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How Are Model Protein Structures Distributed in Sequence Space?

Erich Bornberg-Bauer
Abteilung 0815 Theoretische Bioinformatik, Deutsches Krebsforschungszentrum Im Neuenheimer Feld 280,
Heidelberg, D-69120, Germany

ABSTRACT The figure-to-structure maps for all uniquely folding sequences of short hydrophobic polar (HP) model proteins
on a square lattice is analyzed to investigate aspects considered relevant to evolution. By ranking structures by their
frequencies, few very frequent and many rare structures are found. The distribution can be empirically described by a
generalized Zipf’s law. All structures are relatively compact, yet the most compact ones are rare. Most sequences falling to
the same structure belong to “neutral nets.” These graphs in sequence space are connected by point mutations and centered
around prototype sequences, which tolerate the largest number (up to 55%) of neutral mutations. Profiles have been derived
from these homologous sequences. Frequent structures conserve hydrophobic cores only while rare ones are sensitive to
surface mutations as well. Shape space covering, i.e., the ability to transform any structure into most others with few point
mutations, is very unlikely. It is concluded that many characteristic features of the sequence-to-structure map of real proteins,
such as the dominance of few folds, can be explained by the simple HP model. In analogy to protein families, nets are dense
and well separated in sequence space. Potential implications in better understanding the evolution of proteins and applica-

tions to improving database searches are discussed.

INTRODUCTION

Understanding how evolution has shaped today’s biopoly-
mers is of fundamental interest for both characterizing the
biophysical processes during early evolution and develop-
ing strategies to design functional molecules with desired
properties. Evolving entities must in principle “accomplish”
two tasks: to conserve acquired features in their genotype
and to adapt to new requirements on the phenotype level.
Since there is a tradeoff between these tasks it is crucial to
understand the principles of the genotype phenotype rela-
tion. Theoretical concepts, developed in the 1930s by S.
Wright (1932) and others, proposed the concept of fitness
landscapes. In this picture, evolution is viewed as a walk
over the set of genotypes preferring “fitter” offspring. This
is done by selecting for some functional criterion which is a
phenotype property. Later considerations emphasized the
importance of phenotypically neutral mutations (Kimura,
1968; King and Jukes, 1969). Maynard-Smith (1970) as-
sumed that, since only few mutations can be advantageous
for the phenotype, a continuous gradient of fitness must be
maintained so that mutated offspring survive. Applied to
biopolymers, this implies that residues that are essential for
function will be conserved, and others replaced in evolu-
tionary diverse sequences. Unfortunately, it is difficult to
define fitness a priori. It is, however, generally assumed that
function largely depends on structure. Consequently, it can
be more intriguing to study appropriate details of the se-
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quence-to-structure map. In principle, the structure predic-
tion problem is of comparable complexity for proteins and
RNA. Therefore we were motivated by recent success in
characterizing the sequence-to-structure map for RNA by
statistical analysis of a simplified model, the secondary
structure model (Fontana et al., 1993; Schuster et al., 1994;
Tacker et al., 1996; Huynen et al., 1996; Bornberg-Bauer,
1996). However, the sequence structure relation is more
involved for proteins: first, in contrast to RNA, real proteins
do not unify genotype and phenotype in one molecule;
second, as a consequence, there are two sources of neutral-
ity: the redundancy of the genetic code (i.e., at the genotype
level), and some structural robustness of folding (i.e., at the
phenotype level); finally, there is a serious computational
problem: simplified structure representations allowing for
folding strategies with polynomial complexity are not avail-
able. Consequently investigations remain restricted to
chains that are short compared to those possible when
analyzing RNA secondary structures.

For proteins, several simplified approaches such as lattice
models (Lau and Dill, 1989; Shakhnovich and Gutin, 1990;
Skolnick and Kolinski, 1990), spin glass analogies (Bryn-
gelson and Wolynes, 1987), and others (Dill et al., 1995)
were developed during the last decades to investigate basic
principles that govern protein folding. Most of these strat-
egies address the question of how single molecules fold
(Skolnick and Kolinski, 1990; Chan and Dill, 1994; Sali et
al., 1994; Onuchic et al., 1995; Abkevich et al., 1995). Often
they are based on mean field models or stochastic optimi-
zation. They are computationally intensive and therefore not
applicable to investigate ensembles that are large enough to
characterize the sequence-to-structure map. Recent studies
on the foldability landscape of a cubic lattice model pre-
dicted a considerable amount of neutrality in interaction
space, and that similag structures and structures with similar
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optimal foldabilities to cluster together (Govindarajan and
Goldstein, 1997b). Though not an explicit fitness criterion,
the ability to fold fast to a unique and thermodynamically
stable state provides, to some extent, a reasonable prereq-
uisite to yield a viable biopolymer under in vitro folding
conditions. Such an evolutionary process has been studied
as a random walk through the foldability landscape (Gov-
indarajan and Goldstein, 1997a).

Since we are interested in the properties of the sequence-
to-structure map and features that are important to under-
stand evolutionary adaptation of structures, this study is
based on short chains of a simple lattice model, the HP
model.

