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An Optimized Approach to Membrane Capacitance Estimation Using
Dual-Frequency Excitation

David W. Barnett*S and Stanley Misler*

*Departments of Medicine (Renal Division) and Cell Biology/Physiology, Washington University Medical Center, St. Louis, Missouri 63110,
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ABSTRACT We present an optimized solution to the problem of membrane impedance estimation when a patch-clamped
cell is stimulated by a dual-frequency, sinusoidal excitation. The complete data set of raw whole-cell current samples is
typically reduced, via digital lock-in detection, to measurements of the complex cell model admittance at the two stimulus
frequencies. We describe a statistical model of both data sets and demonstrate that the admittance data adequately
represent the essential features obtained from the raw data. The parameter estimates obtained by a nonlinear weighted
least-squares solution (NWLS), which under normal recording conditions is equivalent to the maximum likelihood solution,
essentially obtain the theoretical lower bound on variance established by the Cramér-Rao bound. Our software implemen-
tation of the NWLS solution produces estimates of the cell model parameters that are less noisy than other dual-frequency
systems. Our system can be used 1) to measure siow changes in membrane capacitance in the face of large, slow changes
in membrane resistance, 2) to detect with confidence capacitance changes expected from the exocytosis of moderate-sized
dense core granules, and 3) to reduce the cross-talk between transient changes in membrane conductance and membrane

capacitance.

INTRODUCTION

Over the past decade, measurements of membrane imped-
ance have been widely used to estimate the changes in
membrane capacitance associated with exocytosis of secre-
tory granules in patch-clamped secretory cells. The secre-
tory process can be initiated by depolarization (Neher and
Marty, 1982; Gillis and Misler, 1992), introduction into the
cytoplasm of second messengers (e.g., Ca*>* or GTP,S) via
dialysis (Penner and Neher, 1988, 1989; Augustine and
Neher, 1992; Barnett and Misler, 1995a) or flash photolysis
of a caged compound (Heidelberger et al., 1994; Heinemann
et al., 1994), or application of chemical secretogogues
(Lindau and Fernandez, 1986; Fernandez et al., 1987). The
impedance approach assumes that 1) a patch-clamped cell
may be adequately modeled electrically as a three-element
circuit, namely, an access resistance (R,), from the record-
ing pipette to the cell cytoplasm, in series with a parallel
combination of the membrane resistance (R,) and mem-
brane capacitance (C,,,), and 2) over the time course when
C,, is assessed, R, and R, remain relatively constant.
Currently, the most widely used techniques for monitor-
ing membrane impedance are digital-based and involve
phase detection of a single-frequency sinusoidal wave with
a lock-in amplifier. In one method (Lindau and Neher,
1988), often called the Lindau-Neher method (LN), the
phase detector decomposes the phase-shifted current flow-
ing in response to a sinusoidal excitation into real (in-phase)
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and imaginary (quadrature) components, which when scaled
by the magnitude of the stimulus are equal to the parameters
A(w) and B(w) of the admittance function, Y(w), evaluated
at the stimulus frequency . That is,

Y(w) = A(w) + jB(w)

(D
1 + o’R.R,CE wR:C,,

TR+ wRC) R o'RCL)’

where Ry = R, + R,, and R, = R, X R, /Ry. The DC
component of the current, arising from the difference be-
tween the imposed holding potential (V) and the reversal
potential (E,.,) of the cell, provides the necessary third
equation to solve for the values of the circuit parameters.

VDC - Erev
Inc = R—T )

This method requires that E,, remain constant or that it be
easily tracked. In the second method, based on early exper-
iments by Neher and Marty (1982), a piecewise-linear (PL)
technique is used. This approach capitalizes on the fact that
small changes in C,, result in a shift in the sinusoidal current
that is roughly orthogonal to changes in the sinusoidal
current that are induced by variations in both resistive
elements. This approximation requires that R,, be much
greater than 1/(wC,,) for the orthogonality to be valid.
However, even under these circumstances, the task of find-
ing and tracking the correct phase setting of the lock-in
amplifier can be challenging and/or tedious, depending on
the approach selected (Neher and Marty, 1982; Fidler and
Fernandez, 1989; Joshi and Fernandez, 1988; Zierler, 1992),
as well as error-prone (see the review by Gillis, 1995).
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At least two groups have recently developed techniques
for dual-frequency sinusoidal excitation to estimate C,, un-
der conditions where 1) R, and hence E,.,, changes simul-
taneously with C,,, e.g., with application of secretogogues
that cause a rise in cytosolic Ca>* (Rohlicek and Schmid,
1994), or 2) when R,, is very low (Donnelly, 1993). The use
of two sinusoids at different frequencies provides for four
equations (a pair at each frequency) and thus represents an
overdetermined system in terms of the three unknowns (C,,,,
R,, and R,). However, both of the previously published
algorithms present unoptimized, ad hoc algebraic solutions
to the overdetermined problem.

