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Rate Constant of Muscle Force Redevelopment Reflects Cooperative
Activation as Well as Cross-Bridge Kinetics

Kenneth Campbell
Department of Veterinary and Comparative Anatomy, Physiology, and Pharmacology, Washington State University,
Pullman, Washington 99164 USA

ABSTRACT The rate of muscle force redevelopment after release-restretch protocols has previously been interpreted using
a simple two-state cross-bridge cycling model with rate constants for transitions between non-force-bearing and force-
bearing states, f, and between force-bearing and non-force-bearing states, g. Changes in the rate constant of force
redevelopment, as with varying levels of Ca2+ activation, have traditionally been attributed to Ca2+-dependent f. The current
work adds to this original model a state of unactivated, noncycling cross-bridges. The resulting differential equation for
activated, force-bearing cross-bridges, NCf, was NC,f = -[g + f(K/(K + 1))]NCf + f(K/(K + 1))NT, where K is an equilibrium
constant defining the distribution between cycling and noncycling cross-bridges and NT is the total number of cross-bridges.
Cooperativity by which force-bearing cross-bridges participate in their own activation was introduced by making K depend
on NCf. Model results demonstrated that such cooperativity, which tends to enhance force generation at low levels of Ca2+
activation, has a counter-intuitive effect of slowing force redevelopment. These dynamic effects of cooperativity are most
pronounced at low Ca2+ activation. As Ca2+ activation increases, the cooperative effects become less important to the
dynamics of force redevelopment and, at the highest levels of Ca2+ activation, the dynamics of force redevelopment reflect
factors other than cooperative mechanisms. These results expand on earlier interpretations of Ca2' dependence of force
redevelopment; rather than Ca2+-dependent f, Ca2+-dependent force redevelopment arises from changing expressions of
cooperativity between force-bearing cross-bridges and activation.

INTRODUCTION

In constantly activated muscle, force redevelops with a

characteristic rate constant after mechanical perturbation of
muscle designed to break nearly all force-bearing cross-

bridges and momentarily achieve zero force. This rate con-

stant has been widely used to assess the sensitivity of
cross-bridge kinetics to various factors, including the level
of Ca2+ activation. The general idea has been that if a

population of activated and cycling cross-bridges could be
forced into a state in which no cross-bridges were generat-
ing force, then the time course over which the population
reestablished force-generating capability would be a mea-

sure of the kinetics governing cyclic transitions between
non-force-bearing and force-bearing states. Any depen-
dence of the rate constant of force redevelopment on exper-

imentally modified factors has been taken as an indication
of a dependence of cross-bridge kinetics on the factor that
was modified.
The rate constant of force redevelopment after mechani-

cal disruption of force-bearing cross-bridges by release and
restretch has been shown to be dependent on the level of
Ca2' activation in both skeletal (Brenner, 1988; Metzger
and Moss, 1990) and cardiac (Wolff et al., 1995) muscle. In
accord with these findings, the rate constant of force devel-
opment after photorelease of Ca2+ from caged compounds
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in rabbit psoas and rat trabecular muscle has been shown to
depend on the amount of Ca2' released (Araujo and
Walker, 1994). These results have been interpreted to indi-
cate that the rate constant governing the formation of force-
bearing from non-force-bearing cross-bridges, f, is Ca2+
dependent.

In this report, the original two-state interpretive model
with cross-bridge kinetic constants f and g is extended to
include an activation (recruitment) component. The activa-
tion process is influenced by cooperativity in which force-
bearing cross-bridges act to enhance both activation and the
formation of more force-bearing cross-bridges. It is shown
that these cooperative actions actually slow the develop-
ment of force and that this slowing is most pronounced at
low levels of Ca2+ activation. There is less impact of
cooperative actions on the time course of force development
at high levels of Ca2+ activation. The net impact of these
cooperative effects is to make the rate constant of force
development Ca2+ dependent. In fact, the different rate
constants at different levels of activation are due to different
degrees of participation by cooperative mechanisms in the
dynamics of force development.

MODELING

In accord with the original interpretive model for force
redevelopment (Brenner, 1988), the simplest possible model
of myofilament activation and cross-bridge cycling is used.
The model on which the analysis is based (Fig. 1) is a
reduced three-state version of a more complicated six-state
model given in the Appendix and in Fig. 6. This six-state
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FIGURE 1 (A) Cross-bridge model depicting activation and cycling. The
rate factors kol and k0ff govern the switching on and off of thin-filament
regulatory proteins that allow noncycling cross-bridges, N"c, to enter a
cycling population. Within the cycling population, the constants f and g
represent factors goveming the transition from non-force-bearing states,
Nco, to force-bearing states, Ncf, and the transition from Ncf states back to
Nco states, respectively. (B) Entry into and exit from the cycling population
is considered to be fast relative to cycling between non-force-bearing and
force-bearing states. Thus kn and kff are replaced with the equilibrium
activation factor K. Cooperativity between force-bearing states and acti-
vation is indicated by the feedback arrow between NCf and K.

model merges some of the features of the model of T. L.
Hill (1983) with some of the features of the activation
model of Geeves and Lehrer (1994). It bears some similarity
to several other models, including those of Yue (1987),
Peterson et al. (1991), Landesberg and Sideman (1994), and
Dobrunz et al. (1995). Our application is novel in that we
analyze force redevelopment transients with a simplified
three-state model that lumps several activation processes
into a single state transition.