HP-LATTICE PROTEINS

The HP model (Lau and Dill, 1989) is one of the best
investigated (see Dill et al., (1995) and refs. therein) and
assumes the hydrophobic effect to be the major structure
determining effect. It can be viewed as a very coarse-
grained model that, since it depends on very few parame-
ters, provides us with a simple and nonambiguous frame-
work. All residues have the same size and the peptide chain
is constructed by placing residues sequentially on the non-
occupied beads of a regular lattice. The resulting chain has
identical bond lengths and discrete bond angles. We use
relative moves for handling structures: the structure is rep-
resented as a non-self-intersecting self-avoiding walk on a
regular lattice and the movement of the chain as a sequence
of moves where each is encoded relative to the prior. The
method is well known [see, e.g., Lau and Dill (1989)]; this
version has been adapted to apply to any regular lattice [an
example is given in Fig. 1; for a detailed description see
Bornberg-Bauer (1997)]. It is versatile and provides conve-
nient computational techniques for handling, comparing,
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FIGURE 1 Examples of frequent structures. Left: The most frequent
structure as formed by a typical sequence. Closed circles denote H’s, open
circles P’s, solid lines correspond to peptide bonds connecting two subse-
quent residues, dashed lines are energy-contributing contacts between 2
H’s. Letters along the bonds [F (forward), L (left), and R (right)] denote the
corresponding relative moves. Squares symbolize the first residue since the
structure is not considered identical as the results from reverse sequences.
The first move is F by definition, the first non-F move R. The structure can
be encoded as FRFLLRLLRLRLLRLFL. Frequent motifs are boxed (see
text). Right: The most frequent maximum compact structure. It can be
encoded as FRLRFRRLRLRLLFLRL.
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and storing data. Structures will be referred to as identical if
and only if they are represented by the same walk on the
lattice, i.e., if their “sequences” of relative moves are iden-
tical. The shape space ¥ is represented by the set of all
possible self-avoiding walks. Our notation for encoding
moves is insensitive to translational and rotational symme-
tries. Mirror symmetries are disallowed by choosing the first
non-F move to be an R (see Fig. 1). Mirror symmetric
sequences, corresponding to reverse sequences, refer to
molecules with different chemical properties and are there-
fore distinguished.

The Hamming distance, h, , = h[S;(n), Sy(n)], is defined
as the minimum number of point mutations required to
convert one sequence S; into another S, of equal length n
while insertions and deletions are ignored. While certainly
not sufficient to describe all kinds of evolutionary relation-
ships of real protein sequences of variable length, it is well
suited for lattice proteins (where, e.g., L (leucine) and W
(tryptophan) are not distinguished by size) and, in particu-
lar, for the HP model (where both L and W are represented
by an H). It thus provides us with a metric in sequence
space &.

A key assumption in the HP model is the dominance of
the hydrophobic force for the overall stability that, to a large
extent, determines the spatial structure of the backbone. The
importance of the hydrophobic-polar pattern in the sequence
for the structure is supported by theoretical studies evalu-
ating potentials (Huang et al., 1995), derivation of empirical
potentials (Casari and Sippl, 1992), and the properties of
mutation matrices (Koshi and Goldstein, 1997). Much ex-
perimental evidence also supports this view, such as rational
design based on the careful generation of HP patterns
(Kamtekar et al., 1993), the finding that certain proteins fold
noncooperatively to a nativelike state in the absence of
packing interactions (Schulman and Kim, 1996), and inves-
tigations of folding random sequences composed from small
alphabets (Davidson et al., 1995; Cordes et al., 1996). Side
chain packing in the HP model may then allow for selected
structures within this relatively small set of possible coarse-
grained structures. Heteropolymers are composed from a
two-letter alphabet, § = {H,P}, with only one stabilizing
interaction if and only if hydrophobic residues (H) are
neighbors on the lattice but not along the chain. For contacts
(HH, HP, PP) the potential then takes the form € = (—1,
0, 0). The energy function (e.g., on a square lattice) is
simply the negative sum of all HH contacts. It has been
termed a correlated folding code (Chan and Dill, 1996),
which describes “the physical requirement that all instances
of an interaction between residue types i and j must have the
same energy”; i.e., values of interactions depend exclu-
sively and completely on the nature of the residues.

HP sequences S in general show a large structural degen-
eracy [go(S) >> 1] i.e., the number of configurations that
correspond to one lowest energy state eq(S). For n = 18 on
a square lattice, only 2.4% of all chains fall into a unique
ground state go(S) = 1, all others to a gemisch of multiple
lowest-energy structures (Dill et al., 1995). Clearly enough
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the model is only a crude abstraction of a realistic protein
since hydrogen bonds, disulfide bonds, and electrostatic
interactions such as salt bridges are neglected. Yet the most
salient features of real protein structures are retained: the
hydrophobic effect comprises solvent-driven collapse to a
native state, chains have much conformational freedom, and
the self-avoiding walk constraint accounts for steric restric-
tions (excluded volume effect).

It is often assumed that only the sequence determines the
native state of proteins, which is either the minimum free
energy state or a structurally related very low-energy state.
Therefore, mostly ground states of uniquely folding short
sequences on a square lattice are studied.

Following the ideas of Maynard-Smith (1970), Lipman
and Wilbur (1991) studied the influence of neutral muta-
tions in the HP model to investigate evolutionary pathways
in sequence space. They used a structure notion that is based
on contact maps and confined their study to very compact
states. They found that many sequences are linked by neu-
tral neighbors and belong to large connected networks (see
next section). They concluded that neutral mutations play an
important role for the transition from one structure to an-
other and for efficiently exploring shape space.

