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Inversion of Markov Processes to Determine Rate Constants from
Single-Channel Data

Meyer B. Jackson
Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706 USA

ABSTRACT The determination of rate constants from single-channel data can be very difficult, in part because the
single-channel lifetime distributions commonly analyzed by experimenters often have a complicated mathematical relation to
the channel gating mechanism. The standard treatment of channel gating as a Markov process leads to the prediction that
lifetime distributions are exponential functions. As the number of states of a channel gating scheme increases, the number
of exponential terms in the lifetime distribution increases, and the weights and decay constants of the lifetime distributions
become progressively more complicated functions of the underlying rate constants. In the present study a mathematical
strategy for inverting these functions is introduced in order to determine rate constants from single-channel lifetime
distributions. This inversion is easy for channel gating schemes with two or fewer states of a given conductance, so the
present study focuses on schemes with more states. The procedure is to derive explicit equations relating the parameters of
the lifetime distribution to the rate constants of the scheme. Such equations can be derived using the equality between
symmetric functions of eigenvalues of a matrix and sums over principle minors, as well as expressions for the moments,
derivatives, and weights of a lifetime distribution. The rate constants are then obtained as roots to this system of equations.
For a gating scheme with three sequential closed states and a single gateway state, exact analytical expressions were found
for each rate constant in terms of the parameters of the three-exponential closed-time distribution. For several other gating
schemes, systems of equations were found that could be solved numerically to obtain the rate constants. Lifetime
distributions were shown to specify a unique set of real rate constants in sequential gating schemes with up to five closed
or five open states. For kinetic schemes with multiple gating pathways, the analysis of simulated data revealed multiple
solutions. These multiple solutions could be distinguished by examining two-dimensional probability density functions. The
utility of the methods introduced here are demonstrated by analyzing published data on nicotinic acetylcholine receptors,
GABAA receptors, and NMDA receptors.

INTRODUCTION

The kinetic analysis of gating transitions of single ion
channels has yielded a wealth of information about the
conformational dynamics of these proteins. Most kinetic
analysis of channel gating is based on the assumption of a
Markov process, in which a small number of closed and
open states interconvert with specified rates. Using well
established mathematical methods one can derive the life-
time distributions for virtually any model of interest
(Colquhoun and Hawkes, 1981, 1995; Fredkin et al., 1985),
and these lifetime distributions serve as a fundamental the-
oretical prediction in the analysis of experimental data.
Single-channel lifetime distributions generally take the form
of a sum of exponentials, and the best-fitting function can be
found with a number of readily available computer pro-
grams (French and Wonderlin, 1992; Jackson, 1992;
Colquhoun and Sigworth, 1995; Heinemann, 1995). Unfor-
tunately, once the fitting is accomplished it is very difficult
to use these results to determine the rate constants of the
underlying kinetic model. The problem is that although it is
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straightforward to go from a model to the predicted lifetime
distribution, it is more difficult to perform the reverse op-
eration and determine the underlying model and rate con-
stants from the parameters characterizing the lifetime dis-
tributions. This inversion problem is of considerable
practical importance because the primary goal of most ki-
netic studies of ion channels is to identify the best model
and determine the rate constants.

For simple kinetic models (i.e., models with no more than
two states aggregated into the same conductance) this in-
verse problem is straightforward. However, as models are
made more complicated by adding more states, the deter-
mination of the rate constants from experimental lifetime
distributions becomes more difficult. In fact, the majority of
ion channels investigated are governed by multi-state ki-
netic schemes of sufficient complexity to make the analysis
and interpretation of single-channel data a fairly involved
enterprise. With channels governed by such complicated
schemes, investigators are rarely able to make full use of
lifetime distributions, partly because of the difficulty of the
mathematical inversion problem. In these cases rate con-
stants can be estimated without constructing lifetime distri-
butions by using the method of likelihood maximization
(Horn and Lange, 1983; Blatz and Magleby, 1986;
Colquhoun and Sigworth, 1995; Qin et al., 1996). These
methods are very powerful, but the widespread use of life-
time distributions in the analysis of single-channel kinetics
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provides a strong incentive to improve methods of extract-
ing kinetic information from this form of data.

Another problem in the analysis of single-channel kinet-
ics is that the data often cannot be used to identify a unique
kinetic scheme. The basic connectivity of states as well as
the rate constants are then indeterminate (Fredkin et al.,
1985; Bauer et al., 1987; Kienker, 1989). The criterion for
identifiability is based on whether the number of rate con-
stants in the model is equal to the number of independent
quantities in the lifetime distributions. For models satisfying
this condition the theoretical studies cited above define a
mathematics problem that can be solved to determine the
rate constants, as well as evaluate the uniqueness of solu-
tions. The present study is of this mathematics problem.
This analysis has led to a new method for determining rate
constants from single-channel data. With the equations de-
rived here, a very small amount of code in the popular
computer program MATHCAD (Windows version 5.0;
Mathsoft, Cambridge, MA) renders quantitative estimates
of rate constants directly from lifetime distributions for
moderately complicated kinetic models of channel gating.
The performance of these equations was evaluated, and data
from published studies were used to illustrate the applica-
tion of these methods.

THEORY

General method

Channel gating is treated as a discrete-state continuous-time
aggregated Markov process. Here, the focus is on the life-
time distribution of a particular aggregate of channel states
(e.g., the aggregate of all closed states or of all open states).
We define a column vector, p, whose elements are the
probabilities of being in the different states of the aggregate,
subject to the condition of remaining in the aggregate. This
vector obeys a differential equation of the following form
(Colquhoun and Hawkes, 1995).

dp
dt =QaP (1)

The square matrix Qa is composed of interconversion prob-
abilities between every pair of states within the aggregate,
together with the probabilities of exiting transitions out of
the aggregate. Qa can also be seen as a partition taken from
the larger Q matrix that would appear in the complete
Chapman-Kolmogoroff equation for the full kinetic model
(Cox and Miller, 1965). The aggregate is denoted in Eq. 1
by the subscript a. When treating a closed-state aggregate,
the subscript will be c, and it will be understood that p is
restricted to probabilities of being in different closed states.

Equation 1 can be solved to give p(t) (Colquhoun and
Hawkes, 1981, 1995; Fredkin et al., 1985), and the sum of
the elements of p(t) gives the lifetime distribution of the

aggregate (the open-time or closed-time distribution) as a
sum of exponentials. The decay constants are the charac-
teristic values or eigenvalues Of Qa. It can be shown that the
weights of the exponentials, Xi, are given by the expression

Xi = (W IPo)i E Wij (2)

where W is a matrix in which each column is an eigenvector
of Qa. p0 denotes the probability vector at the start of a
residence in the aggregated state for which the lifetime
probability distribution is to be calculated; p0 is determined
from the stationary occupancy probabilities of the model
(Colquhoun and Hawkes, 1981, 1995).