In the reduced model, the total cross-bridge population is
divided into two subpopulations: a cycling population and a
non-cycling population. Members of the cycling population
can be found in one of two states: force-bearing, Ncf, and
non-force-bearing, Nco. The non-cycling population consists
of a single non-force-bearing state, Nnc. Cross-bridges enter
the cycling population from the non-cycling population
according to a rate constant, kon, and cross-bridges leave the
cycling population according to a rate constant, k0ff. It is
shown in the Appendix that kon and koff incorporate both
constants governing the switching on and off of thin fila-
ment regulatory proteins from steric blocking to nonblock-
ing positions and constants governing the binding and dis-
sociation of Ca2+ from the thin-filament regulatory protein.
Once in the cycling population, cross-bridges undergo re-
peated transitions between force-bearing and non-force-
bearing states, according to the rate constants f and g.

Activation

Activation is defined to be the result of processes that favor
cross-bridge entry into the cycling population. This occurs
when k00 increases relative to k0ff. Thus Ca2+ causes acti-
vation by increasing the kon/koff ratio, resulting in a net
movement of cross-bridges from the noncycling state, Nnc,
into the cycling Nco and Ncf states. In accord with data that

show rapid movement of tropomyosin on thin filaments
relative to S1 attachment and detachment (Geeves and
Lehrer, 1994) and relatively rapid Ca2+ binding and disso-
ciation, it is assumed that kon and k0ff, although they may be
very different from one another, are both very much greater
thanfand g. Thus it may be considered that, at any time, an
equilibrium exists in the exchange between Nnc and Nco
states relative to the cycling between Nco and Ncf states.
This equilibrium allows us to write

kcon
Nco = k Nnc = KNnc,koff (1)

where K is an equilibrium constant equal to the ratio kon/koff.
It is shown in the Appendix (Eq. A. 12) that K is a saturat-
able function of Ca2+; K is small, with few cross-bridges in
the cycling population when Ca2+ is small, and K reaches a
plateau with most of the cross-bridges in the cycling pop-
ulation when Ca2+ is high. For the purposes of this exercise,
this saturatable relationship between K and Ca2+ will not be
used but, instead, a simple linear relationship will suffice,
such as

K= aCa2+, (2)
where a takes on a value appropriate to relations developed
later. K will be termed an "activation factor."

Cross-bridge cycling

A differential equation expressing the rate of change of
force-bearing cross-bridges may be written from inspection
of Fig. 1 as

Ncf =fNco - gNcf, (3)

where Ncf is the first time derivative of Ncf. It is shown in
the Appendix how Eq. 3 applies, even when cycling cross-
bridges may or may not have Ca2+ bound to TnC. To
further develop the model, it is necessary to write this
equation in terms of just Ncf and system constants.

With the total number of cross-bridges (cycling plus
noncycling) fixed at a constant NT, a conservation relation-
ship among cross-bridges in the various states may be
written as

NT = Nnc + NCO + NCf. (4)

Substituting Eqs. 1 and 4 into Eq. 3 and rearranging gives
the desired differential equation in terms of just Ncf and
system constants as

K K
INcf = - g+f+ N f + f ~~NT. (5)

The two terms on the right side of Eq. 5 represent two
components causing dynamic change in NCf: the first term
causes Ncf to decrease at a rate proportional to Ncf itself,
whereas the second term causes Ncf to increase at a rate
proportional to NT. This second term may be considered a
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driving function. For fixed values of the factors g, f, and K,
both the coefficient on N,f in the first term on the right side
and the driving function are constant. In this case, the rate of
dynamic change in Ncf will be characterized entirely by the
coefficient on Ncf, which will be called ktr,

K
ktran= g + fK+ 1

where the "an" in the subscript identifies this rate constant
as analytically derived, to distinguish it from an analogous
rate constant to be determined later, which is estimated from
the time course of force development.