RESULTS
Convergence

First we investigate the ensembles for the occurrence of
convergent sequences (Chan and Dill, 1991b), i.e., different
sequences S; that fold uniquely into the same structure X.
We encoded structures by relative moves and computed the
frequencies of occurrence for individual structures. For the
28 possible sequences in the complete sequence space
&(18) for length n = 18 and a binary alphabet there are
6349 (2.4%) sequences S; (29 symmetric ones and 3160
nonsymmetric ones) that fold to a unique structure. They
assume 1475 different structures X. We sort structures,
count their occurrences, and rank them with decreasing
frequencies. The most frequent structure X" is assigned rank
1, the next frequent one X? rank 2, and so forth. Structures
of equal frequencies F are sorted and ranked lexicographi-
cally. In the following let X" denote the structure with rank
r. The set of all F* sequences S converging into one X" will
be termed a neutral set ¥* = (X; S}, S%, . . . , Sg) hereafter.
Following earlier work on RNA secondary structures
(Schuster et al., 1994; Bornberg-Bauer, 1996; Tacker et al.,
1996) we represent this distribution in a log;, — log; plot.
Results for log(F*) vs. log(r), where F* = F*/|%| = F*/6349
denotes the relative frequency of a structure, are shown in
Fig. 2.

We find frequencies following a characteristic distribu-
tion: there are few very frequent and many rare structures.
The distribution can be empirically approximated by a gen-
eralized Zipf’s law (Gonnet and Baeza-Yates, 1991) as

F(r)=a(r+b)". )

Structure Distribution in Sequence Space
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FIGURE 2 The frequency distribution of structures. Zipf plot showing
the log of the frequence distribution of structures versus the log of their
rank r. Results for ground states of uniquely folding sequences are shown
for chain lengths n = 13 (dotted), 16 (dashed), and 18 (solid line).
Corresponding fits to a generalized Zipf’s law are drawn in thin lines.

Here r is the rank and F'(r) is the frequency of the
corresponding structure, a is a suitable normalization con-
stant, and b can be interpreted as the number of “very
frequent” structures. For comparison we also show the
distribution for lengths n = 13,16, which are qualitatively
the same. Parameters for the best fits are given in Table 1.

While b naturally increases with n, the exponent ¢ de-
creases with n. This means that, in the limit of longer
sequences the distribution of structures may become more
even. This type of distribution has been reported for a large
number of natural systems although a generally applicable
causal theory has not been given to date. It was reported as
an empirical law for the gap size distribution when com-
paring sequences (Benner et al., 1993). In a recent work
Zipf analysis of tuple frequencies was used to demonstrate
the “statistical linguistic qualities” to estimate the informa-
tion contents in protein sequences and to show that they
have a significantly different behavior from random se-
quences (Strait and Dewey, 1996). Furthermore, it can be
found in words distribution of text (a typical value for ¢ in
most natural languages is close to 1) and there has been
much attention to the observation of such behavior in DNA.
However, expressions of this form can also be derived from
certain Markov processes that show a similar curvature [see
Czirok et al. (1995) and Strait and Dewey (1996) and
references therein for a detailed analysis].

TABLE 1 Parameters for best fits to Zipf's law for data from
Fig. 2

n a b c
13 17.4 18.40 1.5
16 0.83 19.77 0.94
18 0.52 28.95 0.86
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In the remainder of this work sequence space & : =
F(18) of uniquely folding sequences except when indicated
otherwise.

An obvious distinction between rare and frequent struc-
tures can be defined by the average size of neutral sets F =
|¢|/|%] = 6349/1475 = 4.3. Consequently, sets with F* = 5
[ie., with rank r < 418 (28%)] are termed frequent. Nets
with F* = F'/F = 48/4.3 = 11.2 (i.e., with » < 102) will be
defined as very frequent and all others defined as rare
(where F' = 48).

It is commonly believed that proteins assume very com-
pact shapes. However, the degree of compactness is not
always maximal, neither in real nor in model proteins (Yue
et al., 1995; Dill et al., 1995; Goodsell and Olson, 1993). It
is, therefore, remarkable to note that the most frequent
maximum compact structure (MCS) with 10 contacts is not
among the top frequent structures: it has rank r = 50,
occurring only 17 times (i.e., F°° = 17). From 1475 struc-
tures only 331 (22%) assumed by 1142 (18%) sequences are
MCSs, with 930 having 9 contacts and 214 having 8. This
means that 20% of all 1673 possible MCSs (Chan and Dill,
1991a), can be found in the structure ensemble, compared to
6% of all structures with 9 contacts and 0.5% of those with
8. Still, MCSs can be realized by only a relatively small
number of sequences in the “simple” HP model (Lau and
Dill, 1989).

Examples

In Fig. 1 the most frequent structure is shown. It is uniquely
coded by 48 sequences. The structure has a well defined
hydrophobic core and a regular motif with hydrophobic
residues oriented to the interior and polar ones directed to
the outside. It is obvious that in such a simple model, where
the length corresponds to the lower limit of stable chains of
real proteins, it is difficult to define and identify secondary
structure elements. The motif LLRLRLL appears in 988
(16%) of all structures. The subfragment LRLRL appears
in 1254 (11%) structures (see Fig. 1). These motifs show
some regularity in the “sequence” of relative moves. This
notion is different from earlier classifications of secondary
structure elements that were solely based on patterns in the
contact map (Chan and Dill, 1991b; Li et al., 1996), yet can
be viewed as an appropriate analog to an a-helix providing
a hydrophobic, stabilizing bulk oriented to the inside and
polar residues at the outside.

