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ABSTRACT It is now believed that the primary equilibrium aspects of simple models of protein folding are understood
theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties
inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical
review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of
the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree
precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained
treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the
validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed
(“minimally frustrated”) sequences, and the degree to which errors in the interactions employed in simulations of either folding

and design can still lead to correct folding behavior.

INTRODUCTION

In the last decade, there has been remarkable progress in the
theoretical understanding of protein folding. This degree of
progress is due mainly to the concept of heteropolymer
freezing, which is the phase transition of a heteropolymer
chain between two compact globular phases, one of which is
dominated by an exponentially large number of conformations
(O(e™)), whereas in the other only one or very few of them
(6(1)) are thermodynamically relevant. To describe hetero-
polymer freezing, ideas and concepts were borrowed from
the statistical mechanics of spin glasses, such as the random
energy model (REM) first suggested by Derrida (1980).
Previous work has centered around two parallel ap-
proaches to this problem. Although these two approaches
certainly share similar underlying philosophies, they are
very different otherwise. One of them, rooted in the seminal
work by Bryngelson and Wolynes, postulates the applica-
bility of REM to the heteropolymer freezing problem; one
benefit of this approach is that as REM can be solved
without recourse to the heavy mathematical formalism of
replica field theory, the resulting polymer theory is unen-
cumbered. Not surprisingly, it is extremely difficult, if not
altogether impossible, to generalize this approach to differ-
ent heteropolymeric systems, (for example, systems with
long-range interactions, such as random sequence polyam-
pholytes), or to find out its conditions of applicability.
Another approach, starting with another seminal contribu-
tion by Shakhnovich and Gutin (1989), uses a model that is
very clearly formulated, but unfortunately, this theory re-
mains overshadowed by the complexity of theoretical machin-
ery employed (replica theory). Not surprisingly, although
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this theory is widely considered to be very important, it is
hardly known beyond some qualitative conclusions.

In the meantime, both theories are related to REM, which
in turn is fairly simple, in both its physical nature and
mathematical treatment. It should therefore be possible to
formulate a theory that combines the simplicity of the
Bryngelson-Wolynes approach with the sophistication of
the Shakhnovich-Gutin theory. In this paper we suggest and
discuss such an approach. Perhaps the greatest accomplish-
ment of the SG approach is the derivation of REM, starting
from the Hamiltonian for polymer-polymer interaction and
the nature of the polymer conformation space. In this work
we present another derivation that does not rely on replica
field theory, but yields the same result. We intentionally try
to make this paper self-contained, such that knowledge of
some particular works (Derrida, 1980; Bryngelson and
Wolynes, 1987; Shakhnovich and Gutin, 1989) is not nec-
essary. Moreover, we review many of the central issues in
the statistical mechanics of protein folding.

The paper is organized as follows. We begin with a
discussion of models commonly employed in theoretical
protein folding studies. We continue with the formulation of
REM and discuss why one can hope that REM would be
applicable for heteropolymer globules. We then discuss
REM in more detail, including the nature of the freezing
transition in REM, and arrive at a powerful general rela-
tionship that is valid for arbitrary REM-type models. Using
this, we derive in a simple yet rigorous way all of the main
theoretical results, such as freezing conditions for a hetero-
polymer with an arbitrary interaction matrix, properties of
sequence design, etc.

COMPACT GLOBULAR HETEROPOLYMER
Energy

We consider heteropolymer chains that are in a maximally
compact, globular state. This means, in particular, that the
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density of the globule cannot fluctuate and is evenly dis-
tributed in space. In the simplest lattice model case, a
polymer of N monomers occupies a region with exactly N
lattice sites and, therefore, visits every site once and only
once. The Hamiltonian that envelops all three important
ingredients of the problem, namely, the sequence of the
certain set of monomer species, arbitrary interactions be-
tween them, and conformations, has the following form:

N
(s, {r) = 2 By, Aty — 1) (1)
LJ

Capital Latin indices count the monomers along the chain,
s; € {1,...,q} is the species of monomer / along the chain
(and thus {s;} represent the polymer “sequence”), g is the
number monomer of species, and r; is the position of
monomer I ({r;} represent “conformation”). A(r) is a func-
tion concentrated on nearest-neighbor points in space; on
the lattice, A(a) = 1 and A(r > a) = 0, where a is the lattice
spacing. Thus our model simply says that the energy of a
polymer conformation is determined by the matrix of spe-
cies-species energies B;; for the monomers in contact. (We
assume that heterogeneity comes solely from pairwise in-
teractions (high-order interactions contribute to excluded
volume) and the polymer is a dense globule.) In writing the
energy in the form of Eq. 1, we implicitly assume that chain
connectivity (points r; and r;,, are always next to each
other in space for all 1), excluded volume (r; # r; for I # J),
and dense packing are all met.

Clearly, Eq. 1, however general, is still an approximation.
For example, one could also consider heteropolymeric
three-body interactions, which depend on the species of the
three monomers in contact, etc. Nevertheless, it does in-
clude many essential components of the problem, and we
shall restrict ourselves to this model.

Conformations

Different models of conformations have been used in vari-
ous computational and analytic works, and particular
choices of models arise from the desire to capture the
essential physics while keeping the model tractable. Protein
native states are globules, and therefore any model of fold-
ing or design must incorporate maximally compact confor-
mations. Examining only maximally compact conforma-
tions renders the problem much more computationally
tractable, as the constraint of filling each site on a lattice
once and only once greatly reduces the number of possible
conformations (Shakhnovich and Gutin, 1990); analytically,
this constraint allows one to neglect complications due to
density fluctuations. Therefore, it is not surprising that
maximally compact conformations have commonly been
employed.

Whereas the enumeration of maximally compact confor-
mations is much more feasible than, for example, all con-
formations of chain with a given length N, exhaustive enu-
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merations of even maximally compact conformations of
chains longer than N = 27 requires a great deal of comput-
ing power (Pande et al., 1994c) (36-mers can easily be
enumerated on a massively parallel supercomputer (128
node CM-5) and the maximally compact 48-mer conforma-
tions have also been enumerated, but required 2 CPU weeks
on the CM-5). Thus 27-mers have become a canonical
model for folding and design studies. Recently it has been
conjectured that the number of contacts in the space of
27-mers is similar to that found in short proteins (typically
60-80 amino acids) (Onuchic et al., 1995), and thus per-
haps 27-mers is not a completely unreasonable model. (For
a lattice model, this means nearest neighbors in space;
27-mers, for example, has 28 contacts. For proteins, it has
been suggested that contacts be counted in terms of mono-
mers which are neighbors in space and are farther apart than
4 monomers along the chain (Onuchic et al., 1995).) More-
over, in heteropolymer lattice models, a single site is not
meant to necessarily represent a single amino acid; instead,
one must consider that elements of secondary structure have
already been considered in the lattice models, and one is
describing some arrangements of these elements. Thus lat-
tice monomers are really renormalized “quasimonomers”
(Grosberg and Khokhlov, 1994).

To model larger chains exhaustively, two approaches
have been taken. First, polymers have vastly fewer confor-
mations in two dimensions than in three. Thus one can
enumerate much longer chains in 2D (Chan and Dill, 1993;
Dinner et al., 1994). Moreover, it has been argued that
enumerable 2D chains (25-mers and 36-mers, for example)
have a surface-to-volume ratio more similar to proteins than
to that of enumerable 3D chains (27-mers and 36-mers)
(Chan and Dill, 1993). A second approach is to enumerate
in 3D, but restrict the conformation space. For example,
“crumpled” 64-mers have been enumerated (a crumpled
64-mer consists of eight 2 X 2 X 2 size 8-mer cubes, strung
together to make a single 4 X 4 X 4 cube) (Pande et al.,
1996a); they make an interesting model as, unlike shorter
chains such as 27-mers and 36-mers, crumpled 64-mers
allow small-scale rearrangements and perhaps model mul-
tidomain proteins (Pande et al., 1996a; Panchenko et al.,
1995).

On the other hand, sampling just the maximally compact
conformations may not be sufficient to describe the freezing
transition, especially if it is accompanied by a coil-to-
globule transition (i.e., the system goes directly from a coil
to a frozen globule phase; Pande et al., 1997b; for example,
see also Klimov and Thirumalai, 1996). To study all con-
formations, one must either perform Monte Carlo kinetics
and use the Monte Carlo histogram technique (Socci and
Onuchic, 1995) to gather information about the density of
states or perform a full enumeration of all conformations. Of
course, full enumeration is extremely computationally in-
tensive and has only been performed for chains with N < 18
(Pande et al., 1997a). On the other hand, Monte Carlo
simulations have been performed on extremely long chains
(in a relative sense), up to N = 125 (Abkevich et al., 1994).
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In the end, however, differences in conformational spaces  at most once and never more than once, is somewhat spe-
are most important for corrections to REM (Pande et al., cial; matrix elements are then taken independently from a
1996a) and will not be important for the primary aspects of  Gaussian distribution. This model is convenient for theorists
this work. (as we will see in later sections). The most often used and
natural interaction matrices, along with some comments, are
given in Table 1.