For example, consider that NCf has an initial value of zero,
as is the case after a mechanical perturbation that breaks all
force-bearing cross-bridges. Then, for constant values of g,
f, and K in Eq. 5, Ncf will rise exponentially with time
according to

NCf = Nss[1 -e-k,t] (7)

where NSS is the asymptotic steady-state value of NCf and is
given by

NSS f(K(K+ 1)) NT (8)

During both steady state and the approach to steady state,
force, F, is proportional to Ncf. Thus, by substituting FSS in
place of NSS and FT in place of NT, Eqs. 5, 7, and 8 could be
written in terms of F instead of Ncf. Furthermore, the rate
constant of NCf development, ktr , is also the rate constant of
force development. From Eq. 6 it is seen that ktr depends
not only on the kinetic constants of cross-bridge cycling, f
and g, but also on the activation factor K.

MODEL RESULTS

Ca2+ activation has a large affect on FSS and a
modest affect on ktr..
Because, by Eq. 2, K is a function of Ca2+, the level of Ca2+
will determine both F.S (according to Eq. 8) and kt, (ac-
cording to Eq. 6). As Ca2+ varies from low to high, the
factor K/(K + 1) in Eqs. 5, 6, and 8 varies between 0 and 1.
Correspondingly, FSS varies between 0 and Fmax (= [fi(f +
g)]FT), and ktr varies between g and f + g. Low levels of
Ca2+ result in ktr taking on values close to g such that force
development is slower than at high levels of Ca2 , where
ktr takes on values closer to f + g. These predictions are
borne out by graphical displays of Eq. 7 for several levels of
Ca2+ activation in Fig. 2 (f = g = 20 s'-). A range of Ca2+
activation from aCa2+ = 0.1 to 1.5 was sufficient to change
F from 16.7% to 75% of Fmax (Fig. 2 A). The associated
values of ktr ranged from 21.8 s (just more than g) at the
lowest level of Ca2+ activation to 32.0 s-1 (slightly more
than midway between g and f + g) at the highest level.
These differences in the time course of force redevelopment
are shown clearly in Fig. 2 B. Therefore, a range of Ca2+

(6)
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FIGURE 2 Time course of force development as predicted by Eq. 8 at
different Ca2+ activation levels where the activation factor, K = aCa2+,
depends only on the level of Ca2 . (A) Time course showing variation in
both final steady-state force and rate of attainment of that steady-state
force; highest steady-state force is obtained with the highest level of Ca21
activation. Force, F*, is expressed relative to the maximum force that
would be developed at the highest possible activation. (B) Same data as in
A, with force normalized to its steady-state value, FSS' for each level of
activation. This presentation emphasizes variation in rate of attainment of
steady state with the different levels of Ca2+ activation; the curve with the
slowest developing force is the one with the lowest level of Ca2+ activa-
tion, and the curve with the fastest developing force is the one with the
highest level of Ca2'activation.

activation causing F to vary over most of its range has a
modest effect on kt, . These results are in accord with the
findings of Landesberg and Sideman (1994), who found the
rate constant of force development to increase with increas-
ing activation in a four-state, loose-coupling skeletal muscle
model with two low-affinity Ca2+-binding sites and no
cooperativity between force generation and Ca2+ binding to
TnC.

Cooperativity between force-bearing
cross-bridges and activation profoundly
affects both F,, and ktr

Cooperativity between force-bearing cross-bridges and ac-
tivation is introduced into the model by letting K depend not
only on Ca2+ but also on Ncf according to a simple expan-
sion of Eq. 2:

K = aCa2+(1 + I3NCf) (9)
where ,3 is a coefficient defining the strength of the coop-
erativity. Cooperativity comes about in Eq. 9 because Ncf
acts to enhance its own formation by increasing the activa-
tion factor K, which then recruits more cross-bridges into
the cycling population from the noncycling population (this
is indicated diagramatically by the feedback arrow in Fig. 1
B). This very general and nonspecific formulation of coop-
erative effects embraces a variety of cooperative mecha-
nisms, including both enhanced Ca2+ binding to troponin C
(Bremel and Weber, 1972; Hoffman and Fuchs, 1987;
Wang and Fuchs, 1994) and enhanced switching on of the
thin-filament regulatory unit with increased force-bearing
cross-bridges (Geeves and Lehrer, 1994; Lehrer, 1994).
Other forms of cooperativity, such as Ca2+-enhanced Ca2+
binding and end-to-end interactions between adjacent reg-

256 Biophysical Journal



Cross-Bridge Cooperativity and Force Redevelopment

ulatory units on the thin filament (Hill, 1983; Dobrunz et al.,
1995), are probably not well represented by Eq. 9.
The cooperativity in Eq. 9 introduces nonlinearity into

Eq. 5 because K/(K + 1) becomes a function of Ncf for a
fixed Ca2+. This dependence of K/(K + 1) on Ncf affects
Eq. 7 by two mechanisms: 1) as Ncf increases, ktran appar-
ently increases, and 2) as Ncf increases, the driving function,
i.e., the second term on the nrght side of Eq. 5, also in-
creases. At first glance, these effects would be anticipated to
speed the rate of force redevelopment.