If a channel gating scheme has n closed states and m open
states, the open-time and closed-time distributions will be
sums of n and m exponentials, respectively. Adding up the
total number of decay constants and weights gives 2(n +
m - 1) quantities to use in determining the rate constants of
a model (Fredkin et al., 1985). (The weights of a lifetime
distribution are constrained to add up to one, so the number
of usable weights is one fewer than the number of expo-
nentials.) Fredkin et al. (1985) pointed out that if there are
no loops in the gating scheme, then the number of rate
constants will also be equal to 2(n + m - 1), raising the
possibility that the decay constants and weights of the
lifetime distributions can be used to solve for the rate
constants. The question addressed here is how to do that.
The approach taken is to derive equations explicitly relating
the rate constants of the kinetic scheme to the decay con-
stants and weights of the lifetime distributions. These con-
straints are then solved to find the rate constants. In this way
the Markov process is inverted.
The constraints used here are of four basic kinds. First, a

general set of relations is exploited between the jth order
symmetric function of the eigenvalues of a matrix and the
sum over the determinants of all j x j principal minors
(Horn and Johnson, 1985). These relations derive from the
fact that the characteristic polynomial of a matrix is invari-
ant with respect to a similarity transformation. Fredkin et al.
(1985) proposed using some of these relations in the anal-
ysis of single-channel data. The highest order symmetric
function of the eigenvalues is the product of all of them, and
this is equal to the determinant of the matrix. The first order
symmetric function is the sum of the eigenvalues, and this
is equal to the trace of the matrix. An n X n square matrix
will have n such relationships, each of which can be used as
a constraint. These constraints are mathematically equiva-
lent to using explicit formulas for the eigenvalues as roots of
the characteristic equation. However, the eigenvalues can-
not be written explicitly for matrices 5 X 5 and larger,
and for 3 x 3 and 4 x 4 matrices the expressions are
complicated.

Another class of constraints can be derived as moments
of the lifetime distribution. The kth moment has the follow-
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ing general form.

n n X

(ta) = k(- 1)k>(_Q kpo)j = k(- A)k
_

j (3)
j=l j=l ij

The sum in the middle is over the elements of the vector
obtained as the product of a matrix and a vector, and the
sum on the right is over all of the exponential terms of the
lifetime distribution. Since the dimension Of Qa equals the
number of exponentials, these sums are over the same
number of terms, n. Equation 3 can be derived by multiply-
ing Eq. 1 by tkQ- 1 and integrating by parts k times. Most
of the uses of this equation in the present study will be with
k = 1 to give the mean lifetime.
A third class of constraints is obtained from derivatives of

the lifetime distribution at t = 0. Since the sum of the
elements of p gives the lifetime distribution, a sum over
elements in Eq. 1 gives the slope of the lifetime distribution
at t = 0 as lQaPo. Equation 1 can be differentiated k times
with respect to time. The terms of the resulting vector can
then be summed on each side to produce a set of constraints
of the form

n n
>: (Qk kX
j=l j=l

This equation with k = 1 provides a very useful expression
when the aggregate has only a single state into which gating
transitions arrive. In this case the initial condition specifies
one element of p0 as one, corresponding to the gateway
state, and all the other elements ofpo as zero. Regardless of
the manner in which the various states within an aggregate
interconvert, Eq. 4 with k = 1 will give the following
expression for a model with a single gateway state.

n

E over all exit rates = - > A;Xj
j=1

(5)

This follows because when p0 contains one element equal to
one and zeros everywhere else, the product QaP0 will be the
single column of Qa corresponding to the element ofp0 that
is one. The terms of the column of Qa corresponding to
transitions within the aggregate sum to zero to conserve
probability (and satisfy detailed balance). However, the exit
transitions do not conserve probability, and so the sum of
the elements of that column will retain only the exit rates.
Since all of the exit rates are associated with the gateway
state, the sum of elements of QaP0 will produce the left side
of Eq. 5. This point can be seen by inspection of the
matrices in Eqs. 8 and 19 given below. The rightmost
column of each sums to a. Equation 5 is a useful formula
because of its general applicability to models with a single
gateway state.

For kinetic schemes with multiple gateway states, some
of the same rate constants appear in both the open-time and
closed-time distributions. Explicit expressions can then be

derived for the weights of a lifetime distribution. This gives
a fourth class of constraints, which will become clearer in
the examples below.

There is no obvious strategy for selecting which of the
above constraints to use for a particular model other than
simplicity and ease of solution. The inversion of Markov
processes will now be illustrated with several examples.

Model 1: CCCO

Consider a linear scheme with three closed states, one of
which can open to the only open state.

k, k2 a

C1 ±C2 ±C3 T 0
di d2 J3 (6)

Because there are three closed states, the closed-time
distribution predicted by this model is a sum of three
exponentials

Pc= Xle 't + X2eA2t + X3eA3t (7)

The decay constants, A1, A2, and A3 are the eigenvalues of
Qc, which for this model has the following form.

(4)
-k

Qc = ki
O

0

d2
-d2- a

(8)

All closures begin in state C3 to give the initial distribution
of closed states as the vector p0 = (0,0,1). The closed-time
distribution is determined by five rate constants, kl, k2, dl,
d2, and a. The channel closing rate, 13, is the decay constant
of the single-exponential open-time distribution, and this
rate constant does not appear in the closed-time distribution.
To solve for the five rate constants, we need five con-

straints. Equation 5 gives the slope of the closed-time dis-
tribution at t = 0 as

a = -A1XI -A2X2 - A3X3 (9)

Thus, one of the rate constants, a, is determined and this
simplifies the remaining problem to finding four constraints
to solve for four unknowns.
The equivalence between sums over determinants of prin-

cipal minors and symmetric functions of eigenvalues pro-
vides three constraints. From the determinant of Qc we have

klk2a = -A1A2A3 = a, (10)

The symbol a, was introduced for A1A2A3 to facilitate anal-
ysis below. Similar symbols will be introduced in analogous
situations. For the trace of Qc we have

k, + k2+ d, + d2+ a =-A1-A2-A3= a2 ( 1)

The sum over 2 X 2 principal minors of Qc gives a third
constraint.

k1k2 + k1d2 + k1a + k2a + dld2 + d1a

= A1A2 + A1A3 + A2A3 = a3
(12)
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These last three equations can also be found in Colquhoun
and Hawkes (1981). The final constraint needed to complete
this problem was derived by considering the mean lifetime
of the closed state. Setting k = 1 in Eq. 3 yields.