In the first section of this paper we present a robust,
engineering-based, nonlinear weighted least-squares
(NWLS) approach for estimating the circuit parameters of a
cell stimulated by a dual-frequency excitation. First, we
characterize the “raw data,” namely the many samples ob-
tained over a fundamental period of the current waveform,
by a statistical model in which both the mean and the
covariance are functions of the unknown parameters. The
raw data would provide the best parameter estimates, in
terms of minimum variance, if the storage and computa-
tional costs were not prohibitive. (Here “best” refers to the
theoretical lower bound on the variance of any unbiased
parameter estimate, as established by the “Cramér-Rao
Bound” (CRB) commonly associated with maximum like-
lihood (ML) estimation techniques.) We define the mini-
mum bound using the raw data set and, subsequently, com-
pare the effect of data reduction, as well as the performance
of various algorithms to the theoretical limit. Second, we
show that decreasing the size of the data set, via digital
lock-in detection of the real and imaginary parts of the cell
model admittance at the two stimulus frequencies, results in
only a marginal increase in the CRB. Third, we demonstrate
that a NWLS approach, based on the reduced data set,
produces parameter estimates that essentially reach the
CRB. For our reduced data set, the NWLS solution, using
weighting factors that are determined from the statistical
description of the reduced data, is equivalent to the ML
solution.

In the second section of this paper we outline our soft-
ware implementation of the NWLS solution and demon-
strate that this results in estimates of the cell model param-
eters that are less noisy than those produced by other dual-
frequency systems. This approach offers several promising
features for capacitance measurement in neuroendocrine
cells. First, although often noisier than single-frequency
methods, the NWLS algorithm is still capable of reliably
detecting the capacitance changes expected from the exo-
cytosis of large dense core granules from chromaffin cells
(~200-300 nm diameter). Second, using the NWLS ap-
proach we can limit cross-over of transient changes in
membrane conductance into membrane capacitance esti-
mates and hence limit artifactual transients in C,, estimates
that mimic a rapid endocytotic process. These C,, transients
can be especially prominent in cells displaying prolonged
tail currents after excitation with depolarizing pulses. Last,
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in a companion study (Barnett et al., 1996) employing the
NWLS method to examine exocytosis induced by the chan-
nel-forming neurotoxin, a-latrotoxin, we demonstrated that
this optimized approach can be used to reliably detect slow
changes in membrane capacitance in the face of simulta-
neous, progressive (up to 10-fold) changes in membrane
resistance. Portions of this work have previously been pre-
sented in abstract form (Barnett and Misler, 1995b).

ELECTROPHYSIOLOGICAL METHODS

Rat adrenal medullary chromaffin cells were maintained as
primary cultures on glass coverslips at 37°C in a HEPES/
HCO;— buffered Dulbecco’s minimum essential medium
enriched with fetal bovine serum, penicillin and streptomy-
cin, and ascorbic acid (Neely and Lingle, 1992). Recordings
were made at room temperature (20-23°C) in an extracel-
lular solution (ES) of physiological Ringer’s containing (in
mM) 144 NaCl, 5.5 KCl, 2 CaCl,, 1 MgCl,, and 20 HEPES
titrated to pH 7.35 with NaOH. Some experiments used a
modified ES that replaced 50 mM NaCl with the equivalent
concentration of tetraethylammonium chloride (TEA;y-ES).
Voltage-clamp recordings were made according to our lab-
oratory’s protocol for the perforated patch variant of a
whole-cell recording (Barnett et al., 1995) using an EPC-9
patch-clamp amplifier (HEKA elektronik Gmbh, Lambre-
cht, Germany). The tips of the patch pipettes were filled
with either a standard high K* (K*-IS) or high Cs* (Cs*-
IS) internal solution. The K*-IS consisted of (in mM) 65
KCl, 28.4 K,S0O,, 11.3 NaCl, 1 MgCl,, 0.5 EGTA, 47.2
sucrose, and 20 HEPES titrated to pH 7.3 with potassium
hydroxide (KOH). In the case of Cs*-IS, the KCl and
K,SO, were substituted, mole for mole, with CsCl and
Cs,S0,, respectively. The pipettes were then back-filled
with the selected internal solution, containing an additional
250 ug/ml of nystatin. The membrane potential was held at
a DC value of —70 mV, except for brief intervals when
voltage-dependent currents were evoked in response to brief
depolarizing pulses. The algorithm for estimating the mem-
brane parameters involves a digitally generated, dual-fre-
quency stimulus that is the topic of the remainder of the
paper. Amperometric measurements of catecholamine se-
cretion were made as previously described (Zhou and Mis-
ler, 1996), using polypropylene insulated micro-carbon fi-
ber electrodes (8—10 um diameter), the tips of which were
micropositioned on the surface of the chromaffin cells and
held at +780 mV by an EPC-7 patch-clamp amplifier
(HEKA elektronik Gmbh).

RESULTS

Part I: analysis of the membrane impedance
parameter estimation problem

Description of the “raw” current samples

The development of this method is based on the commonly
accepted three-parameter circuit model of a spherical cell
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described previously. The admittance transfer function of
the cell (note s = jw) is typically expressed in terms of C,,,,
R.. and R, (recall Eq. 1), as defined by the left-hand
expression of Eq. 3. However, because this is a nonlinear
function of all three parameters, it is more convenient to
work with the standard transfer function coefficients, as
shown in the right-hand expression of Eq. 3, which contains
only one nonlinear term (a,):

1+ sC,R,,
R:(1 + sC,R,)’

Because there is an invertible transformation between these
two sets of parameters, solving for the transfer function
coefficients is equivalent to finding the circuit model pa-
rameters:

by + sb,
1 +Sa| ’

Y(s) = or Y(s)= (3)

a, b, — ab, b%

Ra =71 Rm = s m —. 4
b, byb, b, — ab, X

Assuming that a sinusoidal voltage waveform is applied
to the cell, measurements of the real and imaginary parts of
the admittance, at the stimulus frequency, can be obtained
from an analog or digital lock-in amplifier with an effective
phase setting of 0°, i.e., having accounted for the phase shift
due to various system components.