Furthermore, one may be curious about how the solvent
Natural proteins include ¢ = 20 species of monomers, and  enters into our model Hamiltonian (Eq. 1). We assume that
thus the interaction matrix B;; should be 20 X 20. Neither  the solvent molecules equilibrate considerably faster than
the values of its matrix elements nor the aspects of models  the polymer, and thus we integrate over all solvent degrees
with a smaller number of species have been agreed upon by ~ of freedom. This leads to an effective interaction between
the experts. For example, a commonly employed matrix in ~ monomer species, i.e., our interaction matrix By;. For exam-
simple models is the 20 X 20 MJ matrix, which is extracted  ple, the hydrophobic effect explicitly details the interaction
from the statistics of the protein data base (Miyazawa and  between oily molecules and water, but leads to an effective
Jernigan, 1985). There have also been other attempts to  attraction between hydrophobic molecules as they come
derive realistic amino acid interaction energies (for exam-  together to try to avoid the water molecules (Chan and Dill,
ple, see Godzik et al., 1995 and references therein). Clearly, ~ 1993).
these matrices cannot serve as perfect potentials, as the very
idea of a “contact” is somewhat approximate or semiquali-
tative for such bulky molecules as amino acids. On the
opposite extreme, as hydrophobicity is believed to be the  The first models of heteropolymers considered just random
main driving force of protein collapse, various models are  sequences of monomer species. This was consistent with the
used with just two monomeric species, hydrophobic and  fact that real protein sequences statistically look very much
polar (Chan and Dill, 1993). The Independent Interaction  like random sequences (Ptitsyn and Volkenstein, 1986; see
Model (IIM), where the number of monomer species is as  also Monod, 1971, for the underlying philosophy). How-
large as the total number of monomers, such that each  ever, upon more detailed examination, random sequences
matrix element Bj; enters in the energy of any conformation ~ were found to be insufficiently protein-like. In particular,

Interactions

Sequences

TABLE 1 Commonly employed models of heteropolymer interactions

No. of
Name letters Matrix Reference

MJ 20  Realistic amino acid energies Miyazawa and Jernigan (1985)
M N Independent random energies Shakhnovich and Gutin (1989)
Potts q By=+1-2§; Goldenfeld (1992)

. g g b i j Garel and Orland (1988)
Generalized p-charge g-Potts ¢ B; = ELJ’@(I_?J mod g, I-?J mod gq) Pande et al. (1995b)

X . . — i —si See text below (Geometrical
Generalized BWM 2 - . it g - \/2cos 6 + sin 6 sin 0 .

B; = oosin 6 + \f-’: cos § = —sin 6 \/icos 0+ sin 6 Interpretation)
-1 0 i
HP 2§ = —arccos(\TB), By = ( Y ) Chan and Dill (1993)
Ising 2 9= ap B = —og = ( *_‘: :i ) Sfatos et al. (1993)
GLO 2 6=0 B=o+ o= ( 4;)1 _01 ) Garel et al. (1994)
LHTW 2 9~02 B = ( “2i3 ‘01 ) Li et al. (1996)
ey ij -

For studies of folding and design, 2 X 2 matrices can be parameterized in terms of a single parameter 6 without loss of generality (see Geometrical
Interpretation, in text). In this table, we use the following notations. o; = *1 is a “hidden Ising variable” attributed to each monomer in models with just
two monomer species. | . .. ] means truncate to the lowest integer and amod b = a — b Lasb). The g-Potts model of interactions assumes q types of
monomer species, with interaction energy between similar and different monomers of —1 and +1, respectively. On the other hand, the p-charge model,
suggested by Garel and Orland (1988), models the presence of p different physical short-range interactions (an abstraction of screened Coulomb, van der
Waals, hydrophobic, etc.). Each monomer is depicted in this model with a set of p generalized “charges,” each taking one of two possible values, say 0
or 1. In a generalized Potts model, which generalizes both the g-Potts and p-charge models, each monomer has p different charges, s' ..., 8% ..., % and
we allow the values of each charge s to range from 0 to ¢ — 1. Furthermore, we define the interaction between charges of monomers / and J to be of Potts
form: if the value of the charges sk and s¥ are the same, then the interaction energy is by, otherwise it is zero. The total interaction energy between monomers
Iand J is given as the sum of the interaction energy of the charges of the monomers. Note that the g-Potts model is recovered for p = 1, the p-charge model
is recovered for ¢ = 2, and the Ising model is recovered for p = 1 and g = 2.
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although many chains with sequences taken at random have
unique ground states, these ground states are not sufficiently
robust such that a minor perturbation of the interaction
energies (induced, for example, by the change in the sur-
rounding solution) leads to a complete alteration of the
ground-state conformation. Furthermore, for most of the
sequences whose respective ground states are unique, fold-
ing to these states is neither quick nor reliable (Shakhnovich
and Gutin, 1993).

This is, of course, by no means surprising, as protein
sequences are known to have undergone evolutionary opti-
mization (Volkenstein, 1994). It was hypothesized (Bryn-
gelson and Wolynes, 1987) that protein evolution has re-
sulted in sequences that obey the “minimal frustration
principle.” To model the evolutionary-like optimization of
proteins, Shakhnovich and Gutin Monte Carlo annealed
sequences with the criterion that the sequence minimized
the energy of a particular target conformation (Shakhnovich
and Gutin, 1993). Another incarnation of the same idea is
the so-called Imprinting Model (Pande et al., 1994b). Inter-
estingly, as soon as these models were suggested, the kind
of correlations that should exist in protein sequences was
predicted, and those correlations were indeed immediately
found (Pande et al.,, 1994a) (see Correlations in Protein
Sequences, below, for more details). Later in this work we
shall discuss both random and selected sequences.

RANDOM ENERGY MODEL

In this section we digress from the polymer problem and
discuss the properties of the REM. The reader who is
interested in going straight to polymer freezing can skip to
the Summary of REM Properties, below.

What is REM?

Formally, to compute the partition function of an arbitrary
system, one needs only the list of all microstates (confor-
mations), 1, 2, ..., M, with their respective energies E,,
E,, ..., E4. Generally, M is huge, as it scales exponentially
with the number of particles (monomers), N:

M = exp(wN) 2

where w =~ 1 depends on conformations available, i.e., on
chain flexibility, packing conditions, lattice geometry in
case of lattice models, etc., as discussed above under Con-
formations. As the system is disordered, all of its energies,
E,, E,, ..., Ey, depend in general on the realization of
disorder, that is, on the sequence. In the REM, one says that
the energy of each conformation, say, E,, is distributed over
the realizations of disorder in the same way as energies of
all other conformations and is statistically independent of
them. If we call P(E) the probability distribution of the
energy of some particular conformation over disorder, and
P(E,, E,) the joint probability distribution that conforma-
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tions 1 and 2 have energies E, and E,, respectively, then
REM dictates that

P(E,, E;) = P(E)P(E,) 3)

It is also usually supposed that the P(E) distribution is
Gaussian:

E?
] C))

P(E) = (271N‘$2)"’2exp[ ~INE
where € is characteristic width of the distribution. It should
be stressed that the Gaussian character of the single-energy
distribution (Eq. 4) is less important by far than the statis-
tical independence of states expressed in Eq. 3, which is the
hallmark property of REM.

Density of states for REM

To later discuss the REM freezing phase transition, we look
at the energy spectrum of a typical realization of disorder
(e.g., arandom sequence in the polymer problem). It is easy
to generate realizations of this spectrum computationally,
and two of them are shown as examples in Fig. 1. The figure
shows that typical spectra consist of a very dense region,
with many states at high and relatively modest energies, and
a low-energy part of the spectrum, which is discrete and
comprises only a few levels. Furthermore, the continuous
part looks identical for all realizations of the disorder,
whereas the discrete part is very individual and looks com-
pletely different for different realizations.

Ebottom

discrete

Energy ———» continuous

FIGURE 1 Two typical energy spectra for REM. Each consists of con-
tinuous and discrete parts. The two realizations demonstrate the property
that the continuous part does not depend on realization, whereas the
discrete part depends strongly on realization.
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We can get an insight into these properties of the REM
energy spectrum by examining the density of states, n(E).
We remind the reader that n(E) is defined such that n(E)AE
is the number of states with energies between E and E +
AE. It is very easy to write the expectation value for n(E):

(n(E)) = MP(E) (5)

This value is huge (because of M) whenever E is not far
from the central part of the spectrum; in other words, an
astronomically large set of states forms an almost continu-
ous spectrum at all energies where the probability in Eq. 4
is not very small. When the density of states is so large, it
is essentially the same in all particular realizations, such that
n(E) = (n(E)). This argument, however, works only as long
as MP(E) > 1, or E > E®%™ where

MP(E*™™) ~ 1= E®™™~ -Ne 2w (6)

If we go to low energies E < E "™ such that this breaks
down, then the expectation number of the energy levels in
an interval AF becomes less then unity. This means, that
sometimes, for some realizations, there is one energy level,
whereas for others there is not even a single one. Thus we
come to the important conclusion that REM in a typical
realization has a practically continuous spectrum of states
above a certain energy, and a discrete spectrum below it:

when E > E bttom

MP(E)
when E < Eteom (1)

n(E) = { random peaks

It is important that the continuous part of the spectrum is
practically independent of the particular realization of the
disorder, whereas the discrete part (comprising very few
energy levels) is absolutely “individual” for each new real-
ization.