klk2 + kld2 + dld2 XI X2 X3(tc)k12 =-- - ~- ~a4 (13)

Equations 10-13 form a system of four equations that can
be used to solve for the four unknowns, kl, k2, d,, and d2.
Using the MAPLE symbolic processor of MATHCAD
yielded explicit expressions for the rate constants, kl, k2, dl,
and d2, in terms of a (from Eq. 9), a1, a2, a3, and a4. For k,
and d2 we have

22al(ala4- a2 + aa2- a3) (14)
a2a4 + aala2a4- 2ala3a4
+ a2a3- aa2a3 + a32- aal

and

a1a4-a2+ aa2-a3 (15)
a

Rather than give the expressions for k2 and d, (the expres-
sion for d1 is lengthy), note that with k, determined from Eq.
14, and a from Eq. 9, one can then use Eq. 10 to obtain k2.
The only remaining unknown parameter is then dl, which
can be determined from either Eq. 11, 12, or 13.
An alternative solution to this same system was obtained

by using the constraint based on the second derivative of the
closed-time probability distribution at t = 0 (Eq. 4 with k =
2). This gave

a2 + d2a = k2X1 + A2X2 + A2X3

Model II: CCCOO

The CCCO model can be made more complicated by adding
more states. An additional open state can be added in three
different places, connecting to any one of the three closed
states. The first example to be examined here is the CCCOO
model, where both of the open states are reached from C3.

ki k2 a

CI :i± C2 :2± C3 ± °1

02
(17)

The analysis of this model is identical with that of the
CCCO model above, except that a is replaced everywhere
by at + -y. The values of a and y can then be determined
from the relative frequencies of opening into 01 and 02 It
is worth noting that if transitions are permitted directly
between these two open states, then a and y cannot be
uniquely specified from the experimentally observed life-
time distributions, because of the indeterminacy of models
containing loops (Fredkin et al., 1985; Bauer et al., 1987;
Kienker, 1989). There will be three constraints from the
double exponential open-time distribution, along with a
constraint from detailed balance. The sum a + -y can still be
determined from the right side of Eq. 9 (see Eq. 5), but with
five constraints and six unknowns there will be infinitely
many solutions for the rate constants involving open states,
leaving these quantities indeterminate. Regardless of these
issues, the formulas derived above for the CCCO model
(Eqs. 9 through 16) can still be used to determine the
interconversion rates between closed states.

(16) Model III: CCCCO

With a determined from Eq. 9, d2 can be solved for. Any
three of the four Eqs. 10-13 can then be selected to solve
for the remaining rate constants, k,, k2, and d,. Yet another
solution to the inversion of the CCCO model can be found
in Yang (1989).
The expressions for the rate constants obtained by either

method contain no square or higher order roots. This is
significant because it means that there are no multiple or
imaginary solutions. Thus, a point in the five-dimensional
space defined by the parameters of the closed-time distri-
bution maps to a unique and real point in the five-dimen-
sional space of rate constants in the CCCO model. It is more
difficult to determine whether all of the rate constants must
be positive. If a negative rate constant were obtained, then
this would not be physically real; a negative rate constant
makes no sense. During extensive searches with arbitrarily
selected values, no combination of A and X values could be
found that gave negative rate constants. The rate constants
were always positive, suggesting that every possible three
exponential closed-time distribution with negative decay
constants, and with weights adding up to one, corresponds
to a unique and physically possible version of the CCCO
model.

Extending the linear sequence of closed states to four and
retaining a single open state gives the CCCCO model.

k, k2 k3 a

Cl C2¢± C3 ±C4 ± 0
di d2 d3 (3

(18)

Seven of the eight rate constants of this model influence the
closed-time distribution, namely kl, k2, k3, dl, d2, d3, and a.
The closed-time distribution will be a sum of four exponen-
tials, providing seven independent quantities (four decay
constants and three weights) for formulating seven con-
straints. For this model

QC=

-kl
ki
0
0

di
-di -k2

k2
0

0
d2t42 3-d2-k3
Ic3

0
0
d3

-d3- a ) (19)

and p0 = (0, 0, 0, 1). As with the CCCO model, Eq. 5 gives
the opening rate, a.

a = -AIX, - A2X2-A3X3-A4X4 (20)

This reduces the problem to setting up six constraints to
solve for six unknowns. The equalities between symmetric
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functions of eigenvalues and sums of determinants of prin-
cipal minors give the following four constraints. The trace
gives

k, + k2 + k3 + d, + d2 + d3 + a = -A1 - A2 - A3- A4
(21)

The 2 X 2 principal minors give

dia + d1d3 + k2d3 + k2a + dlk3 + d1d2 + k3a + d2d3

+ d2a + klk2 + k2k3 + klk3 + kld2 + kld3 + k1a (22)

= AIA2 + AIA3 + AIA4 + A2A3 + A2A4 + A3A4

The 3 X 3 principal minors give

d1k3a + dld2d3 + d1d2a + k2k3a + klk2d3

+ k1k2a + k1k3a + kld2d3 + k1d2a + klk2k3 (23)

= A1A2A3 + A1A2A4 + A1A3A4 + A2A3A4

The determinant gives

aklk2k3 = AkA2A3A4 (24)

A fifth constraint was obtained from the mean closed time
using Eq. 3 with k = 1.

( = d1d2d3 + kld2d3 + k1k2d3 + k1k2k3
(tc=- Ylkkaklk2k3 (25)

X1 X2 X3 X4
Al A2 A3 A4

In a first effort to find a sixth constraint, the second moment
of the closed-time distribution was tried (from Eq. 3 with
k = 2). The analytical expression obtained with the sym-
bolic processor of MATHCAD was too long to reproduce
easily here. Furthermore, MATHCAD did not find roots for
this system very well. Fortunately, another approach
worked better. Eq. 4 with k = 2 yielded the following result.

a2 + d3a = A2X1 + A2X2 + A2X3 + A2X4 (26)

which is very similar to Eq. 16, except that d3 replaces d2.
This equation was used to solve for d3. The five equations
above (Eqs. 21-25) were then used to solve for the five
remaining rate constants, kl, k2, k3, dl, and d2. The numer-
ical root solver of MATHCAD performed well with this
system.