,w(bl — a;by)
1+ o’ad?

bo + wzalbl

Yw) = 1 + w’a?

= A(w) + jB(w).
Q)]

In the case of a dual-frequency voltage stimulus applied to
the previous cell admittance, the stimulus and correspond-
ing resultant current are given by

v(#) = V, cos(wt) + V, cos(w,t),
i(t) = Vi(A, cos(w?) — B, sin(w,f)) ©)
+ V2(A2 Cos(wzt) - Bz Sin((l)zt)),

(note that A; = A(w,), etc.). At the input of the patch-clamp
amplifier, the actual measured signal x(¢) includes an addi-
tional Gaussian noise term, as diagrammed in Fig. 1, that
will be described in a later section.

The stimulus will be restricted such that the applied
frequencies are integer multiples of some base frequency,
ie., w; = kjwy and w, = k,w,, where typically k, = 1 and
k, = 2 or 3. This requirement ensures that, for a parameter
estimation rate equal to the base frequency, there are an
integer number of complete sinusoidal periods for the two
distinct signals. The computer then samples N points over
one period of the base frequency, i.e., the sample period (7)
is T = (2m/(Nw,), resulting in an N-dimensional random
vector x consisting of the N X 1 column vector i of “raw”
current samples and the noise vector n, which is also N X 1:

x(0) n(0)

x=i+n x= : , n= : . @)
x(N—1) n(N—1)
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However, the current samples can also be expressed in
terms of the N X 4 mode matrix D, which contains samples
of the cosine and sine vectors at each stimulus frequency
(the column vectors C; and S;, where the subscript f indi-
cates the frequency w,; or w,) and the mode weights 6,5.
Here the sample vector becomes

X =D0,s + n, D=[C1|_81|C2|_Sz],

A ®)
B,
oAB = A2 )
B,
where
- : - _ 0 -
2 e
cos N S N
Sf = Vf .

Cf= Vf : s

_cos(%f (N— 1))- -sin(z%kf.(N - 1))-

The mode weights, representing the real and imaginary
parts of the admittance, can be written in terms of the
nonlinear portion of the transfer function, i.e., the 4 X 2
matrix H, which is strictly a function of the a, parameter,
and the linear parameters b, and b,, which are combined to
make the 2 X 1 vector b. It will be convenient at times to
refer to both the transfer function parameters and the circuit
model parameters in vector notation, given as 6 and w,
respectively. These terms are summarized as follows:

x = DHb + n,
[ 1 wla, |
1+ wla? 1+ wld?
—wa (]
1+ wlidd 1+ o’d b,
H=H(a) = 1 W, | P [bl]’ ©)
1+ wial 1+ wid?
—wa, (03
| 1+ ola? 1+ old®
bO Ra
Hb=6ABs 0= bl 5 and w= Rm .
a, Cn

Although the focus is on a dual-frequency stimulus, the
method can easily be extended to include additional stimuli
by appropriate modification of the D matrix (two additional
columns per frequency) and the H matrix (two additional
rows per frequency).

In standard whole-cell or perforated-patch recording, the
output noise is primarily due to the thermal noise that exists
in the resistive elements (R, and R,,) of the cell rather than
amplifier noise, as in the case of single-channel recording
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v[n] x[n]
D/A |« Computer [€ AID
Y
v(t Cell it x(t
Hy (o) Yo) RUANARUIN TS
n(t)
FIGURE 1 Signal-processing block diagram tracing the path from the

computer-generated voltage stimulus through the D/A converter and the
patch-clamp pre-filters (Hg;,,) to the cell model Y(w). The current mea-
sured by the amplifier (i(#)) is corrupted by a noise signal (n(z)), the spectral
properties of which are a function of the cell parameters. This signal is
subsequently filtered (H;,) before being sampled by the A/D and recorded
by the computer.

(Hamill et al., 1981). These resistances can be modeled as
ideal elements in series with a Gaussian, zero-mean, white-
noise voltage source defined by the flat spectrum Sy, =
2kTR (or, equivalently, in parallel with a current source
characterized by S; = 2k7/R), where the individual terms
are the Boltzmann constant k, the absolute temperature 7T,
and value of the resistance R (Papoulis, 1991). The spec-
trum of the current noise that is measured at the input of the
patch-clamp amplifier is ultimately shaped by the admit-
tance of the cell. Superposition of the two noise sources, due
to R, and R, yields the following result:
b, + w’a,b
Siw) = 2kT—(ﬁ = 2kTRe{Y(w)},  (10)

which is clearly a function of the parameter vector 6. In a
typical cell (i.e., R, > R,), the current noise spectral density
is smaller at low frequencies, because of the large value of
R,,, and increases with frequency to a plateau level propor-
tional to 1/R,, similar to the general shape of the admittance.
However, this broad-band noise spectrum is eventually low-
pass filtered by the patch-clamp amplifier before sampling

—~
O
~

1.0 )
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by the A/D. The resulting spectrum is defined as
S(w) = Sl(w)leig(w)Iza (1 1)

where H;, represents the system transfer function, presum-
ably known, of the combined filter stages found in the
amplifier signal pathway (recall Fig. 1).