However, results from numerical solutions of the nonlin-
ear Eq. 5 (Runge-Kutta integration; integration step size
0.0005 s; initial conditions Ncf = O;f = g = 20 s-'), with
cooperativity incorporated into K according to Eq. 9, pro-
duced results opposite those that were anticipated. These
results were obtained for two situations: 1) a single degree
of cooperativity (,3 = 40) and varying levels of Ca21
activation to produce varying steady-state forces (Fig. 3);
and 2) varying degrees of cooperativity (,( = 0, 10, 20, 30,
40, 50) with corresponding varying levels of Ca2+ activa-
tion to produce the same steady-state force with each degree
of cooperativity (FSS = 0.2Fm.) (Fig. 4). In the data of Fig.
4, the rate constant is not analytically derived but empiri-
cally determined by the inverse of the time required to reach
0.6321 of the final steady-state value. (Although, strictly
speaking in this nonlinear formulation, the time course of
rise in force is not purely monoexponential; its appearance
is such that it could easily be mistaken as monoexponential.
A variety of time courses of rise in force can be achieved by
choosing different functional forms for cooperativity. How-
ever, the point to be made here is not the specific functional
form for cooperativity, but to demonstrate that cooperative
feedback between force-bearing cross-bridges and activa-
tion has a profound effect on ktr, and this effect varies,
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FIGURE 3 Time course of force development at different levels of
activation as predicted by the model with cooperative feedback between
force-bearing cross-bridges and activation, K = czCa21(1 + /3NCf). (A)
Time course showing variation in both final steady-state force and rate of
attainment of that steady-state force; highest steady-state force is obtained
with the highest level of Ca2+ activation. Force, F*, is expressed relative
to the maximum force that would be developed at the highest possible
activation. (B) Same data as in A, with force normalized to its steady-state
value, FSS, for each level of activation to emphasize the variation in rate of
attainment of the steady state with the different levels of Ca2+ activation.
The curve with the slowest developing force is the one at the lowest level
of Ca2+ activation, and the curve with the fastest developing force is the
one at the highest level of Ca2+ activation.
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FIGURE 4 Varying degrees of cooperativity (,3 = 0, 10, 20, 30, 40, 50)
and corresponding varying levels of Ca2' activation to produce in each
case the same steady-state force (FSS = 0.2FJ,,). ktr and the time course of
force development decrease as cooperativity increases (see tabular inset).

depending on the level of Ca2' activation.) This empirically
determined rate constant will be termed ktr. In Fig. 3, where
steady-state force ranges from 10% of Fmn at low activa-
tion (aCa2+ = 0.025) to 90% of Fm^ai at high activation
(aCa2+ = 0.375), kfr ranged from 6.06 s-1 (<< g) at the
lowest level of activation to 27.8 s- (between g andf + g)
at the highest level (Fig. 3 A).

It is clearly evident from these results and from the
display in Fig. 3 B that force development at low levels of
Ca2+ activation is much slower than force development at
high levels. Furthermore, in comparing the time courses of
force redevelopment in Fig. 3 (where cooperativity was
operative) with those in Fig. 2 (where it was not), it is
apparent that the rates of force development at the highest
levels of activation are not so different (ktr. = 32.0 s' in
Fig. 2 versus ktr = 27.8 s- 1 in Fig. 3), whereas the rates of
force development at the lowest level of activation are very
different (ktr = 21.8 s-1 in Fig. 2 versus ktr = 6.0 s-1 in
Fig. 3). These relations between cooperativity, Ca2+ acti-
vation, and time course of force development are further
shown in Fig. 4. As cooperativity increases (i.e., as , gets
larger), not only does the amount of Ca2+ activation re-
quired to achieve the same steady force decrease, but ktr also
decreases, commensurate with the slowing of the time
course of force development. Contrary to the situation in
which cooperativity was absent and ktr values were
bounded between g andf + g, the inclusion of cooperativity
brings about a ktr value considerably less than g at the
lowest levels of activation. This surprising result is ex-
plained in the Discussion and by a linearized analysis in the
Appendix.
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From the results presented in Figs. 3 and 4, it can be
concluded that the cooperative dependence of K on Ncf has
a profound effect on the time course of force development.
This effect is most pronounced when aCa2+ and Ncf are low
enough that K/(K + 1) << 1. If aCa2+ and Ncf are suffi-
ciently high, then K/(K + 1) approaches 1 and any depen-
dence of K on Ncf is of little consequence.
As seen above, the same cooperative actions that slow