Although analytic expressions were not obtained for the
rate constants, analysis with the aid of Eq. 4 showed that
any closed-time distribution of the CCCCO model specifies
a unique set of real rate constants. This can be seen as
follows. Equation 20 specifies a single real value for a, and
Eq. 26 specifies a single real value for d3. With k = 3, Eq.
4 gives the following

-k3d3a - d2a - 2d3a22- a3

A3X1 + A 3X2+ A~X3 + A~X3
(27)

I3XI + A2X2 + A33X +4X4

With values for d3 and a already in hand, this equation
specifies a unique and real value for k3. Successive deriv-
atives are increasingly complicated, but the pattern contin-
ues. The fourth derivative determines a unique real value for
d2 and the fifth derivative determines a unique real value for
k2. Equation 24 can then be used to determine k, uniquely
from a, k2, and k3, and with all of the other parameters
determined, Eq. 21 can be used to calculate a unique value
for d,. Thus, the CCCCO and CCCO models share a fun-
damental mathematical property in that any closed-time
distribution with the appropriate number of exponentials
specifies a unique set of real rate constants.

This approach of using derivatives from Eq. 4 was useful
in terms of establishing an important mathematical property
of the model, but successive derivatives should become
harder and harder to distinguish from the quantity AkXl
(where A1 is the fastest decay constant), and this is likely to
make these equations less useful from a practical standpoint
of solving for the rate constants.

Longer chains

Application of Eq. 4 to Qc for a model with five sequential
closed states showed that a new parameter could be deter-
mined with each successive derivative in the sequence a, d4,
k4, d3, k3, etc. Based on the pattern established for these
three models, it is reasonable to conjecture that linear mod-
els of arbitrary length specify a real one-to-one map be-
tween the parameters of the lifetime distribution and the rate
constants of the gating scheme. The same analysis can be
applied to linear sequences of open states as well. Thus, as
long as a channel follows a linear sequence of state transi-
tions, this conjecture for uniqueness of solutions can be
extended to any purely sequential gating mechanism.

Model IV: CCOCO

Consider a model with an additional open state that can be
reached only by the gating of the closed state C2.

kC

di
C2 :± C3
2 d2 0t
02 03

(28)

As with the CCCO model, the closed-time distribution is
still a sum of three exponentials, but in the CCOCO model
the closed-time distribution depends on six rate constants
rather than five. The additional rate constant is y, the rate of
C2 opening. This means that the five experimentally deter-
mined parameters of the closed-time distribution are not
enough to specify the rate constants. However, this model
does not contain a loop, and the rate constants can be
determined. Because of the multiple gateway states in this
model the open-time and closed-time distributions depend
on some of the same rate constants. Thus, a sixth constraint
can be derived from the open-time distribution of the
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CCOCO model, which will be a sum of two exponentials model. The following six constraints were derived.

PO = Y1e 't + Y2eK2t (29)

The relative frequency of opening into 02 and 03 can be
calculated from the stationary probabilities of closed state
occupancy to give the following constraint.

ak2_ Y1

yd2 Y2
(30)

The other constraints from the CCCO model can be used if
suitably modified. QC from Eq. 8 is altered only by the
addition of y to QC22, and po is [0, yd2/(yd2 + ak2),
ak2/(yd2 + ak2)]. The mean closed time (from Eq. 3 with
k = 1) gives the following constraint

ak1k2 Y'
ak1k2 Y2

dld2 + k1d2 + k1k2 X1 X2 X3
ak1k2 + yd1d2 A1 A2 A3

a2k1k2 + y2dld2
ak1k2 + yd1d2 =-A1X1-A2X2-A3X3

k1k2a + ydld2 + yad, + yak2 = AIA2A3

k1 + k2 + d, + d2 + y + a = -Al -A2 - A3

kIk2 + _ydI + yk2 + dld2 + d1a

+ k2a + kld2 + kla + yd2 + ay(31)

The slope of the closed-time distribution at t = 0 (Eq. 4, k =
1) gives

a2k2 + y2d2 - AIXI - A2X2 - A3X3 (32)
ak2 + -yd2

Given Qc for the present model, Eqs. 10-12 of the CCCO
model become the following

k1(k2a + yd2 + ya) = -AIA2A3

(42)

= A1A2 + A1A3 + A2A3

Each is respectively analogous to Eqs. 30 through 35 above.

Model V: COCOCO

Allowing all three closed states to open gives a model for
which both open times and closed times are distributed as a
sum of three exponentials.

(33) k,

°l

k1+k2+ di +d2+ y +ya =-Al-A2-A3 (34)

(k1 + a)(k2 + y) + (ki + dl)(d2 + a) + yd2

= AIA2 + AIA3 + A2A3
(35)

Equations 30-35 represent a set of six constraints that can
be used to solve for the six unknowns, kl, k2, dl, d2, y, and
a of the CCOCO model in Scheme 18.

Unlike the constraints set up for the CCCO model, Eqs.
30-35 do not yield an analytical solution. Nor could ana-
lytical solutions be found for any of the other models
analyzed below. However, the above system of constraints
yielded numerical solutions with the aid of MATHCAD.
The analysis of real and simulated data with these equa-
tions will be discussed below, after additional models are
analyzed.

k2
C2 >

02

C3

03
(43)

Taken together, the experimentally determined open-time
and closed-time distributions yield a total of 10 constraints,
which can be used to determine the 10 rate constants of the
model. The three closing rates are trivially the three decay
constants of the open-time distribution (it would not be as
simple if interconversions between the open states were
allowed). The closed-time distribution will depend on seven
of the rate constants of the COCOCO model, the two k
values, the two d values, and the three opening rates, a, y,
and E. Thus, we need seven constraints.

For the determinant of Qc we have

k1k2a + kld2y + k1ay + d1d2s + d1ae
(44)

+ k2as + d2ye + ayE = -A1A2A3

For the trace we have

In this model the most distant closed states can open.

k, k2
Cl ( C2 T± C3

di d2 e

1t1 (36)

01 03

Qc and p0 for this model were set up and analyzed by
methods identical to those used above for the CCOCO

k, +k2+ di +d2+ a+y+s=-A1-A2-A3 (45)

For the 2 X 2 principal minors we have

(k1 + e)(k2 + y) + (kI + s)(d2 + a)

+ (di + y)(d2+ a) +k2a + die (46)

= A1A2 + A1A3 + A2A3

(37)

(38)

(39)

(40)

(41)

dld2 + kd2+ k1k2 X1 X2 X3
kl(ak2 + yd2) A1 A2 A3

Model IV: COCCO
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The initial slope from Eq. 4 with k = 1 gives

a2k1k2 + y2k1d2 + 82d1d2

aklk2 + yk1d2 + sd1d2 =-A1X1-A2X2-A3

For the mean closed time we have (by Eq. 3)

klk2 + k1d2 + dd2 X1 X2 X3
=- - - {~48)ak1k2 + ykld2 + sd1d2 A1 A2 A3

Finally, the weights of the open-time distribution give these
two constraints

aklk2 Y___49_
aklk2 + yk1d2 + sd1d2 Y1 + Y2 + Y3

,yk ld2
ak1k2 + yk1d2 + sd1d2 Y1 + Y2 + Y3

Equations 44-50 thus constitute seven constraints that can
be used to solve for the seven rate constants in the
COCOCO model.