To determine the density function on the random vector
x, the structure of the N X N noise covariance matrix, i.e.,
R = E[nn"], must first be ascertained. Having defined the
noise spectral density, the continuous-time autocorrelation
function can be determined via the Fourier transform rela-
tionship:

1" .
rJn) = 2—&] S(w)e*" dw, (12)

which leads directly to the covariance function because the
noise is zero-mean. The transform is dependent on the
patch-clamp amplifier due to the effect of the signal filters;
however, regardless of the particular amplifier, the solution
will always be a function of the known amplifier character-
istics and the unknown cell parameters (see Barnett, 1995,
for a solution of this transform for the EPC-9 amplifier).
Finally, taking into account the even nature of correlation
functions, the noise covariance matrix can be expressed as
samples (index m = 0...N — 1, T = sample period) of the
continuous time autocorrelation function, r(m) = r,(mT),
resulting in the Toeplitz matrix R, the elements of which are
given by R; = r(j — i). A simulated autocorrelation func-
tion and noise spectrum are shown in Fig. 2 for typical cell
parameters.

Having defined the mean and covariance, the density
function for the vector x may now be specified. In general,
the random sample may contain M independent, identically
distributed (i.i.d.) random vectors (we assume that the M
sample vectors are drawn from a wide-sense stationary
process). The number of sample vectors used per estimate
(M) is in essence the filter factor on the parameter estimates;
e.g., for a base frequency of 400 Hz, single-sample vectors
are generated every 2.5 ms, so that M = 40 roughly corre-
sponds to a 100-ms time-constant filter. Therefore we may

= -30 _] .............. - 0
O —
= 1 \ Ty TT T - =)
—_ 3 ] o
§ os 3 40 . "unfiltered" -10 5.;_:\
< < E N\,  hoise spectrum =
K= S ] \ 3
£ 00 % 50 System Filter H(f) |--20 -
© v . —
— 4 ] oise spectrum E
=}
-0.5 S 0 , . , , -30
0 1 2 0 2 4 6 8 10
t[ms] f [kHz]

FIGURE 2 (a) Autocorrelation function of the sampled current based on a simulated cell model (R, = 20 MQ, R, = 1000 M{}, and C,, = 5 pF) and
the theoretical characteristics of an EPC-9 amplifier (signal filters set to FILT1 = 10 kHz Bessel and FILT2 = 2.5 kHz Butterworth). (b) The “filtered”
and the “unfiltered” version of the noise spectrum, associated with the autocorrelation function illustrated in a, are plotted using the left axis. The overall
frequency response of the EPC-9 amplifier system is referenced to the right axis.



Barnett and Misler

write the multivariate normal density function for M i.i.d.,
N-dimensional sample vectors of x as

2 ,‘T)—MN/2|R|—M/2 o~ 1125, (i~ DHb)T R-!(x—DHb)

13)

-’XM)=

Foxi, ..

where both the mean (DHb) and the covariance (R) are
functions of the transfer function coefficients.

Description of the “reduced” admittance data

Although the raw data (i.e., N samples per base period)
are available if the system is software based, it is often
impracticable to save every sample, because of memory
limitations. Therefore, the actual data that are saved and
subsequently available for analysis are the measurements of
the real and imaginary parts of the admittance obtained from
the outputs of a dual-frequency digital lock-in amplifier.
This data reduction typically decreases the storage require-
ments by 50—80%.

The dual-frequency digital lock-in amplifier is essentially
a discrete Fourier transform (DFT), evaluated at the fre-
quencies o, and w,, of the windowed process x[n], which is
represented by the vector x (one period of samples). This
linear transformation of the raw data vector x to the reduced
data y is given by the equation

y = (D™D)"'DTx, (14)

where the mode matrix D was defined previously and the
first term reduces to a diagonal scaling matrix:

(D™D) ! = diag 2 2 2 15)
ViN ViN VAN VN[

Because this is a linear transformation, the mean vector
and covariance matrix for y are simply given as

m, = Hb and R, = (D'D)"'D'RD(D'D)"!, (16)
which results in the new density function for the y data:
fioly) = (211.)—MN/2|Ry|—M/2e—l/22i'il(yi—][b)‘r Ry‘l()'i"l'ni)’ a7

The diagonal elements of R, are approximately the DFT of
the windowed covariance function and thus correspond to a
smoothed version of the noise power spectrum evaluated at
the stimulus frequencies. These elements, as well as the
nontrivial off-diagonal elements, are detailed in Appendix
A. Although the off-diagonal elements are generally sub-
stantial (within 1-2 orders of magnitude of the diagonal
elements), there are two general cases that produce an R,
matrix that is dominated by the diagonal terms. The first
case occurs when the original correlation function becomes
narrow, i.e., when the noise spectrum becomes wide-band.
The second case results when the length of the sample
vector is increased while the sample period is maintained
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constant. In the limit of the second example, consider the
situation in which samples of x[n] are obtained over all time
(i.e., no window), where Ry would reduce to the diagonal
matrix:

[mSw) mSw) wS(w) mS(w)
fbode Ty v v v )
(1)

where the variance of the y elements is simply proportional
to the inverse of the signal-to-noise ratio (SNR) at the
particular frequencies.