The topology of neutral sets

Pondering the origin of this biased distribution, the relation-
ship between sequences within some neutral sets in more
detail is investigated.

The first investigation is the connectedness of neutral
sets, i.e., to what extent sequences in the " are linked by
single point mutations. Each entirely linked subset is called
a neutral component 6" of &". If two sequences S; and S; that
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converge have h(Sj, Sj) = 1, they are called neutral neigh-
bors and said to differ by a neutral mutation. The over-
whelming majority of 511 sets (80% of all 684 sets with
F* = 3) are represented by a single 6". If a neutral set
consists of exactly one connected component, such a com-
ponent will be termed a neutral net N* hereafter. Its se-
quences are all related and termed homologous. From all
684 networks with 48 = F* > 2 there are 4 ¥'s with 4 €'s,
13 with 3 and 156 with 2. The most frequent structure with
more than one component has rank 27. No other significant
correspondence between the frequency of a structure and
the number of components was found. As was already stated
by Lipman and Wilbur (1991), the case of different com-
ponents 6's in one set ¥" “is tantamount to convergent
evolution in that members from one [set ¥'] but different
[components 6"] must have converged to an identical struc-
ture from different ancestries.” They also claimed that the
length of connected nets increases with the sequence length.

In the following, some characteristic properties of the
topology of selected neutral sets are investigated. Results
are summarized in Table 2.

All selected sets & are nets N*. They belong to compact
shapes, yet only Z°° is an MCS. Corresponding energies ¢;
vary in a range between lowest ground state energy ey(S™)
and ey(S") + 2. The distribution of numbers of neutral
neighbors for all homologous sequences within each N* is
investigated. It is found that h"_“, the maximum h; between
any two sequences in N* and h, the average h between all
pairs of sequences within N* increase with the frequence of
the structure (i.e., decrease with r). The overall maximum
ht of all nets N corresponds to r = 1 (i.e., the most frequent
structure) and is equal to 7. This means there are two
sequences in N that are distinct at 7 (of 18 possible)
positions.

Next, the number of neutral mutations within a N* and the
average number of neutral neighbors per sequence in the net
are counted. Again these values increase with lower r. This
means that nets corresponding to more frequent structures
are more extended as well as more clustered (denser). An
interesting phenomenon is the apparency of a single se-
quence S; with an extraordinarily large number of neutral
neighbors in ¥*. We will call this a prototype sequence 8 of
a neutral set X', since it is extremely stable toward muta-

TABLE 2 Some characteristic properties for selected
networks N

Rank of Neutral Set 1 14 50 120 910
Size of neutral set 48 30 17 11 2
Compactness (contacts) 9 9 10 9 9
Energies (from, to) 7-9 7-9 8-10 7-9 7
Maximum h 7 7 6 4 1
Average h 319 328 250 220 1.00
Neutral neighbors (overall) 99 53 28 14 1
Neutral neighbors (average) 2.1 1.8 1.6 1.3 1
Number of neutral components 1 1 1 1 1
Neutral neighbors (of k) 10 6 6 5 1
Number of §* 1 2 1 1 1
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tions. Prototype sequences are, as can be seen in the fol-
lowing, in general identical to the consensus sequence of the
homologous sequences, which is defined as S = (5, 55, . - .,
§,), where for each position i the residue with the highest
probability §; is chosen. It is certainly remarkable that for
prototype sequence S', more than half of all the residues
may be mutated and up to four mutations at the same time
can be applied without altering the structure under the
condition that the sequence folds uniquely. This is most
striking, if one considers that real proteins are composed of
a 20-letter alphabet with ~10 letters in either class, H and
P. In a natural alphabet it requires therefore two random
mutations to exchange, on average, a hydrophobic into a
polar residue, compared to only one mutation in a simple
HP alphabet, four mutations compared to two, etc. Most
neutral sets of very frequent structures and all from rank one
to 12 can be characterized by a single prototype sequence S,
most others by two or three. One, X>° with F>2 = 29, has 13
prototypes with three neutral neighbors.

In the following, neutral nets are investigated by inspect-
ing properties of S and their neighboring sequences in
detail, which was done for the selected structures from
before. Examples for the ' and a sketch of some corre-
sponding nets N* are shown in Fig. 3.

The prototype sequences S* are shown in their native
structure. Arrows denote possible neutral mutations to S
and the regions that are completely conserved in the whole
net are boxed. Selected corresponding nets are shown below
with dots symbolizing single sequences, the ¥ as a larger
dot in the center, 1-error neutral mutants are arranged in the
next “shell” around it, 2-error mutants in the second “shell,”
and so forth. The complete N's are visualized by the com-
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binations of paths that correspond to neutral mutations and
start from the innermost shell.

For $', 8 of 10 neutral mutations are P—H substitutions
on the surface, yet there are 2 H’s, at positions 3 and 16,
respectively, that can be subjected to neutral mutations. As
a general rule we find that, for very frequent structures to
prevail, the hydrophobic core must remain largely unaltered.