ERRORS IN PARAMETERS

The time constants and weights from lifetime distributions
used in the foregoing analysis have confidence limits deter-
mined by the errors of instrumental noise and statistical
analysis. It is important to know how the errors in these
quantities carry over to the rate constants determined by
Markov process inversion. Most exponential fitting soft-
ware gives a covariance matrix V(xi, xj) to aid in evaluating
errors. In this case the variables xi and xj are any pair of the
2n-1 parameters, either weights or decay constants, from
an n-exponential lifetime distribution. If the rate constants
are linear functions of these parameters within an interval
comparable to the confidence limits of the parameters, then
the variances of the rate constants can be determined by the
following double sum over all pairs of indices (Hald, 1952).

2n-1 aoaf
V = E ,3 V(xij xi) (51)

where the symbol 4 denotes any rate constant determined
from Markov process inversion. Thus, the key quantities in
determining how errors are propagated during Markov pro-
cess inversion are the derivatives of the rate constants with
respect to the lifetime distribution parameters. These deriv-
atives can be determined numerically by varying the input
parameters and repeating the inversion process. Some of the
equations given in the analysis of models above can be
differentiated to provide analytical expressions for the de-
rivatives (e.g., Eq. 5 and Eq. 11). Equation 51 should be
useful in evaluating the errors in parameters from a single
experiment. However, for Markov process inversion as with
any other method of analysis, the final assessment of error
should be based on an evaluation of the variability between
replicate experiments. Equation 51 will be used to assess the

propagation of errors during the analysis of data from the
acetylcholine receptor below.

(47)

IMPLEMENTATION

For all of the above models the computer program MATH-
CAD (Windows version 5.0, Mathsoft, Cambridge, MA)
was used to determine the rate constants numerically as
roots to the corresponding set of constraints. All computing
was performed on a personal computer with a pentium or
cyrix 6x86 CPU. Although the analytic solution to the
CCCO model could be used, it was more convenient to
handle all of the models with the same protocol based on
numerical solution.

Each root solving procedure employed the following
format. 1) The data were entered. This included the weights
and decay constants of the closed-time distribution. For
multiple gateway models parameters from the open-time
distribution were also entered. 2) The A and X values were
used to calculate the constraining parameters such as mean
closed time, initial slope, symmetric functions of eigenval-
ues, etc. For the CCCO and CCCCO models the opening
rate, a, was calculated directly according to Eqs. 9 and 20,
respectively, and for the CCCCO model d3 was calculated
with Eq. 26. 3) Initial guesses for the rate constants were
entered. 4) The MATHCAD "Minerr" function was used to
solve for the rate constants using the appropriate constraints.
These constraints were Eqs. 10-13 for the CCCO model
(Scheme 6), Eqs. 21-25 for the CCCCO model (Scheme
18), Eqs. 30-35 for the CCOCO model (Scheme 28), Eqs.
37-42 for the COCCO model (Scheme 36), and Eqs. 44-50
for the COCOCO model (Scheme 43). 5) The rate constants
thus obtained were checked by computing the lifetime dis-
tributions from the solution to Eq. 1. 6) Finally, an error
statistic was determined for each constraint. Each deviation
from equality was evaluated, normalized to the constraining
value determined from the experimental quantities, and
squared.

These MATHCAD root solving protocols found the rate
constants in times ranging from less than a second for the
CCCO model to up to about three seconds for the COCOCO
model. For the more complicated models the root solvers
were often unable to find a solution for a given set of initial
guesses, but trial and error with different initial guesses
eventually lead to a solution. It was important to check the
A and X values as well as the error. The Minerr function in
MATHCAD often found a local minimum rather than a
point with zero error.

TESTS

To test the root solving procedures described above, simu-
lated open-time and closed-time distributions were gener-
ated by solving Eq. 1 for different choices of rate constants.

Qc was set up for each model tested and the eigenvalues and
eigenvectors were determined numerically with MATH-
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CAD. The weights were calculated according to Eq. 2.
These simulated data were entered into the root solver for
the relevant model to see how well the original rate con-

stants were recovered. Because single-channel analysis be-
comes more difficult with closely spaced time constants and
small weights, the rate constants were selected to give time
constants differing by more than a factor of two, and
weights >-0.05. Otherwise, rate constants were varied
arbitrarily to generate simulated lifetime distributions with
parameters spanning as wide a range as possible.

In nearly all of the tests conducted, the root solver re-

turned rate constants equal to those used to generate the
simulated data set. In a few cases where the recovered rates
deviated from the original values, this could be attributed to
the fact that when some of the A values were small their
product was small enough to compromise computational
accuracy. This was more of a problem with the CCCCO
model, where the product of four small numbers (Eq. 24)
could be quite small. The problem was remedied by scaling
all the A values up by a factor of 10, recovering the rate
constants, and dividing back down by 10, to yield rate
constants equal to those used to generate the simulated
lifetime distribution.

Because the CCCO model was solved analytically and
tested against published data described in Applications be-
low, there was little need to test it with simulations. How-
ever, with kinetic schemes containing multiple gateway
states the situation was complicated, and tests with simu-
lated data yielded some valuable insights.

Multiple gateway schemes

Ten sets of simulated lifetime distributions were generated
and used to test the CCOCO model. In all cases the root
solver returned the original rate constants, although it was
often necessary to try five or more sets of initial guesses of
rate constants before a solution was obtained. For one set of
simulated data the solution was found only when the initial
guesses were very close to the correct rate constants.

In six of the 10 data sets simulated for the CCOCO
model, alternative solutions were found. The root solver
found rate constants different from the original set used to
generate the closed-time and open-time distributions. This
indicates that in contrast to sequential gating schemes, the
inversion operation for the CCOCO model gives multiple
solutions. Although different models with the same number
of open and closed states can be fitted to the same one-

dimensional lifetime distributions (Magleby and Weiss,
1990), the present results indicate that even for one model
there can be multiple solutions.

In four of the simulated data sets one additional solution
was found, in one set two additional solutions were found,
and in one set three additional solutions were found, for a

total of four. Four of the 10 simulated data sets yielded only
one solution, despite extensive variation of initial guesses.

However, the possibility cannot be ruled out that one or

more additional solutions eluded detection. Table 1 shows
the four sets of rate constants that all produce the same

lifetime distributions. These results show that in spite of the
equality between the number of rate constants and the
number of quantities in the lifetime distributions (Fredkin et
al., 1985), the rate constants are not uniquely specified by
one-dimensional lifetime distributions.