force development also act to increase steady-state force.
Again, this effect is most pronounced at low levels of Ca2+
activation. The net result of these steady-state effects is that
cooperativity causes a pronounced shift to the left of the
force-log aCa2+ curve, as shown in Fig. 5 (obtained by
solution of Eq. 8 for various values of aCa2+). (Note that
just as the activation factor K participates in the time course
of force redevelopment, the cycling rate constants f and g
participate in steady-state values of force according to Eq. 8,
and consequently, these cycling parameters help to deter-
mine the location and shape of the force-log Ca2+ curve.)
Note, in Fig. 5 B, that when the model predictions are
plotted with log[F*/(1 - F*)] on the ordinate (where F* is
F/Fm.a and a value of log[F*/(1 - F*)] = 0.0 on the
ordinate represents F* = 0.5), there is a steeper slope for
negative than for positive values of log[F*/(l - F*)]. This
agrees with experimental data reported for cardiac muscle
by several authors (McDonald et al., 1995; Sweitzer and
Moss, 1990; Gao et al., 1996) and reflects a greater influ-
ence of cooperative mechanisms at low Ca2+ than at high
Ca2+. Note also that when there is no cooperative feedback,
there is a single slope over both negative and positive values
of log[F*/(l - F*)]. Cooperative feedback actions respon-
sible for shifting the force-log Ca2+ curve to the left (Fig. 5
A) and responsible for the steeper slope for negative values
of log[F*/(l - F*)] (Fig. 5 B) are the same actions that slow
the time course of force development at low Ca2+ in Figs.
3 and 4.
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FIGURE 5 (A) Force-log Ca2+ curves for cases with (left curve) and
without (right curve) cooperative feedback. (B) Same data as in A, but
plotted with log[F*/(l - F*)] on the ordinate. Value 0.0 on the ordinate
represents F* = 0.5. Steeper slope for negative than for positive values of
log[F*/(l - F*)] reflect greater influence of cooperative mechanisms at
low Ca2+. Note single slope for predictions from model without cooper-
ative feedback. Cooperative feedback actions responsible for shifting the
force-log Ca2+ curve to the left are the same actions that slow the time

DISCUSSION

Cooperativity slows force development in a

Ca2+-dependent manner

In a recent review, Solaro and Van Eyk (1996) asked,
"What is the relative role of feedback effects of cross-bridge
binding on thin filament activity?" They answered that
question by assessing the role of such positive feedback in
the length-dependent activation of cardiac muscle. In the
current study we add a second important aspect to this
positive feedback, namely, feedback between force-bearing
cross-bridges and activation, whereas enhancing steady-
state force slows the rate of force development. This coop-

eration-induced slowing is most pronounced when Ca2+
activation is low and becomes less obvious when Ca2+
activation is high. The net impact is to make the rate
constant of force development Ca2+ dependent. This out-
come of our modeling studies was presaged by at least four
earlier studies. T. L. Hill (1983), in his equilibrium and
steady-state analysis of four-state activation and cross-

bridge cycling models, demonstrated that if Ca2+ binds
more strongly to troponin when myosin is attached, then the
effective consequence in a two-state cross-bridge model
would be to increase the rate constant of myosin attachment
to actin. Effectively, this would, using our Eq. 6, increase
k. Thus, had Hill performed studies of mechanical tran-
sients with his models, he would have predicted that en-

hanced Ca2+ binding to troponin with cross-bridge binding
to actin would change kt in a manner predicted by our

model. In an experimental study, Millar and Homsher
(1990) argued that the fact that kr was sensitive to Ca2+ in
contrast to the fact that the rate constant characterizing the
tension transient after phosphate release was not sensitive to
Ca2+ could be explained on the basis of a model in which
strong cross-bridges activate the thin filament. Our model
essentially embodies this argument. In another experimental
study, Swartz and Moss (1992) used NEM-S1 subfragments
in skinned skeletal muscle fibers and found them to enhance
force and increase ktr at low Ca2+, two observations that are

consistent with our modeling results. Finally, as already
noted in the previously cited modeling study by Landesberg
and Sideman (1994), the predictions that there would be
lower kt at low force than at high force is completely
consistent with our findings. In the current study we go

beyond these earlier works to explicitly elucidate the dy-
namic consequences of cooperativity using the simplest
possible model.
An intuitive appreciation of cooperative-induced slowing

of force development is difficult to develop. One approach
is to consider force development as an incremental process
and apply the results of a linearized form of the nonlinear
equation at different increments of behavior as is done in the
Appendix. Another is as follows. Consider force develop-
ment at low levels of Ca2+ activation when cooperativity is
most strongly expressed. From Eq. 8, it can be deduced that,

course of force development at low Ca21 in Figs. 3 and 4.
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which Ncf will eventually rise in a force development epi-
sode is a function of Ncf such that as Ncf rises, the steady-
state level also rises. In a sense, cooperative feedback
causes NCf to chase after an ever rising final value. Eventu-
ally, NCf catches up with its increasing steady-state value
and the force development process terminates. However, the
time required for Ncf to catch up with its rising steady-state
value causes force development to take longer than would
have been the case had the steady-state value remained
constant and not been progressively moving ahead. The net
effect is to generate an apparently slow developing process
with a low-value ktr.