The most frequent minimum free energy MCS, N,
shows a remarkable symmetry in both sequence and struc-
ture. The core motif RLRLR appears in the center and
requires all residues to be H’s. The energies are in the range
of —8 to —10. The corresponding network is shown in Fig.
3. Again, only surface-exposed positions are affected and
the network consists of paths representing combinations of
permutations of the six mutable positions.

Profiles

Next, the mutational flexibility at given positions among the
homologous sequences within a N is characterized. We
generate profiles, i.e., we calculate the probability p,(H) to
find an H at sequence position i [note that p;(P) = 1 —
pi(H)].

While very frequent structures require highly conserved
residues at given positions for H’s only, less frequent struc-
tures are, in general, also sensitive to mutations at positions
occupied with P’s in the prototype sequence. This can be
attributed to the property of “designing out” (i.e., avoiding)
alternate conformations. This becomes more difficult for
certain geometries and thus allows for a smaller number of
possible sequences (Yue et al., 1995; Dill et al., 1995).
Examples are shown in Fig. 4 for X' and for X'%.

FIGURE 3 Mutational stability, prototype sequences, and neutral nets. Upper line: prototype sequences 8%, r = 1, 14, 50, 120, 910 in their native
structure. Arrows point to positions where neutral mutations are possible. Regions that are completely conserved in all homologous sequences are boxed.
(For explanation of additional symbols, see Fig. 1.) Lower line: corresponding neutral networks N7, r = 1, 50, 120. The “shells” of sequences with Hamming
distances & = 1, 2, and 3 to the §' are indicated by three circles (dot-dashed). Each arrow corresponds to a single point mutation.
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FIGURE 4 Profiles of homologous sequences in selected neutral sets.
(A) Profile of %'. (B) profile of %'2°,

This holds true for most other nets. In all examples with
a unique prototype sequence this prototype sequence is
identical to the consensus sequence.

Distribution of neutral sets in sequence space

A crucial issue for evolutionary adaptation is the possibility
of transforming one structure into another. It is therefore
important to know how far apart in sequence space se-
quences belonging to different neutral nets N* are. We
therefore inspect the distribution of pairwise sequence dis-
tances A in between the N™’s. Fig. 5 shows the probability
that two sequences that fold uniquely into two different
structures have a given h.

For comparison, the distribution of Hamming distances
that is obtained between two randomly chosen sequences
(which is given by the binomial distribution) is shown.
Compared to random a slight deviation toward a smaller
pair distance and a slightly broader distribution is found.
The former is a result of the fact that H-rich sequences are
overrepresented. The distribution is shown in the same plot
versus a horizontal axis that represents the number of H
residues in a sequence. The broadening hints to a slight
degree of clustering. Roughly speaking, however, distances

0.20

10 60 10 160 10 60 10 160
hi#H) h

FIGURE 5 Pair correlation of Hamming distances h between structures
in sequence space. The random distribution, following the binomial distri-
bution (dotted), is shown for comparison. (A) Probability values p between
full neutral nets (solid line). The probabilities p that sequences have a given
number of H-residues (hydrophobicity, (H)) are shown in the same plot
(dashed line). (B) Same as A but for prototype sequences.
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are randomly distributed. This means that, although only a
small fraction of sequence space yields uniquely folding
sequences, sequence space is occupied nearly uniformly. No
“higher order” clustering (i.e., except the trivial case of the
homologous sequences) is visible.

The next area of interest was the number of mutations
that are needed to transform a sequence that folds uniquely
in a given “reference” structure into another “target” se-
quence which folds uniquely into a different structure. It is
meaningful to understand how likely it is that new structures
evolve through series of point mutations from existing pre-
cursor structures. Fontana, Schuster, and co-workers (Fon-
tana et al., 1993; Schuster et al., 1994) introduced the notion
of shape space covering for the RNA secondary structure
case. It is assumed that, to enable fast adaptation of biopoly-
mers and starting from any given initial (reference) struc-
ture, it should be advantageous to reach any typical (i.e.,
frequent) structure within a relatively small number of mu-
tations. Together with the extension of neutral nets this can
be viewed as an important measure of how fast evolutionary
optimization may search sequence space. For this concept it
is crucial to recall that evolution acts on populations. Indi-
viduals may have the same phenotype but genotypes are,
depending on the error rate during reproduction, more or
less scattered around a consensus sequence. Populations
may evolve along neutral nets. When they come “close” in
& to another net with higher fitness, single individuals may
“jump” to this net and reproduce there more efficiently. This
was shown to be the case for RNA secondary structures in
a series of computer experiments (Huynen et al., 1996).

Results so far suggest that shape space covering is very
unlikely, since networks are localized and, on average, well
separated. Still this does not exclude the possibility that nets
are “interwoven,” i.e., that single sequences of most nets are
close in sequence space to some exposed sequences of many
other nets. We therefore compute the Hamming distances
between any two sequences that fold into different struc-
tures. The minimum Hamming distances 4 that are found
between two neutral sets are remembered and the number of
these instances summed up for each A.