Because our parameter estimates will be based on the
reduced data set, we examined the overall impact of the
transformation by determining whether y provides the same
information about 0 as the full data set. Unfortunately, since
the covariance matrix depends on 6, y is not a sufficient
statistic for 6 (Barnett, 1995). Qualitatively, because the
noise spectrum is shaped by the cell parameters, by observ-
ing only the noise (no signal) we could arrive at an estimate
of the model circuit, albeit a noisy estimate. (Conceptually,
this is similar to the wide-band stimulus approach of
Clausen and Fernandez, 1981.) Thus by reducing the data
set we are ignoring most of the noise-only information and
focusing on the signal subspace, which is unaffected by the
linear transformation and dominated by the information
contained in the mean (due to the sinusoidal stimuli) rather
than the information in the covariance matrix (due to the
noise).

The Cramér-Rao Bound

The Cramér-Rao Bound (CRB) establishes a lower bound
on the error covariance matrix of any unbiased estimator of
the parameter vector 6 (see Scharf, 1991, or van Trees,
1968, for a thorough review of ML estimators and
the CRB). The CRB states that the error covariance of
the estimator C is greater than or equal to the inverse of the
Fisher Information matrix J, which is the covariance of the
“score,” i.e., the derivative of the log-likelihood function.
As a consequence of this, the mean square error for the 6,
parameter is greater than or equal to the corresponding
diagonal element of the inverse of the Fisher Information
matrix:

C=E{(6-006-0T7=]"
) (19)
> C;i = E{(6; — )7} = I 7).

Furthermore, given the J(6) matrix, the CRB for the cell
model parameters can be derived from the corresponding
Fisher Information matrix for the w vector as determined
from the transformation J(w) = GJ(6)GT, where the ele-
ments of the G matrix are G;; = 36,/0w; (Barnett, 1995).
For the reduced data set, the Fisher Information matrix
J(6) can be written as the sum of two separate matrices (¥
and F), where the ¥ matrix represents the information
found in the mean and the E matrix corresponds to the



1646

noise-only information:

J(6) = ¥ (6) + E(0),
| oH
TR-1 -
HR,H 1 HR 5 (20)
VO =M S B o |
bRy H BT Ry

Calculation of ¥ requires the derivative of the H matrix
with respect to the parameter a,,

—2wla, il — cofa2

1+ wldd? 1+ od

w(l - wlal) —2wja
oH 1+ oldd? (1 + oid?)?
= . @
da, —2wha, wy(1 - ‘1’2‘11) @b

(1+ wia))* 1+ w3al)’

wy(1 — “’2‘11) —2wa,

[ (1+ w3a)? (14 &ia})® |

whereas the individual elements of 5 are determined using
the matrix trace operation on a product containing both the
inverse and the derivative of the covariance matrix R (for
details, see Barnett, 1995):

oR, }

oR,
{R_ e R_

Because the Fisher Information matrix is proportional to the
number of sample vectors M, the limit on the variance is
simply inversely proportional to this factor.

In most cases, where the sinusoidal signals are large
compared to the inherent cell noise, the elements of E
contribute little to the Fisher Information matrix. Fig. 3
illustrates that for a typical cell (C,, = 5 pF, R, = 20 MQ,

5(0); = (22)
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with equal magnitude stimuli, the inclusion of the = matrix
in the calculation of CRB was negligible (sub fF, M(, and
kQ for C,, R,,, and R,, respectively) for individual stimulus
levels in the 1-10-mV range. Note that all calculations of
the CRB were performed using the complete theoretical
description of the covariance matrix (i.e., see Eq. 16 and
Barnett, 1995).

Nonlinear weighted least squares

A complete maximum likelihood solution to the cell param-
eter estimation problem is quite computationally intensive,
even when using the reduced data set (Barnett, 1995).
However, if the covariance matrix is independent of 6, then
the ML solution reduces to a weighted least-squares (WLS)
problem with symmetrical weight matrix Q = R ! (Scharf,
1991). In our problem, the information contained in the
covariance matrix is negligible compared to that of the
mean, as measured by its insignificant contribution to the
Fisher Information matrix; thus the WLS solution should
approximate the ML solution. The WLS method minimizes
the weighted squared error, i.e., the cost function C,

moin C() = moin{(y —Hb)'Q(y —Hb)}.  (23)
This is a nonlinear method (NWLS) because H is nonlinear
in a,. However, the nonlinearity is only a function of a
scalar parameter, which is computationally simpler than
working with a vector of nonlinear parameters, as would be
necessary if the problem were left in terms of the circuit
model elements instead of using the transfer function pa-
rameters. An iterative solution (Spanos and Mingor, 1993)
can be formulated as follows. Given the kth estimate of a,,
the solution for b is simply the linear least-squares solution:

and R, = 1000 MQ, f, = 400 Hz, f, = 800 Hz, M = 40) = (H(a,)"QH(a,)) 'H(a,)"Qy. 24)
10" 10°
g 10° LT i 107
n:m [0] S Tieian e -4
FIGURE 3 (Left axis) The mini- © 10 i CS 10 o
mum noise levels as determined from 4 § 0 OU
the CRB are shown as a function of —_ 10 el L 10 =
stimulus level (v, = v,) for a cell g 1 02 T 10-2 g
described by the base parameters: C,, S ST — 2
= 5pF, R, = 20 M, and R,, = 1000 .0 T R 4 ®
MAQ. (Right axis) In the normal stim- © 10 ik v ) 10 T
ulus range (1-10 mV), the percentage 1 04 " 1 00 :
difference between the true CRB and - 1 s T | ~
the CRB obtained by ignoring the & 102 R . 1 0-2
noise-only contribution to the Fisher € i = i i
information matrix is negligible. é) 100 ) "bt——_ 10 4
2 3 4567 2 3 4567 2 3 4567
0.01 0.1 1 10