Contrast the time course at low levels of Ca2+ activation
with the time course at high levels of activation. It is seen in
the Model Results and argued in the Appendix that at high
levels of activation, the dependence of the steady-state value
on Ncf as a result of cooperative feedback is not nearly as
strong as at low levels of Ca2+ activation. Thus as Ncf
increases, the steady-state value does not move away to
higher values. This makes it possible to reach the steady-
state value in a shorter period of time. The net result is that
force development is completed more quickly and ktr is
greater than at low levels of Ca2+ activation.

Differences in Ca2+ dependence of kt, between
cardiac and skeletal muscle is largely a matter of
greater cooperativity in skeletal muscle

Determined experimentally in fast skeletal muscle, ktr has
been shown to vary with Ca2+ over a broad range from
fivefold (Brenner, 1988) to more than 10 fold (Metzger and
Moss, 1990). In contrast, ktr in cardiac muscle is much less
sensitive to Ca2 , with reports varying from a threefold
variation (Wolff et al., 1995) to no variation at all (Hancock
et al., 1993). To account for differences between skeletal
and cardiac muscle with the model, we need only postulate
that cooperativity is greater in skeletal muscle than in car-
diac muscle. As we have shown, over less than a full range
of activation, no cooperativity (i.e., 13 = 0) resulted in less
than 1.5-fold dependence of ktr on the level of Ca2+ acti-
vation (Fig. 2), whereas greater amounts of cooperativity
(/3 = 40) resulted in a threefold change in kt (Fig. 3). More
cooperativity in the model (13 > 40) would have generated
an even wider range of ktr. Another way to view these
features of the model is that the highest value of ktr is set by
f and g, and the lowest value is set by 1B. In this way, one
model with different parameters could accommodate a wide
range of ktr and of variations in ktr with Ca2+ among
different muscles.

Thus a postulate of the model is that there is a greater
range of ktr in skeletal than in cardiac muscle because there
is more cooperativity in skeletal muscle activation than in
cardiac muscle activation. Greater cooperativity in skeletal
muscle activation is seen by the much higher Hill coeffi-
cients of the force-pCa curves in skeletal than in cardiac

dence (see review by Moss, 1992). As explained by Moss
(1992) and as shown in this modeling exercise, this coop-
erativity has its greatest effect at low Ca2+ activation. The
result is that at low Ca2' activation, the ktr of fast skeletal
muscle, with presumably relatively high f and g, is of the
same value (<5 s-1) as is commonly found in cardiac
muscle, presumably with slowerf and g.

Nonlinearities from cooperative feedback
introduce dependence of force development on
initial conditions

There is an additional consequence of the nonlinearities
from cooperative feedback. This is that, for a given level of
Ca2+ activation, the initial conditions from which force is
redeveloping will have a profound effect on ktr (these initial
condition effects are strictly a feature of the nonlinear
character of cooperative feedback and would not appear in
a linear system). Thus different conclusions may be drawn
from experiments that are done differently such that they
generate different initial conditions just before force rede-
velopment. For instance, the discrepancy between the find-
ings of Hancock et al. (1993) and Wolff et al. (1995) with
regard to Ca2+ effects on force redevelopment in cardiac
muscle could very well be due to different initial conditions
at the onset of the force redevelopment period in these two
experiments. Differences in protocols may have had very
different effects on breaking of cross-bridges, and thus there
may have been markedly different initial conditions. Proto-
cols that do not cause all cross-bridges to detach will reduce
the cooperative effect on the rate constant, with the result
that the Ca2+ dependence of the rate constant of force
redevelopment would become much less apparent.

Cooperativity introduces ambiguity in the relation
between ktr and f

Finally, it should be noted that these cooperative effects
appear in Eq. 6 as changes in a multiplier of the cross-bridge
cycling rate constantf such that if these cooperative effects
were not considered, they would be mistaken as changes in
f itself. Thus the results from force redevelopment experi-
ments are ambiguous; changes in the rate constant of force
redevelopment may represent either a change in cross-

bridge kinetics or varying expressions of cooperative inter-
actions between force-bearing cross-bridges and activation.

CONCLUSION
In conclusion, cooperative interactions between force-bear-
ing cross-bridges and activation can have a profound affect
on contractile system dynamics. Most importantly, the time
course of force redevelopment is strongly affected by this
cooperativity and does not necessarily represent cross-

bridge kinetics alone. Furthermore, these cooperative ef-
muscle (Morimoto and Ohtsuki, 1994) and by other evi-
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fects are exhibited to varying degrees, depending on the
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level of Ca2' activation; they are most pronounced at low
levels of Ca2+ activation. Finally, these cooperative effects
act to slow down the contractile system response, with the
consequence of making an inherently fast cross-bridge cy-
cling system appear to be much slower than one would
expect.