It should be noted that sometimes when an input data set
was deliberately varied from a simulated set, no solution
was found, in spite of extensive variation of the initial
guesses. This may mean that there are some one-dimen-
sional lifetime distributions that are inconsistent with the
CCOCO model. Thus, the absence of real and positive roots
could provide a useful criterion for eliminating models.

Tests of the COCCO and COCOCO models gave similar
results. Three data sets were simulated from the COCCO
model and two data sets were simulated from the COCOCO
model. Original rate constants were recovered and multiple
solutions were found.
The existence of multiple sets of rate constants that

generate the same closed-time and open-time distributions
raises the question of whether these alternative sets of rate
constants are fundamentally indistinguishable with single-

TABLE I Multiple solutions

Lifetime Distribution

A1 = -1.532 A2 = -0.6066 A3 = -0.2707 XI = 0.1198 X2 = 0.1616 Y2/Y, = 0.333

Rate Constants

k, k2 d, d2 Ya y

Set 1 (original) 0.5 0.05 0.05 0.5 1.0 0.3
Set 2 0.5 0.3968 0.2143 0.5 0.2333 0.5556
Set 3 1.064 0.1914 0.2193 0.1751 0.1753 0.5749
Set 4 0.8205 0.0403 0.4631 0.1228 0.4803 0.4733

This table lists the solutions found by the root solver for the CCOCO model using the simulated lifetime distribution parameters on the top line. A and X
refer to the decay constants and weights from the closed-time distribution, and Y2/Y, refers to the ratio of weights in the open-time distribution (Eq. 29).
The original set of rate constants used to simulate the lifetime distribution was recovered as a solution (set 1). In addition, three other solutions were
recovered for different choices of initial guesses (sets 2-4). All four of these sets of rate constants generate a lifetime distribution with the weights and
decay constants on the top line. However, the weights in the two-dimensional probability density function (Eq. 52) generated by each set were different.
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TABLE 2 Rate constants for the nicotinic receptor

[ACh] ,uM k1s-' k2 s-I d1 s-1 d2 s-' a s-'

10 315 1510 142 38900 43700
30 1250 3850 162 37200 44300
100 6360 13400 183 38700 45500
300 18300 43300 1100 32400 46600

From Table 3 of Sine et al. (1990). 6 x 107 M- s-1 1 X 108 M-1 s-1 250 40000 45000

Entering the A and X values read from Fig. 9 of Sine et al. (1990), the CCCO solver returned the above values for rate constants. The rate constants are
those indicated in Scheme 6. The bottom line of this table contains values for rate constants that Sine et al. determined from their data and reported in Table
3 of their paper. Note that k, and k2 determined here are simple velocities in units of s-' and those of Sine et al. are association rates in units of M-' s- '.
See Fig. 1 for a plot of k, and k2 versus acetylcholine concentration. The association rates determined here are given in the legend of Fig. 1, and are in
good agreement with those of Sine et al. (1990).

channel data. Since it has been shown that two-dimensional
lifetime probability density functions delimit the informa-
tion contained in single-channel data (Fredkin et al., 1985;
Bauer et al., 1987), this question can be addressed by
calculating and comparing these functions. f(tc, t.)dtcdt.,
the probability density function for observing a closed time
of duration tc followed by an open time of duration t0, was
derived for the CCOCO model as

f(tc, to)dtcdto = ('Yp2(tj)e-' + aIPp3(tr)e-'I)dtcdt. (52)

where P2(tc) and p3(tc) are the triple exponential solutions to
Eq. 1 for the CCOCO model. Since the solving procedure
makes use of a complete set of constraints based on prin-
cipal minors and symmetric functions of eigenvalues, the
eigenvalues of Qc are the same, and the decay constants of
the six exponentials in Eq. 52 are the same. However, the
weights of these exponentials in Eq. 52 are different for the
four different sets of rate constants in Table 1. Thus, the
four solutions found by analyzing the one-dimensional
probabilities in this example can be distinguished by ana-

lyzing lifetime correlations in single-channel data. The in-
spection of two-dimensional probability density functions
should be a useful approach in situations where multiple
solutions arise, and this will be relevant to the analysis of
data from GABAA receptor channels below.

protocol described above for the CCCO model, I obtained
the estimates for the rate constants shown in Table 2. The
values reported in Table 3 of Sine et al., (1990) are repro-

duced here in Table 2 for comparison. dl, d2, and a are in
fairly good agreement. Table 3 of Sine et al. showed a grand
scheme without dividing data up on the basis of concentra-
tion. It is especially significant that the quantities dl, d2, and
a of Table 2 are very similar for 10, 30, and 100 ,uM
acetylcholine. This is expected because these rate processes

do not reflect association reactions. Only at 300 ,uM ace-

tylcholine are these numbers different, and this probably
reflects open channel block by the neurotransmitter at the
highest concentration. This would compromise the validity
of the CCCO model by adding an additional state to the
scheme.
The values obtained for k, and k2 increase linearly with

acetylcholine concentration (Fig. 1), as expected for an

association process. Lines fitted these plots very well, and
passed quite close to the origin. The slopes gave association
rates of 0.62 ± 0.02 X 108 M-1 s-' and 1.45 ± 0.03 X 108
M- I s- ' which again are similar to the values of Sine et al.
(1990) (reproduced here at the bottom of Table 2). The
differences between d, and d2 and between k, and k2 were

noted by Sine et al. (1990) as showing nonequivalence of
the two agonist binding sites of the receptor, and this
nonequivalence is also evident from the concentration de-

APPLICATIONS

The nicotinic receptor

The CCCO model was used by Sine et al., (1990) to inter-
pret their data on the Torpedo nicotinic acetylcholine recep-
tor channel. The three closed states are assumed to be
unligated, monoligated, and diligated receptors (Scheme 6).
Sine et al. (1990) determined the rate constants by fitting
this model to closed-time distributions by likelihood maxi-
mization, using the explicit roots of the cubic characteristic
equation to calculate the likelihood function. They also
fitted closed-time distributions to a sum of three exponen-
tials and plotted the decay constants and weights as a

function of acetylcholine concentration. Reading the num-

bers from their plot (Fig. 9 of their paper, corresponding to

results at 22°C in normal Ca2+), and using the root solver

TABLE 3 Propagation of errors

dln a dlnk, dlnk2 dlnd1 dlnd2

d ln Al 0.98 -0.004 0.026 -0.046 1.07
d ln A2 0.019 0.14 0.84 2.8 -0.063
d ln A3 0.0029 0.86 0.13 -1.8 -0.0096
d ln Xl -0.53 -0.44 -2.7 -1.1 0.97
d ln X2 0.011 -0.43 0.48 -2.1 -0.035

Changes in the values of the input parameters (A and X) resulted in changes
in the rate constants computed for the CCCO model. These derivatives
provide an assessment of error propagation during Markov process inver-
sion (Eq. 51). The derivatives were determined numerically. Each entry
gives a measure of the sensitivity of the estimated rate constant to error in
the input. The derivatives of the logarithms of the input parameters with
respect to the logarithms of the output parameters were used to make each
change relative. This table was generated with the 30 p.M acetylcholine
data of Sine et al. (1990).