Stimulus v1=v2 (mV)
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Forming the quadratic approximation to the cost function
and inserting the estimate of b produces the following:

Cla) =(y— H(alk)bk)TQ(y — H(a,)by) + (a, — a,)8«
1
+ 5@ — a,)’Gy. @5

The first and second derivatives are defined as

T

oH
gk = _ZbT Sa—l_ Q(y - Hb) | ap,bx o

and
(26)
G, = 2b" i P b — 2bT ’H Hb
k= da, &1_1 aa% Q(y ) a
P dH"™ OoH b
= 6a1 (')al an b

where the partial derivative of H was defined in Eq. 21.
Utilizing the approximation on the second derivative makes
this a Gauss-Newton method. The minimization is obtained
by setting the derivative with respect to a, equal to zero,
which yields the new estimate of a,:

_ ., b (eH"sa) Q(y — Hb)
Bt = AT BT (5HY9a,) Q (9H/day) bl s,

27

The Gauss-Newton method, which is known to converge
quickly for small residual problems, requires only the ini-
tialization of a,. In this case we can obtain a close “guess”
by using one of the existing ad hoc algebraic solutions to
this estimation problem, i.e., from the Donnelly or Rohlicek
algorithms, or, as was done here, another nonunique solu-
tion may be used to initialize a; very near the optimal value.
Given the quality of the initialization, more robust solutions
to the NWLS problem, such as the Levenburg-Marquardt
method (Dennis and Schnabel, 1983), have not been neces-
sary. Hence the process is initialized with the following a,
value, and the iterative process is repeated until a conver-
gence criterion is satisfied (e.g., € = 0.000005):

_ A2 _Al
o w;(k;B, — By)’

Ay, — Gy
a,

a;

<e. (28)

Part ll: implementation of the nonlinear weighted
least-squares solution

Computer simulations were used to examine the quality of
the NWLS solution in relation to previous dual-frequency
algorithms (Donnelly, 1994; Rohlicek and Rohlicek, 1993;
Rohlicek and Schmid, 1994), as well as to theoretical limits.
All simulations were implemented with MATLAB 4.2 (The
MathWorks Inc., Natick, MA) and run on a 33 MHz,
68040-based Macintosh Quadra 650 (Apple Computer, Cu-
pertino, CA). The basic simulation model uses the complete
description of the noise characteristics, including the EPC-9
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amplifier (see Barnett, 1995). The simulation model also
allowed for the inclusion of linear phase errors (¢,), as
might occur because of small unmodeled or uncompensated
capacitances present during calibration or general record-
ing, e.g., if ¢, = ¢, = —0.1° at 400 Hz, then ¢, =
(kylk))d., = —0.2° at 800 Hz. These phase errors, which
produce cross-talk between the real and imaginary compo-
nents of the measured admittance at each frequency, gen-
erally lead to biased estimates.

To test this algorithm on actual cells (and model circuits),
we developed a software-based acquisition, estimation, and
display program that was integrated into the patch-clamp
experimental workstation. This system was built around an
existing graphical/numerical program (IGOR Wavemetrics
Inc., Lake Oswego, OR) that allows user-developed ‘C’-
code modules (Kernighan and Ritchie, 1988; Apple Com-
puter, 1993; Wavemetrics, 1994), called XOPs, to be at-
tached to the main program.

The first XOP module (called “Capacitance”) provides a
parameter setup window that allows the user to define a
range of items, including 1) sample interval; 2) frequency
and magnitude of stimuli; 3) mode of recording, i.e., con-
tinuous or pulsed; 4) display rate (5-20 Hz); and 5) an
option for simultaneous amperometry recording. The
choices of pulsed stimuli are 1) repetitive square pulses to
the same clamping potential; 2) sequences of square pulses
to different potentials; and 3) pulses simulating action po-
tentials of varying waveforms. Because the slow-capaci-
tance compensation circuitry of the patch clamp is used to
avoid amplifier saturation during pulsed depolarizations,
this segment of code must also account for the equivalent
compensation signal. It does so by calculating the corre-
sponding correction vectors that are added back to the
measured signal vectors to correctly estimate the cell pa-
rameters (see Gillis, 1995, for details). This module also
provides P/N leak subtraction, performed before the capac-
itance recording, for all pulsed stimuli.

The second XOP module (called “Cap Display”) per-
forms the actual stimulation and sampling via the 16-bit
A/D card (ITC-16; Instrutech Corporation (1993), Great
Neck, NY), as well as the parameter estimation and display
of C,, R, R, DC membrane current, leak-subtracted
pulsed current, and amperometry signal (if selected). The
correlated data are saved and can be reanalyzed at a later
time by using the third XOP module (called “Estimation’),
which implements the ML and NWLS solutions as well as
other dual-frequency and single-frequency methods for
comparison purposes.