Thermodynamics of REM

Consider now the thermodynamics of REM. While, in prin-
ciple, one may wish to compute the partition function and
the free energy for each particular realization of the disor-
der, this is clearly impractical for most of the applications.
Instead, one notes that the average free energy is dominated
by the typical realizations of the disorder. Thus we are first
of all interested in the average of the form

To average the logarithmic function is a tedious mathemat-
ical task, and this is precisely the reason why disordered
systems are so difficult for theoretical examination. This is
the place where the famous replica trick (Mezard et al.,
1987) enters. The good news about REM is that one does
not need to resort to such big theoretical machinery.
Indeed, Z,.(T), the partition function for the given real-
ization of the disorder, is just the sum over all states i = 1,
2, ..., M, and it can always be rewritten in terms of the
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density of states:

M

Zoo(T) = 3 exp[—E/T] = j T wBeaE )

i=1

At high enough temperatures, this sum is dominated by the
states of high entropy (large n(E)), where the spectrum is
continuous and independent of sequence. This means that
all of the complications with the difference between indi-
vidual realizations of the disorder do not occur in this
temperature region, and disorder is, in a way, irrelevant.
Indeed, as long as the saddle point of the integral

zZ= j MP(E)e BT dE

= MP (Esaddle)e e ( 1 0)

belongs to the continuous spectrum region E > E "™ the
first line of Eq. 7 is valid, and thus we get a partition
function that is independent of the disorder. (The fact that
the REM partition function is independent of disorder is
very different from what one would expect in a typical
disordered system. In extensive quantities (linear in the
number of particles N), differences in contributions from
each particle are averaged out when we sum up N of them
and take the thermodynamic limit (because of the central
limit theorem). Because of this property, extensive quanti-
ties are called “self-averaging” and are in this sense inde-
pendent of disorder. Quantities such as the partition func-
tion (which scales exponentially in N) typically do not
average in this form (for the partition function, terms with
lower free energy dominate the average because of the
exponential). Thus the fact that the REM partition function
is self-averaging is very unusual and results from the as-
sumption of statistical independence of states.) For the
Gaussian distribution (Eq. 4), E 4 = —N€/T, we get that
Eaqie > E®™™ is valid at T > Ty, = V2. Thus, at
T > Ty, We can safely average the partition function over
disorder (as it does not depend on disorder!) and arrive at
the free energy that is also independent of the disorder.

This is not valid at lower temperatures, where just one or
a few low energy states dominate the partition function. In
principle, one might expect that at this low temperature, the
thermodynamics of a particular sample will strongly depend
on disorder. Note, however, that typical differences between
low energy states are only about VN and they are negligible
within thermodynamic limits.

As the free energy is a continuous function of the tem-
perature, we arrive at the following powerful conclusion for
REM (see also Koukiou, 1993):

[ T In(Ze(T)
- Tglass ln<Zseq(Tglass)>

We shall comment in more detail later, that to take the
average of the partition function means to take the “an-

if T> Tyass

F =
@ if T< Tyoe,

an
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nealed average.” Thus Eq. 11 shows that for REM, the real
quenched average of the free energy coincides, above the
temperature Ty,,,, with the annealed average (see Annealed
Averaged Free Energy, below). This powerful conclusion is
valid for every REM type model, and it will provide us with
a tool for further consideration. Finally, we note that as the
frozen state has negligible entropy, one can write the sim-
pler relation, _Tglass 1n<Zseq(Tglass)> = (Egnd)-

Summary of REM properties
We summarize here the main properties of REM:

e The defining hallmark property of REM is the statistical
independence of states (Eq. 3).

e The REM energy spectrum consists of a continuous part
that is independent of disorder and a few discrete energy
levels that are placed very individually for each realiza-
tion of disorder.

e The REM ground state for typical realizations is order
VN below the edge of continuous spectrum, which, in
turn, is order N below the mean energy. Furthermore, for
typical realizations discrete levels are order VN from
each other.

e There is a certain temperature for REM, Ty, such that
at T > Ty, the system explores the high entropy con-
tinuous part of its spectrum, whereas at T < Ty, it is
locked into discrete individual states.

o The free energy of the REM is given by Eq. 11.

Note that these properties are independent of the Gaussian
form of the single energy distribution (Eq. 4).

IS REM VALID FOR
HETEROPOLYMER FREEZING?

The question posed in the title of this section has been
addressed in more detail elsewhere (Pande et al., 1996a).
We also acknowledge recent theories that involve correc-
tions to REM, such as those of Franz et al. (1994), Plotkin
et al. (1996, 1997), and Pande et al. (1997a). Finally, in
Appendix A, we present a nonreplica derivation of REM for
heteropolymers; although this derivation does not use the
heavy math of replica theory, it does require the concepts of
design, which we discuss in later sections. The reader who
is ready to trust REM can skip this section and go straight
to the next one.

REM cannot be exact for heteropolymers

Bryngelson and Wolynes (1987) postulated the applicability
of REM for the folding of protein globules. Shakhnovich
and Gutin (1989) showed that REM is applicable for com-
pact heteropolymers with independent interactions (see be-
low). We have to stress that neither Bryngelson and
Wolynes (1987) nor Shakhnovich and Gutin (1989) said
that the REM was rigorously valid. REM was always con-
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sidered an approximation. However, the nature of this ap-
proximation remained unclear. This is why the statement of
REM applicability is often met with understandable distrust.
Indeed, REM obviously cannot be exact for heteropolymers.
To understand that, let us imagine two conformations, say «
and 3, each of which represents some small local rearrange-
ment of the other (see Fig. 2). As energies E, and Eg are
given as sums over all pairs of monomers that are in contact
(we are speaking now about short-range interactions), they
are dominated by identical contributions and differ only
because of the small region of difference between a and .
Clearly, these two energies are strongly dependent.

REM and non-REM logic

The REM-like assumption of statistical independence of
states is implicit in the motivation of several experimental
works; for example, de novo protein design (Hecht et al.,
1990) makes an REM-like assumption that the selection of
sequences that lower the energy of a desired conformation
will not also lower the energies of other conformations.
An opposite intuition is also prevalent in many works,
such as the computational generation for a given sequence
of a low, but not lowest, energy conformation (Holden,
1995); if REM were valid, then a low but not lowest energy
conformation will tell us nothing about the ground state.

How can REM be a good approximation?

Although REM cannot be exact, it is a very good approxi-
mation in many cases. Its validity resides in the nature of
conformation space, which allows only relatively few local
rearrangements of the type shown in the Fig. 2. Typically,
this happens because of severe constraints imposed on the
conformations when a polymer is maximally compact; this
is especially obvious if one thinks of a compact polymer on
the lattice, such as 27-mer on a 3 X 3 X 3 cube, where each
site is visited once and only once. If that is the case, closely
related and thus statistically dependent conformations like
those shown in Fig. 2 are rare.

Moreover, as the heteropolymer freezing transition oc-
curs between a phase consisting of exponentially many

FIGURE 2 Two different though closely related conformations are
shown. Everywhere within the shaded area they are identical, and the local
difference is seen in the window.
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unrelated conformations (i.e., typical overlap between any
two vanishes) to a phase consisting of one conformation,
any corrections to REM due to the statistical dependence of
states will have no effect on the thermodynamics. Such
corrections are important for describing protein folding ki-
netics (Pande et al., 1997a).

Throughout this paper, we assume that REM is applica-
ble. REM violations as well as non-REM generalizations of
the theory presented here are discussed elsewhere (Plotkin
et al., 1996, 1997; Pande et al., 1996a, 1997a), but in this
work we concentrate on the situation when REM is applicable.

ANNEALED HETEROPOLYMER
What is an annealed heteropolymer?

The result (Eq. 11) under Thermodynamics of REM, above,
involves the average value of the partition function over all
possible sequences. Let us look at this value more closely:

1

where ¥ is the total number of sequences. As Z(7) itself
represents the sum over conformations, the bigger sum

seqZseq(T) has the physical meaning of the partition func-
tion of the system in which both conformation and sequence
take part in thermal motion on an equal footing. This
hypothetical system is called an annealed heteropolymer.
Note that the Hamiltonian of annealed heteropolymer is
given by the same equation (Eq. 1), but in contrast to the
real quenched heteropolymer case, the sequence is not fro-
zen, but represents just another variable defining mi-
crostates. To imagine an annealed heteropolymer, one can
consider either a polymer whose monomers may change to
minimize energy or, equivalently, just a solution of mono-
mers without the polymeric bonds.

An annealed heteropolymer is, in principle, far simpler
compared to its quenched counterpart. This is why the
relationship in Eq. 11 is so powerful, as it allows one to
directly express all of the properties of a real quenched
heteropolymer in terms of the much simpler annealed free
energy. Although there is no universal exact solution, even
for the annealed free energy in terms of By, the relationship
in Eq. 11 allows the use a variety of approximations or
heuristic phenomenological formulae for the annealed free
energy. This is similar to the approach of standard polymer
theory. Indeed, a polymer fluid is a priori more difficult to
study compared to its counterpart of regular small mole-
cules. Given that there is not (and cannot be) a simple and
satisfactory theory for the latter, one does not try to create
such a theory for the former. Instead, one typically ex-
presses properties of a polymeric liquid in terms of the
macroscopic statistical properties of the appropriate low-
molecular-weight fluid (which is usually the system of
disconnected quasimonomers; Grosberg and Khokhlov,
1994). Similarly, our program here is to employ some
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qualitatively plausible interpolation for the annealed free
energy to gain insight into the freezing behavior of
quenched heteropolymers. We stress that the power of the
results obtained is not undermined by the approximate char-
acter of the annealed free energy that we shall use. By
contrast, as long as REM is valid, our method allows foi
easy incorporation of any potential improvement of the
impression for annealed free energy, whether taken from
computer simulations, numerical computations for furthes
terms of high temperature expansion, etc.