1 390 Biophysical Journal



Rate Constant Determination from Single-Channel Data

relatively little error introduced by the present method of
determining rate constants.

40 K2

cn
c, 30-

.520-
0

10

01
0 50 100 150 200 250 300 350

[Acetylcholine] FM

FIGURE 1 Plots of k, and k2 versus acetylcholine concentration. Rate
constants were determined by applying the CCCO root solver to the
closed-time distribution data of Sine et al. (1990). The steps corresponding
to these rate constants are indicated in Scheme 6. The values of the rate
constants of Scheme 6 determined here are given in Table 2. This plot
shows that k, and k2 increase linearly with concentration, as expected for
binding steps. The best fitting lines gave association rates of 0.62 x 108
M-l s -and 1.45 X 108 M-' s-1 as slopes, and these values are close to
the values of Sine et al. (1990) (Table 2).

pendence of the frequency of channel opening of singly
ligated and doubly ligated receptors (Jackson, 1988).

Errors in parameters

To evaluate the errors introduced by this method, the sum of
squares error (as described in Implementation) was mini-
mized while constraining one rate constant at a time to a
fixed value. Using the 30 ,uM data of Sine et al. (1990) for
this purpose, the error was plotted versus parameter value in
Fig. 2. This plot shows that the error is very large except for
a narrow range around the roots. Only for d, was an addi-
tional local minimum seen near d, = 1. However, there was
no root at this point, as the expanded inset shows. Because
the error increases very steeply for deviations from the
correct solution, Fig. 2 suggests that rate constant estimation
by this method will not increase the error very much beyond
that incurred during the fitting of exponential functions to
the lifetime distribution.
To evaluate how the error is propagated from the A and X

values to a and to the k and d values, the partial derivatives
of the rate constants with respect to the experimental input
parameters were evaluated numerically (Eq. 51) and shown
in Table 3. These derivatives were normalized to the mag-
nitudes of the parameters so that they can be read as the
fractional change in one relative to the fractional change in
the other. This shows that for the data set selected [30 J,M
acetylcholine from Sine et al. (1990)], only in 4 of the 25
connections between input and output was there a signifi-
cant amplification of error, and this was by less than a factor
of three. Thus, for the data set chosen here there was

The GABAA receptor

Weiss and Magleby (1989) found that the gating of the
GABAA receptor channel can be described by a model like
the CCOCO model (Scheme 28), but with a third open state
connected to O3. The closed-time distribution is still a sum

of three exponentials, with the same functional dependence
on the rate constants as the CCOCO model. To apply the
CCOCO model root solver to the data of Weiss and
Magleby it is only necessary to combine the weights of the
two slowest components of the open-time distribution when
calculating Y2 in Eq. 30. The open-time and closed-time
distributions were calculated from the rate constants for
patch 1 of Table 2 in Weiss and Magleby (1989). When the
root solver for the CCOCO model was given these data, it
recovered the original set of rate constants and generated
two additional solutions. The two-dimensional probability
density function (Eq. 52) was determined for each of the
three solutions and found to be different. Thus, as was seen

with simulated data, the multiple solutions from a set of real
data can be distinguished on the basis of correlations. The
method of analysis used by Weiss and Magleby (1989)
incorporated information about lifetime correlations, so

their rate constants could not be one of the false solutions.

The NMDA receptor

Closed-time distributions of the NMDA receptor contain
several exponential components, but it is thought that all
openings arise from fully ligated receptors (Benveniste and
Mayer, 1991; Clements and Westbrook, 1991). Kleckner
and Pallotta (1995) used a "gateway model" to interpret
single-channel data on the NMDA receptor. Their gateway
model is the part of the following kinetic scheme indicated
by the gray bar.

Os > C5pi

' /,,/ i,
2.56 14.7 98.3 a2

Cl . C2 C3 C4 ;
3.14 47.6 983 132

03%\Ua

12

0 Cs
-y

(53)

13

OL CS

The model employed by Kleckner and Pallotta (1995) did
not include the closed states on the left, but since fitting the
closed-time distribution required five exponentials, we can

combine the gateway model of Kleckner and Pallotta with a

linear sequence of closed states shown in the model above
(Scheme 53). The rates shown are in units of s-1 and were

determined in the present study, as described below. Kleck-
ner and Pallotta (1995) determined the values of the other
rate constants indicated by Greek letters.

Since the state CS is isolated from the other closed states
we can subtract the component corresponding to this state

50-
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FIGURE 2 The squared error is plotted versus the value of a constrained parameter for the 30 AM data of Sine et al. (1990). Squared error was determined
as the sum of squares of deviations from equality for each constraint, normalized to the constraining parameter (al, a2, a3, and a4, in Eqs. 10-13). The error

goes to zero only in a very narrow region around the root. Note that the lowest points plotted are not the roots. Zero error is obtained but this cannot be
shown on a logarithmic scale. These plots show how this method of analysis yields well-defined parameters for this set of data. With d, an additional local
minimum was found. This region was expanded to show that there was no root in the vicinity.

(the fastest component) from the closed-time distribution
and use the CCCCO model to interpret the remaining four
exponential components of closed times. I used the four
slowest time constants and corresponding weights stated on
page 414 of Kleckner and Pallotta (1995), and renormaliz-
ing the weights of these four components to add up to one.

When the root solver for the CCCCO model was given this
input it returned the rate constants shown in the above
scheme. The sum of the three a values determined from Eq.
5 was 288 s-1.
The rate constants determined here for interconversions

between closed states may well correspond to association
and dissociation of the agonist NMDA. Kleckner and Pal-
lotta (1995) used 1 ,uM NMDA, which is well below
saturating. The coligand, glycine, was present in saturating
concentrations so that glycine binding is less likely to ac-

count for any of these steps. Two molecules of NMDA are

thought to bind to gate the channel (Benveniste and Mayer,
1991; Clements and Westbrook, 1991), so it is difficult to
decide which of the three closed-state interconversions
shown are ligand association and dissociation events. How-
ever, regardless of the question of which steps are binding
steps, the rate constants differ. The equilibrium dissociation
constants calculated from these rates for 1 ,uM NMDA were

1.23, 3.2, and 10 ,uM for binding to states C1, C2, and C3,

respectively. Thus, as was found for the nicotinic acetyl-
choline receptor (Jackson, 1988; Sine et al., 1990), the
binding sites of the NMDA receptor may not be equivalent.