N4, there is a finite probability that myosin heads will reattach to once
again form N6, but the chance of this is small, because k0ff >> f, and the
greatest probability is that N4 will progress to N1.

Differential equations describing the rate of change of all states may be
written from inspection of Fig. 6 as follows:

N1 = k0ffN4 + k-N2-[k+Ca2+ + k']NI

APPENDIX N2 = k+Ca2+Nl + koffN3-[kon+k-jN2

(A.1)

(A.2)

Simple activation and cross-bridge-cycle model
from a more complex Ca2+-binding,
activation model

N3 = k,,N2 + k+Ca2+N4 + gN5-[k + ko0, +f]N3 (A.3)

N4 = k'NI + k_N3 + gN6-[k+Ca2+ + koff +f]N4 (A.4)

Consider the six-state myofilament activation and cross-bridge cycling
model in Fig. 6. A thin-filament, myosin-binding site is represented by the
chain of three circles (no stoichiometric relations are implied by the three
rings). The regulatory Tm-Tn unit governing myosin head access to the
thin-filament binding site is represented by the bar spanning the binding
site. The myosin head is represented by the triangle. The regulatory unit
may be in one of two steric configurations: the "off' position (states N, and
N2) or the "on" position (states N3, N4, N5, and N6). Switching between the
"off' and "on" positions is governed by the on rate constants k', k'on, and
the off constant, k0ff. Myosin heads can attach (strongly bind) to the thin
filament only when the regulatory unit is in the "on" postition. Attachment
(strong binding) and detachment (weak binding) occur cyclically according
to rate constants f and g. Force is generated when myosin heads are

attached (states N5 and N6). Ca2' binds and dissociates from the low-
affinity TnC site on the regulatory unit with rate constants of association,
k+, and dissociation, k_. When Ca21 is not bound to TnC and the
regulatory unit is "off' (state N1), there is very little probability that the
"off' regulatory unit will turn "on" (i.e., k' << kff). When Ca21 is bound
to TnC and the regulatory unit is "off' (state N2), there is a much greater
probability that the "off' regulatory unit will turn "on" (i.e., kIn > k,ff).
Ca2+ may bind and dissociate from TnC, regardless of whether the regu-
latory unit is "on" or "off' and whether myosin heads are attached or

detached. When myosin heads are attached in the force-bearing states (N5
and N6), there is no probablity that the regulatory unit will turn "off," and
it must await myosin head detachment before doing so. N6 is a force-
bearing state that does not have Ca2' bound to TnC. In the absence of
available Ca2+, N6 persists until cross-brides detach to form N4. Once in

N5 = fN3 + k+Ca2+N6-[k- + g]N5

N6 = fN4 + k_N5-[k+Ca2+ + g]N6.

(A.5)

(A.6)

A reduced set of equations may be formed by combining the various
states as follows. Combine the two "off' states (NI and N2) into a single
noncycling state, N,,,; combine the two cycling but non-force-bearing states

(N3 and N4) into a single state, N0o; combine the two force-bearing states

(N. and N6) into a single force-bearing state, Ncf. This makes it possible to

rewrite Eqs. A.I-A.6 as three equations:

N = kOffNCo-koONnc

Nc0 = [gNcf - fNco] + [k0N0 - koffNCo]

Ncf = fNco - gNcf,

(A.7)

(A.8)

(A.9)

where

kon = [k'+(kon-kN)N +N2]

N, ifN=O.
knN1 + N21'

(A.10)

N2

oon;

N3

9NV

N1
In the reduced formulation (A.7-A.9), Ca2' appears only implicitly as

a determinant of the coefficient kI. through its effect on the ratio N21(N2 +
N,). To an approximation,

N2 Ca2+
N1 + N2 (k_lk+) + Ca2+

where k_lk+ = Ca,n and is the concentration of Ca2' at which the ratio equals
0.5. At high Ca2+ that ratio saturates at 1; at low Ca2' it approaches 0.

Further model reduction is achieved by employing the assumption made
in the text that kcn and k,ff are large relative to f and g. Under these
conditions and in the time frame in which changes in force-bearing cross-

bridges occur, N,c, 0, and an equilibrium constant, K, between Nnc and

N,,o may be defined as

kon kon [ Ca2+].K =-=-L 2+ -

ENV f

7 ~N6
FIGURE 6 Six-state cross-bridge activation and cycling model. See text

for definitions and explanations.