Accordingly, before proceeding to the quenched case, we
first examine the annealed free energy.

Annealed averaged free energy
Annealed averaged free energy of IIM

The only model that allows for an exact solution for an-
nealed free energy is the Independent Interaction Model
(IIM), as it is mappable onto the ideal gas problem. In IIM,
we assume that there are at least as many monomer species
as monomers ¢ = N, such that interaction energies between
the monomers are chosen independently from a Gaussian
distribution,

1 (B; — B)?
P(By) = CmeB) 2 *P | T o5m (13)

where B and 8B? are the mean and the variance, respec-
tively. In this case, the annealed problem is solved by the
following simple argument. To calculate the partition func-
tion over both conformations and sequences, let us first fix
some arbitrary conformation and consider summation (or
average) over sequences. This is illustrated schematically in
Fig. 3. In IIM, we do not assign species to every monomer,
but rather we assign energy to every possible bond; as we
take these energies independently from each other from the
probability distribution (Eq. 13), averaging over sequences
is reduced to independent averaging over all interaction
energies, and this transforms a heteropolymer with a variety
of monomers (“colorful pattern”) into a homopolymer
(“grey background”), with interaction energy given by

exp[—B./T] = J exp[—B/T)P(B)dB (14)

FIGURE 3 In this two-dimensional figure, we illustrate that fixed con-
formation means a fixed set of bonds between monomers.
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Given the Gaussian distribution in Eq. 13, we arrive at

5B*

Beffzé_ﬁ

15)

As long as we consider only maximally compact conforma-
tions, the total number of bonds, each with energy B.g, is
the same for all M conformations, and thus we end up with
an annealed average free energy of the form

=T ln<Zseq(T)>
—T In[ M exp(—=2B/T)]

Fann av =

2| B o TN 16
where 2 = 3, ,A(r; — r;) is the (independent of the
conformation) number of bonds (or contacts) between
monomers in any particular compact conformation, and
® = —In M/N is polymer entropy per monomer. Alterna-
tively, we can arrive at the same answer formally, by

calculating the Gaussian integral over B;; in

(Zoo(D)) = [ 1 P(Bx1) 2 exp[—2 Bi,A(r; — r)/T]  (17)

confs L

Annealed averaged free energy in terms of high
temperature expansion

Unfortunately, for all other models there is no exact solu-
tion. Instead, one commonly employs a high temperature
expansion to perturbatively calculate the annealed partition
function. It may seem unjustified a priori to use a high
temperature expansion to study freezing, which seems to be
a “low temperature” effect. However, we have to consider
that freezing is caused by frustrations that prohibit the
system from reaching lower energy microstates of the un-
frustrated system. In the polymeric case, the monomers may
wish to rearrange themselves into a lower energy configu-
ration, but the polymeric bonds prohibit this. Thus the
system is “frozen” at some temperature Ty,,,. The validity
of the high temperature expansion in describing freezing
resides in the value of Ty, compared with the annealed
phase transition temperature (i.e., the temperature of the
order-disorder transition of the annealed system).

As we did for the IIM above, we begin with averaging
over sequences for some given compact conformation and
performing a high temperature expansion, keeping terms of
order O(1/7?) in the annealed average:

—T In W*(T) = —T In[{exp[ — #(seq, conf)/T])]

1
= (90 — 57.[() — (3] (18)
_  &B?
= 9[3 - ﬁ]
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In the last line here, we have performed all averages with
the Hamiltonian (Eq. 1). We take the probability for each
sequence in the form of the product,

N
PO =PO({sp =[Ip, (19)

I=1

which corresponds to monomer species, {i}, occurring in-
dependently with probabilities {p;} (cf. Eq. 12). Averaging
is straightforward because, as in the IIM case above, the
result does not depend on a particular conformation, as the
number of contacts Q is the same in all compact conforma-
tions. In this general case, the mean and variance of the
interaction matrix, B and 8B, are defined as

B= ZpiBiij
ij
8B = Epi(Bij)2pj - (E PkBklpl)2 (20)
ij Kl
= Epi(Bij - B)’p,

3]

When we finally sum (the partition function) over all JM
compact conformations, we arrive at

2

Fannav = 9/|:B - ﬁ] —TNw (21)

which is pretty much the same as for the IIM (Eq. 16),
except for the more general definitions (Eq. 20). Thus, to
this order, we are essentially approximating P(B;) by a
Gaussian and thus reforming the model into the IIM. Devi-
ations from this behavior will be seen by examining terms in
the expansion to higher order. We also note the difference
between the free energy of the annealed system and the
“annealed average.” In the annealed average, the realiza-
tions of disorder behave like states, but we average, not sum
over them. Thus the entropy of the number of realizations of
disorder is present in the annealed system, but not the
annealed average.

There are several general properties that derive from
aspects of this free energy, which have previously been
worked out (Pande et al., 1995a), and we simply repeat here:

e Heteropolymeric effects are independent of the mean of
B;;. The mean of B;; only affects the homopolymeric
mean attraction. As we assume globular conformations,
this mean should be rather attractive for our formalism to
be valid. Moreover, small changes such that the mean
remains attractive should therefore have no effect.

¢ Changing the variance of B; is equivalent to changing the
temperature. One can always factor out a constant from
the definition of the interaction matrix; this constant only
affects the temperature. This fact will be used later under
Geometrical Interpretation.
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e Reduction theorems. One can choose two matrices that
are formally different but physically identical (for exam-
ple, by simply creating a new “clone” species with iden-
tical interaction energies of a previous species). How-
ever, as one would expect physically, this does not make
a difference in the final calculation, and these cases can
be shown to be formally equivalent from the nature of the
free energy.

FREEZING TRANSITION

We are now equipped to describe the phase behavior of real
quenched heteropolymers with random sequences. Our
tools are Eq. 11, which expresses the quenched free energy
in terms of the annealed average, and the expression in Eq.
21 for the annealed averaged free energy. For further ref-
erence, we here collect these and write the free energy of a
real quenched system (averaged over sequences, as in
Eq. 8):

_ OB .
Q[B - ﬁ] — TNw if T> Tglass
F(T) = - (22)
Q[B - m] - Tglasst ifT= Tglass

Glasslike freezing in REM

Our discussion of REM suggests that something important
happens when, because of a temperature decrease, the av-
erage energy becomes lower than the boundary of the con-
tinuous spectrum. Above the corresponding temperature
T y)s5> the REM-represented system explores many (of order
0(eM)) states and behaves practically independently on the
particular realization of disorder. Below this temperature,
on the other hand, the equilibrium is dominated by a few
discrete states of low energy that vary strongly between
each realization of disorder. At T > Ty, the entropy of
mixing over the continuous spectrum wins; at T < T, the
energy of fluctuations involving low-lying energy levels
wins. The temperature Ty, is called the glass temperature,
and the transition is called freezing. Although it is very easy
to find that T, = €/\V2w for the example of Gaussian
single energy distribution (Eq. 4), we are now more inter-
ested in applying the idea of freezing to the heteropolymer.
To this end, we note that the freezing transition is marked by
the temperature at which entropy becomes O(1). In the
thermodynamic limit, we can therefore calculate the freez-
ing transition temperature by looking at the point where the
entropy vanishes. Thus, to find freezing temperature, we can
simply examine the relation

oF
S(T ass) = T o7 =0 (23)
& oTl,,

=Tgluss
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Freezing of random heteropolymers

We use our main relationship (Eq. 22) and find for the
entropy of the quenched heteropolymer,

dF 8B?

ST = — E_,-"z No—2 b atT= Tglass (24)

Thus S(T) = 0 at the temperature Ty,g,, such that

) 5B?
Tg]ass = T (25)
where s = In @®/v is the conformational entropy per bond (a
is the typical distance between monomers and v is the
excluded volume) and is therefore related to the entropy per
monomer o by the relation s = N w/2. Higher order
corrections can easily be obtained and agree with the pre-
vious results of the replica calculation (Shakhnovich and
Gutin, 1989; Sfatos et al., 1993; Pande et al., 1995a).
It is instructive to rewrite the expression in Eq. 22 for the
free energy of the globule in terms of Ty, instead of w or
s; using Eq. 25, we get

_ OB T? -
QI:B - —2'7(1 + T_éhs;)] atT = Tglass
F(T) ~ - 26)
Q,[B - ] aaT= Tglass
Tglass

DESIGNED HETEROPOLYMERS
Why should sequences be designed?