System calibration

The system was calibrated to account for the effects of the
D/A conversion and the various patch-clamp filters, in both
the stimulus and signal pathways, on the final sampled
current. The calibration data, obtained once and then saved
indefinitely, consisted of the magnitude and phase charac-
teristics of the system at the two stimulus frequencies. The
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actual calibration procedure consisted of 1) neutralization of
any residual capacitance using the fast capacitance compen-
sation circuitry; 2) placement of a 500-k{} resistor (with low
parasitic capacitance) in the head stage of the amplifier; and
3) stimulation of the system with the complete range of
stimulus frequencies used by the estimation software. The
output current, averaged over several seconds to reduce the
noise, is subsequently used to calculated the amplifier mag-
nitude (I') and phase (¢) characteristics, as well as a new D
matrix with the calibrated column vectors

cos(¢)

27ka
cos N + ¢
C; = VI . s

2'7ka )
COS(T(N -1+ d>f)
) ] 29)
sin(¢)

oo
S, = VI, sin| — &

sin(z—;k—f(N -1+ ¢f)

Frequency selection

The choice of stimulation frequency pair clearly affects the
performance of the estimator. In the case of single-fre-
quency stimulation, the intuitive selection might be the pole
frequency, where the change in the admittance with respect
to changes in capacitance is a maximum. However, because
the noise increases with frequency similar to dY/9C,,, the
actual optimum single frequency (f,;,) can be significantly
lower. Gillis presented an expression for capacitance esti-
mate noise (neglecting R,,), in the L-N technique, and a
range of acceptable frequencies, f; to f;, (Gillis, 1995),
bounded by the following values:

1

1 1
o = Ry Gl A 2w R T 2R G
(30)

When using two frequencies, there is no simple expres-
sion to select an optimum pair, because of the many, often
conflicting, variable parameters. Critical factors include the
overall voltage excursion allowable before voltage-depen-
dent channels are activated, in which case a frequency ratio
of kK = 2 is superior to k = 3 for equal-magnitude stimuli,
and the desired estimation rate, which limits the lowest
frequency. The following are a few practical guidelines: 1)
R,, estimates improve at lower frequencies; 2) R, estimates
improve at higher frequencies; 3) frequencies that lie in the
“optimal” range presented in Eq. 30 produce the best C,,
estimates; 4) generally, a higher frequency ratio produces
improved estimates in R, and C, at the cost of larger
voltage excursion; and 5) changes in cell parameters that
shift the pole of the transfer function to a higher frequency,
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e.g., decreasing R, or R, or C,,,, cause a similar shift in the
optimum stimulus frequency range. For example, Fig. 4 a
illustrates that while holding R, and C,, fixed, lowering R,
results in a minimum CRB that shifts to a higher frequency
range (CRB plotted as a function of the lower stimulus
frequency for a fixed estimation rate of 100 Hz). Fig. 4 b
depicts a similar situation, where R, and R, are fixed while
C,, is varied. In this case, a large value of C,, creates a very
limited range of optimal frequency selection because of the
relatively narrow bandwidth (f, = 113 Hz, f;, = 811 Hz, f,
= 303 Hz), where C,, strongly influences the admittance.

Simulation results

Several variations of the NWLS solution (i.e., different
weight matrices) were examined to analyze the cost-perfor-
mance benefits of more complicated, and hence more real-
istic, models of the inverse covariance matrix. In the first
case, the weight matrix was set to the inverse of the covari-
ance matrix, evaluated at the previous estimate, which es-
sentially corresponds to the ML solution based on the re-
duced data set. Next, by approximating the covariance
matrix as the diagonal matrix defined in Eq. 18, we exam-
ined the effect of ignoring the full structure of the covari-
ance matrix and simply weighting the data by the SNR at
the stimulus frequencies. This approximation allows for a
faster algorithm by taking advantage of the diagonal matrix
structure in the matrix products contained in the NWLS
algorithm. Finally, we examined the matrix Q = DD,
which completely ignores the noise structure (which is
equivalent to a white-noise assumption). These three vari-
ations were tested and compared with both the CRB for the
reduced data and with the CRB obtained from the raw data
set.

The data presented in Fig. 5 are representative of a
perforated-patch recording of a typical pancreatic islet
B-cell or rat adrenal chromaffin cell. In this case, the base
parameters were C,, = 5 pF, R, = 20 M(), and R, = 1000
or 100 M(), thus examining both the high and low mem-

@ g ® 6.