In Fig. 6 the fraction of cumulatively covered targets for
selected reference nets is shown. Covering distances are
reported for the same nets as were shown in the former
sections. Results are shown for computations when proto-
type sequences only are considered or when the complete
neutral set was used to obtain reference sequences. For
comparison, the covering distances when allowing for target
sequences with degeneracy go(S) = 6 (i.e., sequences that
fold to the target structure but not uniquely) is reported. It is
interesting to note that covering efficiency is primarily
enhanced when considering full neutral nets instead of
prototype sequences and not so much between the different
ranks (except X°'%). Also, admitting degenerately folding
sequences enhances the covering ability only marginally.
Obviously prototype sequences of frequent structures are
well “shielded” from their environment by the large number
of neutral (or nearly neutral) neighbors. For the most fre-
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FIGURE 6 Shape space covering: fraction of cumulatively observed
structures versus h for the ranked structures (see text for description). (A)
For complete nets X' (solid line), X'* (long dashed line), X*° (short dashed
line), X'?° (dot-dashed line), and X°'° (dotted line). The leftmost (thick)
line shows the covering fraction when degenerately folding sequences (g =
6) are considered. (B) Same as A but for prototype sequences only.

quent structure it takes only two mutations to cover 10% of
all structures, but it takes approximately five mutations to
cover 50%. It requires at least nine selected mutations in
nine different positions each (i.e., H—P or P—H) to find
every structure. In spite of the great mutability within a N*
it is very difficult to transform a structure into another.

The correspondence with foldability

Foldability, i.e., the ability to rapidly reach a native state,
was repeatedly claimed to be an important feature of pro-
teins. It was shown to correspond directly to an energy gap
between the ground state with ey(S;) and other “excited”
states e€,(S;) = eo(Sp) + 1, e,(S;) = ... (Bryngelson and
Wolynes, 1987; Chan and Dill, 1994; Sali et al., 1994;
Goldstein et al., 1992; Abkevich et al., 1995). Since the HP
potential is very coarse-grained, every unique folder (i.e.,
sequences with go(S;) = 1) may be assumed to correspond
to a reasonably fast folding sequence under biological fold-
ing conditions. Six of 6349 uniquely folding sequences,
however, have a “real” energy gap. This means that no
structure corresponds to the first excited state g,(S) with one
energy unit (HH-bond) worse (less) than the minimum
eo(S), i.e., £,(S) = 0. These instances were shown to fold
significantly faster in simulations similar to Monte Carlo
folding (Chan and Dill, 1994) and a chain growth procedure
(Bornberg-Bauer, 1997). While folding is not at the core of
this work, it is certainly notable that all six sequences with
a gap are prototype sequences S of very frequent structures.
In fact, they represent 6 of the 10 most frequent structures.
This is clearly beyond coincidence because only 170 (3%)
of all sequences are well defined unique prototype se-
quences. Also, all these corresponding nets contain no se-
quence with a number of neutral neighbors that is one less
than the number of neutral neighbors of the prototype se-
quence. There are several sequences (“next most”) that have
two less neutral neighbors. The corresponding values are
listed in Table 3.
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TABLE 3 All six observed sequences with an energy gap are
prototype sequences S’ of frequent structures

Rank 1,2 3,6 9,10
Size of neutral net 48 37 11
Energy gap of 8 . 2 2 2
Neutral neighbors (of S) 10 10 9
Neutral neighbors (next-most) 8 8 6

This is an interesting link between foldability, thermody-
namic and mutational stability. Obviously uniqueness can
be inherited with foldability.

Switches between neutral sets

The overall number of direct transitions between neutral
sets, (i.e., the minimal Hamming distance between any two
members of two nets A(S]', $i?) = 1) is only 3428. The total
of neutral mutations is 12912 in (¥, ¥) (Chan and Dill,
1994). This makes an average of 2.3 “connections” for each
N. This is certainly not enough to play an important role in
exploring all sequence space through a continuous path of
unique structures.

While most work on current-day biological protein struc-
tures emphasizes the uniqueness of the ground state, it is for
several reasons interesting to speculate about the potential
role of multiple ground states. Switching between two dis-
tinct structures is sometimes of fundamental importance for
biological activity, e.g., for binding ligands. More dramatic
changes have been reported with [e.g., for hemagglutinin
(Lupas, 1996)] and without changes of solvent conditions
[e.g., the prion molecule has been suggested to exist in two
structurally distinct isoforms (Prusiner, 1995)].

Also, from an evolutionary point of view, it may well be
important for a biopolymer rot to fold to a unique ground
state (but to two or more states with different functions) and
not to lose flexibility of adaptation by freezing in a “muta-
tional trap.” In a gedanken experiment, one can easily
imagine such sequences play a role in bridging the gaps in
sequence space between neutral sets. This might be espe-
cially meaningful when only certain structural regions are
important for selection.

In Fig. 6 it was shown that switches may slightly enhance
the probability of transition to other structures. An example
for a 3-fold switch is given in Fig. 7.

Sequence S303,, = (HHPPHPHPPHPHHPHHHH) has three
equivalent ground state configurations with energy e = —9.
Each of these configurations can be stabilized by a point
mutation leading to a uniquely folding sequence of the
corresponding neutral net. Indeed a significant region
(boxed residues) remains unchanged, while two looplike
regions are flexible. It is certainly interesting to note that the
larger net N3% with F?°° = 10 is destabilized by a H—P
mutation, while the slightly rarer nets (N7%%) and (N7%%)
with F’8 = F’8 = 9 are destabilized by P—H, more
surface-exposed mutations.
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FIGURE 7 An example for a 3-fold switch. A sin-

Biophysical Journal

Volume 73 November 1997

gle sequence (S303,,, boxed region) has three ground
states that may refold into each other (double arrows)
and are adjacent (in terms of single point mutations

e

gl?/ ) e

from P—H, thin arrows) to the corresponding neu-
tral net (N785, N84 N3% within the large ellipses).