DISCUSSION

This study introduces a new method for determining the rate
constants for ion channel transitions. Tests on both simu-
lated and experimental data indicated that Markov process

inversion can be applied in the analysis of many commonly
encountered forms of single-channel data. Because this
analysis can be performed with about one page of code
written with MATHCAD, a popular and widely used com-

puter program, these methods should be accessible to re-

searchers in the investigation of channel gating mecha-
nisms. Several different models were analyzed here. While
the mathematical strategy can in principle be adapted to
other models, as these models increase in complexity the
complexity of the mathematical analysis will also increase.
It is not clear at what point the mathematical complexity, the
number of rate constants and mathematical constraints, and
the number of multiple solutions will become a serious
impediment. For now, the method of Markov process in-
version will most likely be useful for moderately complex
models such as those analyzed here.
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A major advantage claimed here for this new method of
analysis is the ease of implementation with a standard
computer program. However, the problem of multiple so-
lutions places demands on the computer software that were
not easily met by MATHCAD. Trying out many initial
guesses and getting at most one solution at a time is not a
very reliable way to find all of the possible solutions. More
robust root solving software would be very useful to search
parameter space thoroughly and return a complete set of all
possible solutions. More powerful software may also be
helpful in applying Markov process inversion to more elab-
orate models by making it easier to find the roots of more
complicated systems of equations.

This work showed that some kinetic schemes have unique
solutions and others have multiple solutions. A better un-
derstanding of the mathematics underlying these differences
would be useful. Two Q matrices with the same eigenvalues
must be related by a similarity transformation. Kienker
(1989) used similarity transformations to analyze the dis-
tinguishability of models with different connectivities. It is
likely that theoretical analysis along similar lines will pro-
vide a more rigorous basis for determining the existence and
number of multiple solutions. This should also help in
establishing methods of distinguishing between multiple
solutions using higher dimensional (correlation) analysis.
Multiple solutions in single-channel analysis have previ-
ously been found in relation to the problem of missed
intervals (Blatz and Magleby, 1986). However, the multiple
solutions found here are for simulated data, where the
missed-interval problem is irrelevant.

Missed intervals are an important problem in the analysis
of single-channel kinetics (Roux and Sauve, 1985; Blatz
and Magleby, 1986; Crouzy and Sigworth, 1990; Jackson,
1992), and this issue was neglected in the present study. For
models with a single gating pathway the procedures de-
scribed by Blatz and Magleby (1986) can be used to correct
the lifetime distributions for missed events. Markov process
inversion can be applied to these corrected lifetime distri-
butions to obtain estimates of rate constants with an appro-
priate missed-interval correction. For more complicated gat-
ing schemes the missed interval problem is more of a
challenge and correcting lifetime distributions will depend
on the details of the gating scheme and the specific values
of the rate constants. In these situations the new likelihood
maximization methods of Qin et al. (1996) are clearly
advantageous. It may also be possible to incorporate a
strategy for missed event correction into the present inver-
sion method. The Q matrix can be modifed to take missed
events into account (Roux and Sauve, 1985; Crouzy and
Sigworth, 1990). The mathematical approaches of the
present study could then be applied to this modified Q
matrix to derive equations and solve for rate constants.
Much of the previous theoretical work in single-channel

kinetics has been devoted to distinguishing between differ-
ent models for channel gating on the basis of state number
and connectivity (Horn and Vandenberg, 1984; Fredkin et

Magleby, 1989; Jackson, 1992). The tests here on simulated
data showed that when lifetime distributions were deliber-
ately altered from those simulated by the CCOCO model,
the root solver for that model was sometimes unable to find
a new solution. If this is in fact because no real solution
exists, then this would mean that finding or not finding
solutions could serve as a criterion for evaluating models
with different connectivities. However, since there are ex-

amples of successful fits of one-dimensional distributions to
models with different connectivities (Magleby and Weiss,
1990), this criterion can only be useful in negating models.
The appropriate behavior of rate constants for candidate
models may also help in evaluating the connectivity of a
channel gating mechanism. For example, the increase in the
rate of a binding step with drug concentration illustrates this
approach (Fig. 1) and confirms the CCCO model for this
channel.
Making rigorous distinctions between different models

with the same numbers of open and closed states requires
some form of analysis of correlations between event life-
times. As presented here, the method of Markov process
inversion deals only with the one-dimensional distribution
functions and ignores the correlation information vital to
distinguishing between models. However, Markov process

inversion has the potential to simplify the analysis of life-
time correlations. The rate constants determined by Markov
process inversion for different candidate models can be used
to calculate correlation coefficients (e.g., by integration of
Eq. 52). These can then be compared with the experimental
correlation coefficients. This approach may also be useful in
choosing between the multiple solutions obtained for mod-
els with multiple gating pathways. However, in applying
these approaches to real data a full analysis of the errors of
parameters and of predicted correlation coefficients will be
essential.

Kinetic processes described by a system of linear differ-
ential equations in the form of Eq. 1 are very common in
biophysics. Such equations describe not only stationary
systems such as those analyzed here, but also nonstationary
systems studied with voltage jump and other rapid pertur-
bation methods. Markov process inversion may be applica-
ble to these other forms of kinetic data as well. The rela-
tionships between symmetric functions of eigenvalues and
sums over principal minors does not depend on the partic-
ular form of data, and should be readily adapted to other
forms of experimental data including nonstationary data. In
nonstationary experiments one often sees a maximum or

minimum in the time course of a signal as channels inacti-
vate or desensitize. At that point a time derivative is zero,

and when that condition is imposed on Eq. 1, new con-

straints between the parameters can be derived. The deriv-
atives at t = 0 (Eq. 4) also should be adaptable to other
forms of kinetic data by using the appropriate initial state
vector, p°. The mean lifetimes, moments of lifetime distri-
butions, and explicit expressions for the weights of a dis-
tribution are specialized to stationary single-channel data,

al., 1985; Colquhoun and Hawkes, 1987; Blatz and
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to a specific type of experiment, the method of Markov
process inversion will be useful in other kinetic applications
as well as single-channel analysis.

Note added in proof: MATHCAD files for implementing the analysis
described here will be made available at the following web site http://
www.neuroscience.wisc.edu/faculty/jackson.html.

I thank Shyue-Fang Hsu for helpful discussions.
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