When the freezing transition for random heteropolymers
was first discovered (Bryngelson and Wolynes, 1987; Shakh-
novich and Gutin, 1989), it was believed by some that this
was already a good model for protein folding, as it yields a
unique ground state with a reasonable (N independent)
probability. It was later realized that this ground state,
although formally unique, is not sufficiently robust. As the
typical energy difference between low energy states scales
as VN, and in REM systems these low energy states are
structurally very different and even unrelated, even a slight
change of parameters or solvent conditions leads to a com-
plete alteration of the ground-state conformation (Bryngel-
son, 1994). Obviously, this is not what happens in nature,
where protein native states are remarkably stable.

Another aspect of the problem is that the choice of the
ground state of a random sequence cannot be controlled, and
thus it is problematic to obtain any desirable properties of
the native state out of random choice of sequences.

This discussion suggests that the design of sequences
should be directed at choosing atypical realizations from the
REM ensemble, such that the ground-state energy is suffi-
ciently below the bottom of the REM continuous spectrum.
This was realized in the procedures called sequence selec-
tion (Shakhnovich and Gutin, 1993) and Imprinting (Pande
et al., 1994b); they can be also viewed as constructive
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implementations of the general “principle of minimal frus-
tration” (Bryngelson and Wolynes, 1987).

Microcanonical and canonical design

In principle, one can try to select sequences based directly
on their lowest native state (NS) energy, Eys. The corre-
sponding ensemble of sequences is similar to the microca-
nonical ensemble in the regular statistical mechanics.

In statistical mechanics, it is technically more convenient
to use the canonical ensemble, where temperature is fixed
instead of energy. A similar idea is also valid for sequence
design. We use an analog of the canonical ensemble where
the native state energy Eyg is not fixed, but rather is con-
trolled through an artificial temperature T4.,. Equivalently,
we choose some “target” conformation * that we want to be
the native state of the designed sequence, and constrain its
energy E, = 3(seq, *) with a Lagrange multiplier 1/7,. In
this canonical ensemble, each sequence appears with Gibbs
distributed probability:

P = P ég; eXP[“%(Seq, *)/ Tdes]
> Zseq ng()] exP[_%(seq, *)/ Tdes]

where PQ) is the probability of the sequences made ran-
domly from independent monomer species, with occurrence
probabilities p;; we have already used these probabilities
earlier (see Eq. 19).

Thus we characterize a given canonical ensemble of
designed sequences by the value of T, for lower T4, we
model sequences whose native states are better optimized
energetically, whereas for higher T, we are left with an
unaltered ensemble of random sequences.

We note that this prescription for energetic optimization
of the native state has many incarnations, including “mini-
mal frustration” (Bryngelson and Wolynes, 1987), “se-
quence selection” (Shakhnovich and Gutin, 1993), and “Im-
printing” (Pande et al., 1995b). Whatever the name, it is
important that the procedure be targeted at one particular
conformation *, which is completely under control, as it can
be chosen arbitrarily. In particular, one can work computa-
tionally with target conformations as complex as the ones
with a specific “pocket,” as in an enzyme active site (Pande
et al., 1994b).

There is an interesting question as to whether all possible
target conformations * are equally suitable for design. Com-
puter simulations (Li et al., 1996) indicate that they are not.
Currently, however, this effect is beyond what we can
understand analytically. It is possible, in particular, that
some relatively rare conformations, such as crumpled
(Pande et al., 1996a), can be of importance in this respect.
In this paper we shall consider all compact * conformations
on an equal basis.

27

Energy of the target conformation

In this section, we shall compute the energy of the target
conformation, averaged over sequences. Using the proba-
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bility distribution for the designed sequences (Eq. 27), we
write

(Eu(seq)) = 2, P Eu(seq)
seq

D seq PO, expl — H(seq, *)/Tue,] - H(seq, *)
T e PO expl—H(seq, *)/Tee]

(28)

The very structure of this equation suggests the following
simple trick (similar to what is done regularly in statistical
mechanics). Let us return to the definition in Eq. 18 of the
annealed average partition function as a function of temper-
ature:

WH(T) = <exp[ - wb

= >, PO, exp[—F(seq, *)/T]

seq

(29)

Then, in terms of this partition function, we can immedi-
ately write

1 aw

dln W
(Eu(seq)) = — 35 D

- T aml,,, %0

Up to this point, we have made no approximations. To
obtain some concrete result, however, we use our lowest
order high temperature expansion for the annealed averaged
free energy (Eq. 18) and find that in this approximation, In
W*(T) does not depend on * and equals

T— Taes

9B 926B?

Therefore (E,) is given by

dln W* _  OB?
(E)= — WlT"T“" = 9—[3 - 7;] (32)

This is a very important result. Here we see directly how the
design temperature affects the target state energy. Note that
the “susceptibility” of the target state energy to design is
proportional to the variance of the interaction matrix: it is
natural that it is purely a heteropolymeric effect, as it is
based on energy optimization for the target conformation.
One can conceptualize this process in terms of the schemes
used to computationally model a design: the energy is
minimized by swapping monomers in prepolymerized so-
lution, as in Imprinting (Pande et al., 1994b), or by swap-
ping sequences in the sequence space, as in the sequence
selection (Shakhnovich and Gutin, 1993).

REM implies a very peculiar spectrum of energies for a
heteropolymer with a designed sequence. Note that design
affects only the energy of the target conformation, whereas
the statistics of all other energies remain unaffected. In this
sense, one should understand the common jargon of design,
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which describes this as the “pulling down” of just one
energy level. This idea is illustrated by Fig. 4. Thus design
means selection of very atypical realizations from the REM
ensemble.

Note also that the “susceptibility” of the energy level to
the design “efforts” to pull this energy down does not
depend, to our approximation, on the particular choice of
the target state. Thus the effect discussed in recent work (Li
et al., 1996) is beyond the approximation employed here.

Folded phase and folding temperature

This peculiar energy spectrum implies a very special freez-
ing behavior for designed sequences. Indeed, when we
design at infinite temperature (T, = %), we are not selec-
tive as to the energy of the sequence in the target confor-
mation * at all, and the sequences we obtain are random. As
we lower T4, we choose sequences in which * has lower
energy. At the point where T, is sufficiently low such that
the energy of * is less than that of the REM typical ground
state, then * is the ground state and we expect freezing to *.
This occurs for Ty < Ty,ss as the REM ground state is
stable at Tj,,. Furthermore, freezing of the sequences de-
signed with Ty, < Ty, Occurs at the temperature above
T g1as5» because the ground state for those sequences is more
stable and of lower energy compared to a typical REM
ground state.

Moreover, for Ty, < Ty, the target conformation will
be better optimized than the REM ground state and will
freeze at some folding temperature T4 that is greater than

Design Temperature ( Tyes )

FIGURE 4 Sample energy spectra for sequences imprinted at different
polymerization temperatures (Tg). The energy of the target conformation
(E,) versus polymerization temperature (Tg.) is plotted. As Ty is in-
creased to T, E, increases. In the region Ty, ~ T, (magnified section), we
see that E, is equal to E®"°™, the average ground-state energy of a random
chain. This is related to the phase transition between the folded and glassy
phases (see phase diagram, Fig. 5). It is instructive to see a realistic
representation of the very bottom part of the energy spectrum, as shown
here in the magnified section.
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the glass temperature Ty, We can find Ty, by determin-
ing which is lower: target energy or random globule free
energy.

Thus we compare target state energy (E,) (Eq. 32) to the
random globule free energy expressed most conveniently by
the first line of Eq. 26. We find for the folding transition
temperature Ty, 4

1 . 12 (33)
T?old Tzlass TfOIdees

Note that this relation is independent of the specific aspects
of B= By, although the variance 8B? enters through Tgjass-
This is an approximation inferred by truncation of the high
temperature series, and it is valid for the case in which the
number of monomer species is large and the matrix ele-
ments of B are uncorrelated. For other cases, higher order
terms of the high temperature expansion must be used
(Pande et al., 1995b).

The results of this section are summarized in the phase
diagram (Fig. 5). All phase boundaries are determined di-
rectly from the annealed average partition function. This
allows quick calculation of even exotic heteropolymer in-
teraction models, within the validity of REM.

We stress that REM is important, not just to calculations,
but to the possibility of this simple design scheme (i.e.,
selecting sequences that minimize the energy in a desired
conformation) working at all. Because of the statistical
independence of states, we can alter the energy of a partic-
ular state without significantly influencing the majority of
other states.

E
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FIGURE 5 For the freezing of globular heteropolymers, there are three
phases: 1) Random: an exponential number of globular conformations
dominate equilibrium (similar to a homopolymer globular state); 2) Glassy:
for sequences that are not well optimized (sufficiently high T,.), only
order one conformations dominate below the glass temperature Ty, but
these conformations are not the target conformation; one can consider
random-sequence ground states to be optimized at Ty, = Ti,; 3) Folded:
the target conformation * dominates equilibrium; for Tye; < Tijas * S
better optimized than the ground state of random sequences.
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Computational tests of design

There are at least two reasons to test the conclusions above
with computer simulations:

e All of our results rely heavily on REM, although the
validity of REM itself may be questionable.

e As in every statistical mechanics approach, our consid-
eration uses the thermodynamic limit. Real polymers are
long, but the typical numbers of monomers, often as
small as hundreds, are far less than in conventional
applications of thermodynamics. Thus it is desirable to
test our conclusions for relatively small systems.