DISCUSSION

The complete sequence-to-structure map of a popular and
well investigated protein model has been analyzed. The
relevance to structural features and folding behavior has
been repeatedly demonstrated [see Dill et al. (1995) and
references therein]. I have combined the biophysical per-
spectives of structure formation and stability with the evo-
lutionary aspects of sequence diversity. Unfortunately, due
to computational limitations, the results are restricted to
short chains on a square lattice. While some of the ensemble
properties presented here may well change in detail when
investigating other alphabets and energy sets, I think that the
major conclusions will hold since they are compatible with
natural observations and results from similar models. Re-
cent progress in applying constraint programming tech-
niques enables extension of the approach to more sophisti-
cated models, including three-dimensional models and
larger alphabets. Hence the influence of choice of the po-
tential and alphabet size will be the subject of future work.

Summary

A main result is that there are few frequent, and many rare
structures. This is consistent with considerations about the
limited number of natural protein folds (Chothia, 1992;
Orengo, 1994) a mean field model (Govindarajan and Gold-
stein, 1996), the work from Li et al. (1996) on a similar
lattice model, and RNA secondary structures (Schuster et
al.,, 1994; Tacker et al.,, 1996; Bornberg-Bauer, 1996).
While exact formulas for the size of shape space are avail-
able for RNA secondary structures (Schuster et al., 1994),
this is not the case for lattice proteins and the influence of
the potential on the dominance of compact structures.
MCSs are very likely to code for minimum free energy
states (Camacho and Thirumalai, 1993). Since they are
strongly overrepresented in ensembles that are derived from
models with a stronger overall attraction force, they can be
more easily attained by any sequence. In the studies by Li et
al. (1996) only MCSs were considered and the average size

N (Nm
BE

of neutral sets for length 27 and 4.75% uniquely folding
sequences on the 3* cube is calculated as |F| = (134, 217,
728 X 4.75)/(103, 346 X 100) = 61.7. In their model F' =
3749, and the most freguent structure is 61 times as frequent
as average, since F' YF = 3749/61.7 = 60.7. (Values for
two-dimensional models were not reported.) It can be as-
sumed that size of neutral sets and regularities in frequent
structures may, to some extent, be a consequence of con-
fining a study to MCSs. In this model F* = 4.3 is a
consequence of potential and folding only. My studies also
comprised different chain lengths and, as I have shown in a
recent work, these principles can as well be observed when
using a kinetically motivated algorithm (Bornberg-Bauer,
1997). While the properties of single structures are obvi-
ously strongly model-dependent, it is certainly interesting to
note that ensemble properties are qualitatively independent
(see also Comparison to RNA). Finally, it was found that
Zipf’s law, which is well known to describe a number of
similar natural phenomena, provides a suitable empirical
description of the structure distribution.

Similar conclusions hold for the emergence of regular
structures. When not confined to MCSs, they are found as
zig-zag patterns, but not in the contact map. Frequent struc-
tures show regular motifs with H’s on the inside and P’s to
the outside. In contrast to earlier definitions (Chan and Dill,
1991a) I think these motifs are an alternative definition for
secondary structure elements in small lattice models. The
MCSs are, similar to the work from Li et al. (1996), highly
regular, but do not represent very frequent structures. I
assume that high designability does not depend on symme-
try or potential, but the ability to design out alternative
configurations. Regular elements would then be mostly a
consequence of compactness, which in turn can be enforced
by stronger attractive potentials. This is in agreement with
off-lattice simulations that support the view that regularities
are enforced by attractive potentials, but to observe a large
amount an extended definition of secondary structures is
required (Yee et al,, 1994). It also complies with recent
simulations suggesting that compactness only slightly en-
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hances secondary structure formation (Hunt et al., 1994).
Forcing structures on a lattice, however, in this context
mimics hydrogen bonds in forming specific regularities,
e.g., the lattice analogy to a-helices.

Most converging sequences belong to single, connected
networks that are clustered in sequence space and can be
characterized by a single and stable prototype sequence.
This sequence is extraordinarily resistant to mutations and
in general is identical to the consensus sequence of the
homologous sequences of the neutral set. Exchanging 50%
of the HP-pattern means a very dramatic change when
applied to a natural protein. Within the limits of the HP
model I conclude that consensus sequences may code for
structures that are extraordinarily stable thermodynamically
and toward mutations.

The analysis of profiles and the role of degenerately
folding sequences show that for all structures the mutability
of H’s remains rather constant (and low), indicating that the
hydrophobic residues require a constantly strong conserva-
tion for structures of all frequencies. Rarer structures require
lower mutability for surface-exposed residues, which can be
seen as the reason why they are, in general, poor in design-
ing out. This is also reflected by entropy measures derived
from profiles of homologous sequences. It will be investi-
gated in more detail together with the role of compactness
and correlated mutations in a forthcoming study.

Studies on shape space covering show that it is very
difficult to convert one structure into another by a few point
mutations. The number of direct connections (i.e., A = 1)
between members of neutral sets is very small, such that an
evolutionary strategy as proposed by Lipman and Wilbur
(1991) seems very unlikely. Degenerately folding se-
quences provide transition regions with dual function in
sequence space that may correspond to reduced, but still
viable, activity. Still, however, the number of such switches
may to be too small for biological significance.