Equation A.12 gives an explicit dependence of K on 1) Ca2+; 2) the

"on"-"off' switching constants; and 3) the Ca2' association and dissoci-

ation constants. It is a more specific form of the very general Eq. 1 in the

text. With the definition of K, the reduced set of differential equations
(A.7-A.9) may be further reduced to the single differential equation given
in the text as Eq. 5.

(A.11)

(A.12)

Biophysical Joumal260



Campbell Cross-Bridge Cooperativity and Force Redevelopment 261

Various forms of cooperativity may be
represented phenomenologically by a
single equation

Cooperativity in which force-bearing cross-bridges facilitate their own
formation may come about by any of several mechanisms. For our pur-
poses, we consider only two possibilities: 1) force-bearing cross-bridges
enhance the switching "on" coefficients (k0,' and/or k') relative to the
switching "off' coefficient, and 2) force-bearing cross-bridges enhance the
Ca2' binding constant (k+) relative to the Ca2' dissociation constant (k_),
i.e., they decrease Ca,/2. For instance, a cooperativity by which force-
bearing cross-bridges enhance switching "on" may be represented by

ko= Cal(I + I3lNcf),koff
where a, is the zero Ncf switching constant and ,1B is a cooperativity
coefficient. Similarly, cooperativity by which force-bearing cross-bridges
enhance Ca2+ binding may be represented by

k+k= at2(1 + f32NCf),
where a2 iS the zero Ncf Ca2+-binding constant and 12 is a cooperativity
coefficient. Substituting either form of cooperativity into Eq. A.12 and
approximating the result can result in an equation of the form of Eq. 9 in
the text. Thus Eq. 9 makes no implication as to the mechanism of coop-
erativity and may represent many cooperative mechanisms.

Linear approximation for interpretation of effect
of cooperativity on ktr
Cooperativity-induced slowing in force development may be appreciated
by analyzing a linear approximation to the nonlinear Eq. 5 created by the
inclusion of the cooperative relation in Eq. 9. Consider behavior around
some value of NCf equal to No. Then the dependence of the factor K/(K +
1) on Ncf may be linearly approximated by a truncated Taylor expansion in
which second-order and higher terms have been dropped:

K
K+ 1 Ko+KlNcf, (A.13)K+ I

where Ko and K, are constants. K, is the partial derivative of K/(K + 1)
with respect to Ncf evaluated at Ncf = No and can be shown to be

aCa2+3(
K1 = [1 + aCa2+(1 + No)]2 (A.14)

Substituting Eq. A.14 into Eq. A.13 allows us to calculate Ko as

aCa2+ aCa2+(1 +f3No),3N
K 1 + aCa2+(1 + /3No) 1 + aCa2+(1 + , )3N0)j

(A.15)
Both Ko and K, depend on aCa2 , the cooperative factor (, and the

value chosen for No. However, K, has a stronger dependence on ,( than
does Ko, such that strong cooperativity (i.e., high 13) tends to increase K,
more than Ko. Furthermore, at low Ca2+ and low No, K, tends to dominate
over Ko, making K/(K + 1) Ko + K,NCf more strongly dependent on Ncf
than it would be at higher Ca2+.

Substituting the approximation of K/(K + 1) given in Eq. A. 13 into Eq.
5 makes it possible to rewrite the differential equation as

Ncf =-[g + f(Ko - AKI)]Ncf -fKlN f + fKONT. (A.16)

Linearization of Eq. A. 16 around NCf = No and expressing in terms of
incremental changes in NCf around N0, which we will call i, gives

7 = -[g +f(KO(I + 2No) - KINT)]4 + a, (A.17)
where 8 is some incremental part offKOA. In this linearized equation, an
incremental k,, may be defined as

kt,c = g + f(Ko( + 2No)-KINT). (A.18)

Values of kur., vary according to No and the relative values of Ko and K1 as
follows:

g <k4 < g +f
if

O<Ko(1 + 2No)-KINT< 1 (A.19)

k< g

if

KINT > Ko(l + 2No).

Both ranges are possible. At low Ca2' activation (low No) and strong
cooperativity (high ,3), it can be shown that KINT is relatively greater than
KO(1 + 2NO), with the result that klinc. is even less than g. Such a low value
of ktrinc means that force develops more slowly than one would expect from
even the slowest step in the cross-bridge cycle. At high levels of Ca2'
activation, KO(l + 2NO) begins to approach KINT and kt,. falls in the range
between g andf + g. In this linear approximation there is nothing to stop
cooperative feedback from slowing the system response to the point where
it is infinitesimally slow and then, with stronger cooperative effects, to
cause the system to become unstable. The nonlinear features of the original
equation limit this destabilizing effect and prevent instability. The surpris-
ing result from this analysis is that positive feedback from cooperative
effects may make an inherently fast cross-bridge cycling system appear to
be slow.
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