, S. Haynes, J. A. Powell, R. Coronado, and P. Powers. 1996. Absence of the β subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α_1 subunit and eliminates excitation-contraction coupling. *Proc. Natl. Acad. Sci. U.S.A.* 93:13961–13966.
- Grouselle, M., J. Koenig, M. L. Lascombe, J. Chapron, P. Meleard, and D. Georgescauld. 1991. Fura-2 imaging of spontaneous and electrical oscillations of intracellular free Ca²⁺ in rat myotubes. *Pflugers Arch.* 418:40–50.
- Hofmann, F., M. Biel, and V. Flockerzi. 1994. Molecular basis for Ca²⁺ channel diversity. Annu. Rev. Neurosci. 17:399-418.
- Josephson, I. R., and G. Varadi. 1996. The β subunit increases Ca²⁺ currents and gating charge movements of human cardiac L-type Ca²⁺ channels. *Biophys. J.* 70:1285–1293.
- Kamp, T., M. T. Perez-Garcia, and E. Marban. 1996. Enhancement of ionic current and charge movement by coexpression of calcium channel β_{1A} subunit with α_{1C} subunit in a human embryonic kidney cell line. *Am. J. Physiol.* 492:89–96.
- Klein, M. G., H. Cheng, L. F. Santana, Y. H. Jiang, W. J. Lederer, and M. F. Schneider. 1996. Two mechanisms of quantized calcium release in skeletal muscle. *Nature*. 379:455–458.
- Lacerda, A. E., H. S. Kim, P. Ruth, E. Perez-Reyes, V. Flockerzi, F. Hofman, L. Birnbaumer, and A. M. Brown. 1991. Normalization of current kinetics by interaction between the a1 and b subunits of the skeletal muscle dihydropyridine-sensitive Ca^{2+} channel. *Nature.* 352: 527–530.
- Lory, P., G. Varadi, and A. Schwartz. 1992. The beta subunit controls the gating and the dihydropyridine sensitivity of the skeletal muscle Ca²⁺ channel. *Biophys. J.* 63:1421–1424.
- Lory, P., G. Varadi, D. F. Slish, M. Varadi, and A. Schwartz. 1993. Characterization of beta subunit modulation of a rabbit cardiac L-type Ca2+ channel alpha1 subunit as expressed in mouse L cells. FEBS Lett. 315:167-172.
- Nakai, J., R. T. Dirksen, H. T. Nguyen, I. N. Pessah, K. G. Beam, and P. D. Allen. 1996. Enhanced dihydropyridine channel activity in the presence of ryanodine receptor. *Nature*. 380:72–75.
- Neely, A., X. Wei, R. Olcese, L. Birnbaumer, and E. Stefani. 1993. Potentiation by the β subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. *Science*. 262:575–578.
- Nishimura, S., H. Takeshima, F. Hofmann, V. Flockerzi, and K. Imoto. 1993. Requirement of the calcium channel beta subunit for functional conformation. *FEBS Lett.* 324:283–286.

- Pavlath, G. K., K. Rich, S. G. Webster, and H. M. Blau. 1989. Localization of muscle gene products in nuclear domains. *Nature*. 337:570–573.
- Perez-Garcia, M. T., T. J. Kamp, and E. Marban. 1995. Functional properties of cardiac L-type calcium channels transiently expressed in HEK293 cells. Role of alpha1 and beta subunits. J. Gen. Physiol. 105:289-306.
- Perez-Reyes, E., A. Castellano, H. S. Kim, P. Bertrand, E. Baggstrom, A. Lacerda, X. Wei, and L. Birnbaumer. 1992. Cloning and expression of a cardiac/brain β subunit of the L-type calcium channel. *J. Biol. Chem.* 267:1792–1797.
- Powell, J., L. Petherbridge, and B. Flucher. 1996. Formation of triads without the dihydropyridine receptor subunits in cell lines from dysgenic skeletal muscle. J. Cell Biol. 134:375–387.
- Pragnell, M., M. De Waard, Y. Mori, T. Tanabe, T. P. Snutch, and K. P. Campbell. 1994. Calcium channel β -subunit binds to a conserved motif in the I-II cytoplasmic linker of the α_1 -subunit. *Nature*. 368:67–70.
- Pragnell M., J. Sakamoto, D. Jay, and K. P. Campbell. 1991. Cloning and tissue-specific expression of the brain calcium channel β subunit. *FEBS Lett.* 291:253–258.
- Romey, G., L. Garcia, V. Dimitriadou, M. Pincon-Raymond, F. Rieger, and M. Lazdunski. 1989. Ontogenesis and localization of Ca²⁺ channels in mammalian skeletal muscle in culture and role in excitation-contraction coupling. *Proc. Natl. Acad. Sci. USA*. 86:2933–2937.
- Ruth, P., A. Rohrkasten, M. Biel, E. Bosse, S. Regulla, H. E. Meyer, V. Flockerzi, and F. Hofmann. 1989. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. *Science*. 245:1115–1118.
- Singer, D., M. Biel, I. Lotan, V. Flockerzi, F. Hofmann, and N. Dascal. 1991. The role of the subunits in the function of calcium channel. *Science*. 253:1553–1557.
- Strube, C., M. Beurg, D. Georgescauld, R. Bournaud, and T. Shimahara. 1994. Extracellular Ca²⁺-dependent and independent calcium transient in fetal myotubes. *Pflugers Arch.* 427:517–523.
- Strube, C., M. Beurg, P. A. Powers, R. G. Gregg, and R. Coronado. 1996. Reduced Ca²⁺ current, charge movement, and absence of Ca²⁺ transients in skeletal muscle deficient in dihydropyridine receptor β_1 subunit. *Biophys. J.* 71:2531–2543.
- Strube, C., M. Sukhareva, P. A. Powers, R. G. Gregg, and R. Coronado. 1997. The L-type Ca^{2+} current of β_1 -null myotubes is not a dysgenic current. *Biophys. J.* 72:147*a* (Abstr.).
- Takekura, H., L. Bennett, K. Tanabe, K. G. Beam, and C. Franzini-Armstrong. 1994. Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA. *Biophys. J.* 67:793–803.
- Tanabe, T., K. G. Beam, J. A. Powell, and S. Numa. 1988. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. *Nature*. 336: 134–139.
- Tanabe, T., K. G. Beam, B. A. Adams, T. Niidome, and S. Numa. 1990. Regions of skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. *Nature*. 346:567–569.
- Tsugorka, A., E. Rios, and L. A. Blatter. 1995. Imaging elementary events of calcium release in skeletal muscle cells. *Science*. 269:1723–1726.
- Varadi, G., P. Lory, D. Schultz, M. Varadi, and A. Schwartz. 1991. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. *Nature*. 352:159–162.
- Wei, X., E. Perez-Reyes, A. E. Lacerda, G. Schuster, M. A. Brown, and L. Birnbaumer. 1991. Heterologous regulation of the cardiac Ca²⁺ channel alpha1 subunit by skeletal muscle beta and gamma subunits. J. Biol. Chem. 266:21943–21947.