Comparison to real proteins

If one is willing to accept the HP model as a reasonable
approximation for real proteins, then we obtain a suitable
conceptual framework that is in remarkable accordance with
a number of properties of evolutionary relevance.

The relative scarcity of MCSs may well change with
different potentials. However, this observation complies
with observations that protein shapes tend to be compact,
yet very often not maximally compact (Dill et al., 1995;
Goodsell and Olson, 1993).

Although this model simulates only one force, the hydro-
phobic one, a number of structures are surprisingly stable
toward mutations as long as the hydrophobic core is mostly
conserved. This complies with the fact that the overall folds
of real proteins are very stable toward mutations and mostly
dependent on the binary HP pattern (Reidhaar-Olson and
Sauer, 1988; Orengo et al., 1994; Kamtekar et al., 1993).

The small number of uniquely folding sequences is sim-
ilar to the fraction (1-5%) of stable, well defined structures
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that can be found in samples of random sequences that were
assembled from a ternary hydrophobic-polar alphabet
(QLR) (Davidson et al., 1995). In this and from similar
studies it was also concluded that a significant fraction of
random sequences will fold uniquely and most probably to
a frequent structure. This is also very likely in this model,
since frequent structures are represented by neutral nets that
span regions in sequence space that are up to more than
one-third of the diameter.

Real proteins preferably fold into a small number of
“folds” (Chothia, 1992; Cordes et al., 1996; Orengo et al.,
1994). These may correspond to the frequent structures in
this model. From there and from considerations about the
small fraction of sequence space that was explored during
evolution (Eigen, 1987), the assumption was drawn that
many structures were simply not found during evolution.
This corresponds to the obvious conclusions that rare struc-
tures are hard to find in this model and have little capacity
to adapt.

It is often assumed that protein structures (“folds”)
evolved independently (Orengo et al., 1994). This appears
reasonable from the presented perspective when we con-
sider the strong separation of nets in sequence space. Be-
cause point mutations maybe are not sufficient for fast
adaptation, it may have become necessary to develop evo-
lutionary alternatives that combine established units. This is
probably reflected by the modular nature of many proteins.

From the knowledge of structure distribution in sequence
space we may also infer some conclusions that are relevant
to improve data base searches. This is of paramount impor-
tance if one considers efforts in the fields of bioinformatics
that accompany current genome projects. Explicitly apply-
ing different rules for core residues and surface exposed
residues might prove helpful to estimate the potential mu-
tational tolerance of a given structure. Applied to sets of
homologous sequences in a database (of real proteins) this
might prove useful to obtain rough estimates for the number
of potential (i.e., to date undetected) members of a protein
family given some representative members. According to
the strong separation in sequence space we expect it is
thereby possible to delimit families more precisely than
with current methods. This could possibly be achieved by
procedures that infer information from all represented mem-
bers of a family instead of using averaged representatives
such as profiles or regular expressions. This may help to
circumvent the difficulties of the twilight zone that fre-
quently emerge when comparing a query sequence to many
families.

Finally, the concept of prototype sequences that are very
stable invites one to consider new possibilities to design
stable and fast folding sequences that can be used for
folding experiments.

Comparison to RNA

It is also interesting to compare these results with recent
computer experiments on RNA secondary structures. In
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both cases we find a large number of neutral neighbors, a
structure distribution following Zipf’s law and rugged land-
scapes, i.e., a few random mutations randomize structure
ensembles (Fontana et al., 1993; Schuster et al., 1994;
Bornberg-Bauer, 1996; Tacker et al., 1996; Renner and
Bornberg-Bauer, 1997). These features seem to be generic
properties of biopolymers sequence-to-structure maps.
However, there are most remarkable differences in the two
maps regarding their possibilities to explore sequence
spaces.

First, neutral nets for RNA are percolating through se-
quence space (Schuster et al., 1994; Tacker et al., 1996),
which is a consequence of the boolean pairing logic of the
nucleotides and the fine-grained energy spectrum in the
density of states. This is clearly not the case for the HP
model. This may be less effective for a larger alphabet and
more sophisticated potentials, yet it should prevail as long
as one noncomplementary force, such as the hydrophobic
effect, dominates the spectrum of interactions. Recent in-
vestigations on average ensemble properties using the con-
cept of landscapes (Renner and Bornberg-Bauer, 1997)
have shown that larger alphabets (and therefore a larger
sequence space) with a finer potential slightly smoothen the
map. This is, roughly speaking, tantamount to a larger
degree of neutrality and complies to the influence of differ-
ent alphabet size in RNA.

Second, in the RNA secondary structure case virtually all
structures can be observed next to a neutral net (Fontana et
al., 1993; Schuster et al., 1994). Within a number of muta-
tions small compared to the length of the sequence, the
whole shape space can be covered. In the HP model, how-
ever, the structures are well separated and direct transfor-
mations to another structure are rare. This is also intuitively
clear, since, in contrast to the boolean logic of base pairing
in RNA, in the HP model one stabilizing interaction cannot
be substituted with another, simply because there is no
other. It will be interesting to see if this feature is sensitive
to the alphabet size.

I would like to thank H. S. Chan and K. A. Dill, University of California,
San Francisco, who generously provided ground state data. Thanks to the
hospitality of PMMB (Program in Mathematics and Molecular Biology),
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