To this end, we employ a model that has become a
standard for heteropolymer freezing studies: the 27-mer
placed on a 3 X 3 X 3 piece of cubic lattice, as shown in
Fig. 6. In this paper, we shall not go into the simulations
details and only present Fig. 7, which shows a successful
comparison between the theoretical and computational
phase diagrams. Note that there are no free parameters
involved in this comparison.

Correlations in protein sequences

Design implies that the sequences are not taken at random.
One may ask if real protein sequences look random, or if
they bear some fingerprint of evolutionary optimization.
Even more than that, one can predict, at least qualitatively,
the character of sequence correlations that should be ex-
pected if proteins are indeed designed in the sense described
in the previous sections. This has been done by Pande et al.
(1994a), and we briefly summarize the methodology and
results below.

From our theoretical models, we expect that evolutionary
energy minimization of protein sequences should lead to

FIGURE 6 27-mers have been commonly employed in lattice computer
simulations of folding and design. For example, the 27-mer shown here
consists of two types of monomers (black and white), and the conformation
shown here is a ground-state conformation for Ising interactions.
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FIGURE 7 Phase diagram for designed 7-Potts model heteropolymers:
computer simulation of compact 27-mers on the 3 X 3 X 3 cubic lattice
and analytic prediction with no free parameters. The computer simulations
generate chains, using Monte Carlo annealing at a given T,. Next, the
partition function for maximally compact conformations was exactly cal-
culated. The folding temperature was determined by the temperature at
which the REM order parameter X(T) = 1 — Z_P2 = 0.9, where the sum
is over all maximally compact conformations « and P, = exp[—%(conf =
a, seq)/T] is the Boltzmann weight of conformation a with the given
sequence. We will further discuss the meaning of X(7) below (What Our
Approach Cannot Do). Because of finite system effects, one sees that the
folding temperature becomes constant for Ty, < 0.5, as we have reached
the maximum degree of optimization for 27-mers. Moreover, near T,/
Tgiass = 1, there are large fluctuations due to small size effects, which lead
to small quantitative deviations from our theory. To join the computer
simulations with the analytic predictions, we measured the freezing tem-
perature Ty, for random sequences directly from the simulation data at
high T,,,. With the measured value of T, and the calculated value of the
variance of the interaction matrix, we plotted the theoretical curves using
only the lowest order term ©(1/T2). The 7-Potts model was used in this
demonstration, as it has been shown to be the “most heteropolymeric”
(Pande et al., 1994b) for 27-mers. Other models show similar behavior;
however, for the 2-Potts model, for example, one must carry further terms
in the free energy to get a good quantitative agreement.

correlations of monomer species along the chain consistent
with energy minimization. For example, we expect that
positively charged monomers will be followed predomi-
nantly by negatively charged monomers; furthermore, as
hydrophobicity induces an effective attraction between hy-
drophobic monomers, we expect hydrophobic monomers to
be followed by other hydrophobic monomers along the
protein chain. Moreover, Imprinting predicts much stronger
correlations along the chain than other design schemes, as
these other schemes do not include the interactions along
the chain during design; thus the possible force driving
correlations along the chain must come from indirect, mul-
tiple body interactions.

To convert from amino acid sequences into a language
more convenient for analysis, we used mappings that trans-
late the 20 amino acids into a three-letter code, —1, 0, +1.
For example, one such mapping translates amino acids
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based upon their charge. We next employed a sensitive
mathematical apparatus to find correlations in the translated
three-letter code sequences. We found correlations in these
sequences, but more interestingly, these correlations were
consistent with energy minimization. For example, we
found anticorrelations in the Coulomb mapping (+1 is
typically followed by —1, etc.) and correlations in hydro-
phobic mappings.

Where are the replicas?

Although we intentionally avoid in this paper the use of the
replica trick, some readers may be familiar with it and may
be interested in the connections between our approach and
the more standard, albeit more heavy, replica treatment. If
the reader is not interested in this question, he/she should
skip this section and go directly to the next section.

To uncover the parallelism with the replicas, let us con-
sider the annealed average partition function W*(T) at the
special temperature, defined as

1 _ 1 +n 34
T Ta T 34

and rewrite Eq. 30 in the form

(35
n—0

As one would expect, W is mathematically similar to the
replicated partition function Z" in the replica trick. Indeed,
we have an annealed average and n replicated Hamiltonians.
Here we have no need to interpret n as replicas, but merely
as some “external source field” that we eventually set to
zero. Therefore, not surprisingly, the results of the nonrep-
lica method agree well with that of the previous replica
calculation for design in the matrix formalism (Pande et al.,
1995b).

Of course, avoiding difficulties never comes without cost.
In this case, we avoid difficult replica calculation by the
expense of the use of REM. In the full replica formalism,
one can, at least in principle, try to go beyond the REM
framework. Some attempts to apply more general models,
such as GREM, are discussed by Derrida (1985) and Plotkin
et al. (1996). In recent work (Plotkin et al., 1997) research-
ers have attempted to incorporate sequence design into the
GREM type scheme. In the meantime, the approach we
suggest here also allows for some generalizations, as we
show elsewhere (Pande et al., 1997a,b); interestingly, these
works are in many ways very similar to the approach of
Plotkin et al. (1997).

DESIGNING AND FOLDING WITH
DIFFERENT INTERACTIONS

Why can interactions be different?

Consider, for example, a computer simulation of protein
folding or design. We understand now that folding is very
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sensitive to how well the native state energy is optimized, or
how the sequence in question has been designed. On the
other hand, one must make some approximations of the
nature of the interaction potentials involved. This leads
directly to the problem: we believe that the sequence has
been designed by Nature, and this natural design was gov-
erned, obviously, by natural interactions, and we are now
trying to fold this same polymer by using somewhat dis-
torted or “noisy” interactions. Equivalently, we wish to use
our approximated potentials to design sequences for (artifi-
cial) “proteins,” which we want to fold experimentally. If
we make a good approximation of potentials, then the
results will be good, but if the potentials are sufficiently
different, one would expect to arrive at spurious results.
Toward this end, there are several questions we can ask:

o How different can these two sets of potentials be and still
somewhat accurately model protein folding?

o In what way do we define the “similarity” of set inter-
actions?

e What is the phase behavior of this system?

These questions are also relevant to some other situations.
For example, we can imagine that the polymer is folding
under somewhat different solvent conditions compared to
the environment in which the polymer had been designed.

To examine this problem explicitly, we use two different
Hamiltonians, one for design,

N
¥(seq, conf) = >, B3, A(r; — 1y) 36)
- L)

and another for folding,

N
¥'(seq, conf) = >, Bf A(r; — 1) 37
L)

We consider that (canonical) design is performed for the
target state * according to Eq. 27, where %¢¢ is employed for
the Gibbs statistical weight of a given sequence to be in the
designed ensemble.

Target state energy

In analogy with what we have done above (Energy of the
Target Conformation), we can calculate the target state
energy, averaged over sequences, by

(E.(seq)) = 2 PiegEa(seq)

Diseq P2y exp[— 3 (seq, *)/Tyes] - #'(seq, *)
N 25 P exP[_%d(Seq’ *)/ Tdes]

eq © seq

(3%)

The only difference from Eq. 28 is that two different Ham-
iltonians are involved, ¥ and %€f. Nevertheless, we can still
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use our approach: we define the annealed average partition
function (similar to Eq. 29) for the effective Hamiltonian

%eff’
Hegi(seq, *
W= <exp[ _ ﬂp
T
= > PO, exp[—H.q(seq, *)/T] (39)
seq
where

Henlseq, *)  H'(seq, *) . H'(seq, *)
T T T tT

(40)

Then it is easy to check explicitly that Eq. 38 is reproduced
by the following trick:
1 oW

(Edseq)) o In W*
T T W oon N on

n—0 n—0

(41)

(compare with Eq. 35).

This represents the complete REM solution for the prob-
lem. Although, in principle, we can use a variety of approx-
imations for the annealed average partition function W*, to
be specific, we use (as we did in previous sections) a high
temperature expansion. We proceed as we did in Eq. 18,
except with a new interaction matrix,

A

%eff Bd B f
=—+n=
T Ty T

42)

To lowest order in 1/T and 1/T,,,, the annealed average free
energy is independent of * (again, because all compact
conformations have the same number of monomer contacts,
9) and it is given by

0By Q5%

—In W = T ‘W (43)
where
%eff _ F Bf 44
T T "T @4)
and
- 2
T I N T R
’ (45)
8B; 8B 8Bj; , 8B}
et Ang At
Thus
— 1
(E) = Q[Bf T ZPiSBgSBifjpj]
s jj (46)

—  &B%
= f — e
9* [B Tdes J
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where

SBfo = 2 pia’B\?jS/B\ifjpj 47
ij

Moreover, we see that a particular correlator of the matrix
elements is important. We next investigate a geometrical
interpretation of this correlator.

Geometrical interpretation

The form of our results suggests the following interpreta-
tion. Let us treat the B matrices as vectors, albeit with the
components B;; numbered with a pair of indices. Subtracting
the mean interaction, 8B;; = B;; — B geometrically means
that the 6B;; vector has zero projection along the “main
diagonal” (vector (1, 1, . . ., 1)) in this vector space. For any
two vectors in this space, say & and 9B, we can define the
scalar product as o - B = Z;; p;4;B;; p;. Note that this has
nothing to do with the matrix product of the corresponding
matrices. From this point of view, both the glass transition
temperature Ty, (Eq. 25) and the “susceptibility” of the
target state energy for design (Eq. 32) are defined by the
(squared) length of the 8B vector.

Thus Eq. 46 means that, in the general case of two
different matrices for folding and design (Bf and BY), the
situation depends on the angle between 8B and 8B, Indeed,
this angle is given by cos ¢ = g, where

5B¢- 8B! @)
g m——
\(6B- 5B%)(8B" - 6B")

“Paralle]l” (completely correlated) interactions yield g = 1
(¢ = 0), and “orthogonal” (completely uncorrelated) inter-
actions yield g = 0 (¢ = 7/2).

Models with two types of monomers: generalized
BWM (black and white model)

Our geometrical view explains why we wrote the general-
ized BWM interaction matrix in the form shown in Table 1.
Indeed, in the 2 X 2 symmetrical matrix, there are three
independent elements. By setting the mean to O and the
variance (length of the vector) to 1, we are left with one
variable only, which has the natural interpretation as an
angle (6) in the vector space.

In terms of this angle 6, matrices with zero mean, unit
variance, and even composition (equal fraction of all mono-
mers, p; = 1/2) have the form

sin 6

\/icos 0 —sin 6 ) (49)

This result can also be generalized for arbitrary p,, but
becomes considerably more cumbersome. (In general, one
can express all symmetrical 2 X 2 matrices with zero mean,
unit variance, and fixed composition p, = (1 + €)/2 and

—\ficosG—sinO
sin 0

By(6) = (
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P> = (1 — €)/2, with the matrix elements

2(1 — € (1-e .
Bi(e, 6) = — mcoso—msmﬂ
Bo(c, 6) = (1+e¢ (1+e€

mcose—(l—_ejsine

2 .
Byy(e,0) =€ AT+ o0 =9 6+ sin 6

For even composition (e = 0), the expression above reduces
to Eq. 49.) As one might suspect, 6 not only is a means of
parameterizing this space of matrices, but also describes the
similarity of matrices; in the previous section we have
shown that the similarity of interaction matrices is given by
the “dot product,” g = (1/4) 2;; B;;(6)B;;(6"). Similar matri-
ces have overlap g = 1, unrelated (“orthogonal”) matrices
g = 0, and anticorrelated matrices (e.g., ferromagnetic
versus antiferromagnetic interactions) have g = —1. We
find that 6 is a metric in 2 X 2 matrix space, as the distance
between matrices is given by g(6, 6') = cos(6 — 6'); in
other words, ¢ = 6 — 6'.

It is interesting to consider properties of these matrices as
a function of 6. Whereas we have fixed the mean and
variance of the elements of B;;(6) to zero and unity, respec-
tively, the skewness m varies with 6: 7(6) = (1/4) 2B} =
—3 cos0 sin 0. We note that the skewness never formally
enters into any of the formulz of this work, because we
truncate the high temperature expansion of the free energy
to lowest order. This results in only the variance entering
into our calculations, and thus differences between two
letter models are not seen. The next order corrections in-
clude the skewness and thus demonstrate differences be-
tween interaction matrices.

By examining m versus 6, we see that there are three
matrices with zero skewness, 8 = —/2, 0, 7/2; the cases
with @ = *7/2 correspond to the familiar ferromagnetic/
antiferromagnetic Ising model By = *§;. 6 = 0 corre-
sponds to the matrix By = {{1, 0}, {0, —1}}, which is
similar to a matrix used in some protein folding simulations
(Li et al., 1996). The matrices with maximum and minimum
skewness, 6 = iarccos(\/%), correspond to the HP model
(see Interactions, above), which is intended as a model for
amino acids (whose interactions appear to be dominated by
whether a given amino acid is hydrophobic or polar). From
previous analysis, interaction matrices derived from protein
statistics, such as the Miyazawa and Jernigan matrix
(MJM), appear to be HPM-like, with simply some “noise”
that slightly differentiates different H and P monomer
species.

Phase diagram

To find out if a polymer designed with B interactions will
still fold correctly under B' interactions, we now compare
the target state energy (Eq. 46) with the free energy of the
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random globule (Eq. 26). They are equal at the folding
phase transition temperature Ty, Which is given by

8B'-8B' 1 _zaﬁf-sﬁd 50)
T?old Télass Tfoldees

The most interesting case is obtained when both 8B and B¢
are of unitary “length” (unitary variance) (we can always
simplify to this, by rescaling (though differently) the tem-
peratures Tyo g, Taess and Tiyy,). In this case we are left with

1 1 2g
7t =
Tfold Tglass Tfoldees

(5D

Thus the original phase diagram (Fig. 5) is modified simply
by T4es — 87T 4es» as shown in Fig. 8.

How accurate must potentials be for successful
modeling of protein folding?

The results of this section agree with previous replica cal-
culations (Pande et al., 1995c), although we have derived
the results in a much simpler way. We emphasize that the
error limit for retaining correct folding is independent of the
length of the polymer. Previous calculations (Bryngelson,
1994) have made estimates that are based directly upon N

\::}::\

o No folding

@ \ \ \ \

($) LT
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FIGURE 8 Phase diagram for a series of g factors. If the heteropolymer
is sufficiently optimized (Tye, < 8Tgass) and the acting temperature is
sufficiently low (T < T,q), then even with errors in the interaction matrix,
there should be correct folding. However, if the acting temperature is
below the glass temperature (T < Ty,,) and there are sufficient errors
(T4es > 8T y1as), then there will be slow kinetics and the REM states will
dominate; this could lead to somewhat protein-like behavior, because there
are only O(1) relevant states, but the ground state is not the designed target
conformation. Finally, for sufficiently high temperature (T > Tg,), there
will not be any freezing and many globular conformations will dominate
equilibrium.
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(i.e., the error must be small compared with 1/V'N). This
reflects a fundamental difference between random se-
quences studied by Bryngelson (1994) and designed se-
quences. In the work of Bryngelson (1994), neither any kind
of design nor the principle of minimal frustration was im-
posed; accordingly, the ground states were not found to be
robust and were typically very unstable with respect to
error-based renaturation, especially for long chains. In con-
trast, our treatment implicitly incorporates design, and thus
it is not surprising that we found robust ground states in our
analysis of well-designed sequences.

Which of the BWMs is better, and how good is it?

As we know now that the similarity between interaction
matrices is given by the value of the angle ¢ between them,
or by correlation factor g = cos ¢, we can address the
question: Which of the simplified models yields a better
approximation for reality? Suppose, for example, that we
consider the 20 X 20 MJ matrix (Miyazawa and Jernigan,
1985) to be the “real” one and want to find out if HP or
another model with just two types of monomers will yield a
reasonable approximation. To address that, we compute the
dot product, g(6) = 8B™ - 8B(6), between the MJ matrix
and the 20 X 20 matrix, which is obtained from 8B(6) by
using the reduction theorem (see above, Annealed Averaged
Free Energy in Terms of High-Temperature Expansion).
The best model corresponds to the maximum value of g (or
minimum angle ¢, as g = cos ¢). The results of this
computation indicate that, as one would have expected, the
best is the HP model 6 =~ 35°. However, it is not that good
at all: it forms an angle of ~60° with the MJ and thus can
hardly yield quantitatively good results for folding predictions.

CONCLUSIONS
What our approach cannot do

The approach we have developed in this article seems to
have proved to be very powerful, for it is able to predict
various phase diagrams using rather simple calculations.
The hallmark of our approach is the use of REM with the
relationship in Eq. 11 expressing the free energy of the
quenched system above freezing transition in terms of the
annealed average. Within the REM framework, one can
make the results even more accurate by taking further terms
of the high temperature expansion or by using other means
to approximate the annealed free energy. Nevertheless, the
possibilities of this approach are restricted, in terms of the
physics and the applications of the formalism.

In terms of the physics involved, the main restrictions are
as follows:

e REM itself is not universally valid; for example, it can be
violated in cases of long-range interactions (Pande et al.,
1996b).
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e Our approach does not allow the examination of the
nature of the phases with few conformations in which
self-averaging breaks down (i.e., the glassy or folded
phases). Thus we cannot calculate parameters such as the
number of thermodynamically relevant states, M =
1/(P2), where the sum is over conformations a, and P,
is the Boltzmann probability of finding conformation «
(note that M is often written in terms of an additional
order parameter, X = 1 — I/M = 1 — 3 P%). Such
calculations are most easily performed by using the rep-
lica trick. Replica treatments indicate that

1 i T> Ty
X(1) = { TiTys i T= Ty,

The potentially relevant biological aspects of protein
folding that cannot be analyzed with our methods include

(52)

e Secondary structure. As discussed in above (Conforma-
tions), we assume that secondary structure has already
been coarse grained out of the problem and is beyond the
analysis discussed here.

e Coulomb interactions. We have been discussing short-
range interactions, as proteins appear to be dominated by
the role of hydrophobicity (Chan and Dill, 1993). In fact,
the inclusion of long-range interactions (Coulomb inter-
actions between charges, for example) leads to the inval-
idity of REM, and other approaches must be taken
(Pande et al., 1996b).

e Validity of the short-range, pairwise interaction Hamil-
tonian (Eq. 1). In addition to Coulomb interactions, other
effects, such as shorter range Lenard-Jones potentials and
heteropolymeric three-body interactions, could, in prin-
ciple, be considered.

Because of the assumptions of short-range interactions,
our model leads to freezing to a single conformation (as
overlaps are calculated with A(r), short-range interactions
lead to overlaps with small scales). In proteins, freezing is
only to a set of very similar conformations (Frauenfelder
and Wolynes, 1994). To examine this behavior, it is likely
that one must go beyond our Hamiltonian (Eq. 1) and
perhaps include some of the effects above.

Perspectives

Although the application of REM to the problem of hetero-
polymer freezing is now quite common, we have found a
powerful relationship between the quenched and annealed
free energies which, in addition to significantly reducing the
complexity of calculations, yields new insights into both the
physics involved as well as the obscure and often distrusted
replica methods previously used. Within REM validity, we
found that the quenched and annealed systems differ only
by the entropy of the realizations of disorder. This entropy
reduction leads to freezing in the quenched case, but in all
other aspects (including change in entropy between two
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temperatures), the two systems are thermodynamically
identical to REM.

This allows simple calculations of many thermodynamic
properties of heteropolymers, including the freezing transi-
tion for random sequences and the phase diagram for de-
signed, protein-like heteropolymers. Furthermore, within
this formalism, one can easily calculate the effects of de-
signing with one Hamiltonian and folding with another; this
models many aspects of the folding problem, including
computer simulations of folding, which must use approxi-
mated potential functions and the experimental outcome of
folding proteins in solutions that have different effects on
different amino acids, thereby effectively altering the nature
of interactions during folding.

The obvious next step is to develop a non-REM theory of
folding and design. However, as the freezing transition goes
from a phase in which none of the conformations are similar
(on average) directly to a phase in which only one confor-
mation dominates equilibrium (i.e., all of the conformations
found in equilibrium overlap completely), these corrections
to REM will have no effect on the thermodynamics of
freezing. However, to describe the kinetics of this transition,
one must consider how the system moves through confor-
mation space, and thus the statistical dependence of states
will be of paramount importance (Plotkin et al., 1996; Pande
et al., 1997a). It is of special interest, therefore, to examine
the effect that deviations from REM may have on the
design; for the first steps in this direction, see Plotkin et al.
(1997) and Pande et al. (1997b).

Finally, we note that the problem of freezing of hetero-
polymers is not confined to biopolymers such as proteins.
Indeed, the freezing of random, synthetic polymers has
attracted great interest, because of potential industrial and
biomedical applications. In this light, we have previously
suggested “Imprinting,” a method of synthesizing hetero-
polymers with the protein-like properties of renaturability
and molecular recognition (Pande et al., 1994b). Just as the
applicability of the formalism developed here relies on the
speculation that evolution has energetically optimized pro-
teins (Pande et al., 1994a,b), this energetic optimization is a
principal aspect of Imprinting. Thus, perhaps in the pursuit
of understanding proteins, we have made some progress in
the direction of making synthetic protein-like heteropoly-
mers as well.

APPENDIX A: CORRELATOR ANALYSIS OF
REM VALIDITY

To investigate the validity of REM statistical independence, the natural
quantity to calculate is the energy correlator between two states. Using the
Hamiltonian (Eq. 1), we can write for states « and S,

(EaEp>c = <EaEB> - <Ea><Eﬁ)
= 2 Bizjglaﬁ + 2 Biijk%aB (53)
ij ij

ijk
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where

Q=2 A — AGE - 1) (54)

1#)

is the number of contacts conformations « and B have in
common and

Hp= 2 Ay — r)AE —rf) (55)

I1#J#K

describes the covariance of the coordination number of
typical monomers in conformations a and f3; certain types
of interactions, such as HP interactions, favor a large vari-
ation in the coordination number, and thus low energy states
are not necessarily maximally compact (e.g., see Yue et al.,
1995).

When 2, B;;B;, vanishes, 2,5 = 0 means statistical in-
dependence between states « and 3. Physically, this reflects
the fact that as these states have no bonds in common, their
energies will have no terms in common and should be
statistically independent; analogously, for the case 2,5 =
Qax = 2, the two conformations are identical and thus are
trivially statistically dependent.

When 2, B;;B;, does not vanish, there is a residual sta-
tistical dependence between states and REM is not valid.
The quantity 2;;B;;Bj can be interpreted as a three-body
interaction. This quantity vanishes for IIM, where low en-
ergy configurations involve all monomer species equally,
but does not vanish for models like HP, in which interac-
tions are determined purely by how many H-H bonds are
formed. Indeed, for generalized BWM, we have 2, B;:B;, =
4 cos? 0 (see Table 1).

APPENDIX B: DERIVATION OF REM
FOR HETEROPOLYMERS

This section is quite technical and can be skipped for those not interested
in the details of how to derive REM for the heteropolymer freezing
problem. The previous derivation involves replicas and replica-generalized
Lifshitz globule theory (Shakhnovich and Gutin, 1989). The following
derivation is considerably simpler, but has at its heart the same physics, i.e.,
one must balance the energetic benefits of having more native (and thus
well optimized) bonds and the entropic loss of pinning the polymer.

Our derivation of the validity of REM is based on the following remark.
The hallmark property of REM, i.e., the lack of statistical dependence
between states, can be considered to be valid to the mean field approxi-
mation if there are two and only two free energy minima at 2* = 0 and
9* =9 _.. =9, where 2" is the overlap between current conformation and
the native one (see the definition in Eq. 54 above). To the mean field
approximation, when fluctuations are ignored and thus only minima of free
energy are seen, such a two-minima free energy indeed produces REM-
type behavior: 2* = 0 corresponds to no overlap and so to no statistical
dependence on the native state, whereas 2* = Q corresponds, of course, to
the maximum possible (absolute) statistical dependence.

Thus we have to consider the free energy, F(2"), of the polymer that is
fixed to have an overlap 2* with its native state conformation NS. With the
Hamiltonian (Eq. 1), the free energy of interest can be written in a general
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form like
Foo(@) = —Tln| X e *TAQcns — 27| (56)
C

where the subscript seq indicates that the free energy is
written for a given sequence, summation is performed over
conformations C, and 2. ys is the overlap (the number of
bonds in common) between conformations C and NS (Eq.
54). The dependence on the sequence enters both through
the Hamiltonian and through the ground-state conformation
for the given sequence. As above, we resort to high tem-
perature expansion and truncate it at the quadratic terms:

S
Fieo @) = (#)la + 57 [(#)]a = (#)l)] = TIn M (57)

where (. . .)| denotes averaging over all conformations with
the given overlap to the ground state, and M is the total
number of conformations (the appearance of the last term is
because we average, rather than sum, over conformations).

We now employ the idea of sequence design in a com-
pletely new capacity, as a technical tool to elucidate the
dependence on the native state conformation. Indeed, we
average the free energy over the ensemble of sequences that
is designed for a given conformation *, that is, we use the
probability distribution

1
Pey= exp[ — Ens(seq)/Tye] = 1 — ﬁ Eys(seq) (58)

where in the last transformation we have resorted to high
Ty, expansion (which is justified for the same reason as
high temperature expansion above). Of course, in the large
T4 case, we return to the random sequence limit. Actually,
the convenient way to think about random sequences is, in
fact, to consider the Ty, = Ty, s case. Indeed, in this case
we still know that the ground state is *, but the statistics of
energy levels is unaffected by the design.

When one averages the free energy (Eq. 57) over the
probability distribution (Eq. 58), the result appears very
simple in the sense that, because of the structure of the
Hamiltonian, the energy depends directly on 2*; thus it is
very easy to implement the condition of the fixed 2%, and
the result can be written in the form

F(2") = D P Foet( @) = E(Q%) — TS(2Y)  (59)

seq
where the energy E(2") is given by

2 2

EQY) = - 72"~ (2n— 2" (60)
p

The first energy term comes from the mean of the density of
states ("¥) and describes how the energy is pulled down
because of selection; indeed, to this order, the ground-state
energy is Ens = —2,B%/T,; thus this term says that on
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average, the energy is given by the energy of the native state
times the fraction of native contacts.
The second energy term comes from the width of the

density of states, resulting from the (¥2) — () terms; the
9* dependence of this width enters from the correlator (¥
(Pande et al., 1996a), as two conformations with a given
overlap 2* with NS also have 2* bonds in common, on
average. Higher order terms can modify the 2* dependence
of the width, depending on the nature of interactions. The
9* dependence of the mean and width of the density of
states describes the nature of energy correlations.

As to the entropy (i.e., the number of states there are with
the given overlap with the NS), it is technically cumbersome
to systematically derive an accurate expression for this
quantity (Pande et al., 1997a). However, it is easy to write
down the following simple interpolation expression:

9)=InM 9.2( dl 2
S()—?n - S—En.‘,’l—m

- 2In(Y2,) — (2 — 2) In(1 — 2/2,)

The interesting 2 In Q terms come from the loop entropy
and the entropy of choosing Q contacts out of 2. It is
intriguing that these two terms cancel at d = 2 dimensions,
where the transition in  goes from first (d > 2) to second
(d = 2) order (E. I. Shakhnovich, personal communication).

Thus, within the mean field approximation, we find a free
energy that has two minima at 2* = 0 and 2,,,, and REM is
therefore applicable for d > 2.

(61)
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