C,=5 pF
R,=20 MQ

~ R=20Ma
R,=1000 M@

oc ()

R, =1000 MQ
T T T 1
250 500 750 1000 250
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FIGURE 4 Rationale for frequency selection depends on parameter val-
ues, allowable voltage excursion, and the value placed on minimizing a
particular parameter variance. (@) In this unfiltered case, where V|, = V, =
10 mV and f, = 2f;, decreasing R, shifts the optimal lower stimulus
frequency to a higher range. (b) Similarly, for the same stimulus parame-
ters but holding R,,, constant, increasing C,,, shifts the optimal stimulus pair
to a lower range.
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brane resistance cases. A total of five different models were
tested and compared to the two theoretical limits. The
columns of Fig. 5 represent 1) the Donnelly and 2) Rohlicek
algorithms, the NWLS solution with diagonal weight ma-
trices corresponding to 3) the false white-noise model and
4) the SNR approximation, 5) the reduced data ML solution,
and finally, 6) the reduced data CRB and 7) the raw data
CRB. For each case, the stimulation was V, = 10 mV, f; =
400 Hz, V, = 10 mV, f, = 800 Hz. All estimates were
calculated using 1024 single sample vectors (M = 1, the
unfiltered case), corresponding to the fastest estimation rate.
Increasing the M-factor reduces the estimate noise, in terms
of standard deviation, by 1/V/M. All parameter estimates
were virtually unbiased (C,, pias < 1 fF, R, pias < 10 K,
Ripias < 0.1 MQ for R, = 100 MQ, R, pi0s < 4 MQ for
R, = 1000 MQ).

Based on simulations, the ML estimate is essentially
efficient, i.e., it reaches the CRB. Furthermore, although
there exists a clear difference between the full data set CRB
and the reduced data CRB, the increase is typically less than
10% (using these basic cell model parameters), which is
acceptable, considering the additional computational and
system requirements. The NWLS solution using the SNR-
based weight matrix is equivalent to the ML solution under
both high and low membrane resistance test conditions. In
fact, even the solution that ignores the shape of the noise
spectrum performs well under both conditions (the quality
of the C,, estimate actually improves when the membrane
resistance is low because of the fact that as R, decreases,
the noise becomes increasingly white). However, the per-
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formance of this approach (i.e., using Q = D'D) does
deteriorate when the frequency spread is increased or, in
general, whenever the cell parameters are such that the noise
spectral density differs greatly between the two stimulus
frequencies. All implementations of the NWLS algorithm
provided significant improvements when compared to ex-
isting dual sinusoidal stimulus methods.

Model circuit results

To verify the software and test the capabilities of the esti-
mation algorithm, a model circuit was used to mimic the cell
electrical behavior. Using an EPC-9 model circuit (HEKA),
estimates were generated (5.1 M), 500 MQ, 22 pF) and
noise levels were compared to the CRB and to simulations
based on the nominal values (see Fig. 6). The stimulus
frequencies were 400—800 Hz, both with 10 mV magnitude.
The postprocessing estimates for 60 s of data, using 40
sample vectors per estimate, were processed in 3 s for the
NWLS method (8 iterations required for convergence) or
94 s for ML (10 iterations). There was no apparent differ-
ence between estimates when the slow capacitance compen-
sation was used.

Results from rat adrenal chromaffin cells

A series of experiments on rat adrenal chromaffin cells were
performed to assess the performance of the NWLS algo-
rithm under actual experimental conditions. To examine the
optimality issue, the noise levels from a range of baseline
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FIGURE 6 Model circuit results 5
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cell values were compared to the calculated CRB (n = 10,
5 pF < C,, < 10 pF, 800 MQ < R,, < 1400 M(}, 15 MQ
< R, < 30 MQ). Overall, the C,, and R,, estimates were
only marginally noisier than predicted (1.4 for C,, and 1.2
for R,,), whereas R, proved to be nearly 3.4 times the CRB
level. The susceptibility of R, estimates to noise sources
beyond our ideal model (e.g., electronics, basal membrane
exocytosis and endocytosis, finite seal resistance, etc.) may
be partially attributed to the fact that the stimulus frequen-
cies are generally selected to focus on C,, and R,,. Com-
parison of NWLS estimates to previous dual-frequency
methods showed that the uniform improvements predicted
via simulation were also found in real cells. The NWLS C,,
estimates displayed 42% (or 33%) lower noise than the
Rohlicek (or Donnelly) solutions. R, estimates were typi-
cally improved by 20% in both cases, whereas estimates of
R, could not be directly compared, because the other algo-
rithms were susceptible to large biases as the baseline R,
value increased (Donnelly tended to overestimate, whereas
Rohlicek underestimated). Whereas all of the dual-fre-
quency methods were unbiased in “ideal” simulation trials,
when small linear phase errors (=0.5°) were included in the
model the greater sensitivity to R, bias found in the Don-
nelly and Rohlicek algorithms became evident.

As has been noted previously (see Gillis, 1995), dual-
frequency methods are generally noisier than single-fre-
quency techniques. Therefore we examined the ability of the

8.19
FIGURE 7 Measurements of capaci-
tance steps, evoked from a train of sim-
ulated action potentials (AP), from a rat 8.18
adrenal chromaffin cell (Cs*-IS,
TEAsy-ES). (Left) Ten repetitive pseu- 8.17
do-AP voltage-clamp pulses, given at 1
Hz, produce capacitance steps that cor-
respond to the fusion of one or two 8.16

pF
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NWLS technique to measure the membrane capacitance
change associated with the release of one or more secretory
granules from rat chromaffin cells. Data presented in Fig. 7
demonstrate the exocytotic response of a rat chromaffin cell
to a train of 10 simulated action potentials (APs). These
pseudo-APs, which provide only a small amount of Ca**
entry (see current trace), evoke capacitance steps in the
range of a few femtofarads (0-6), as might be expected
from one or two “typical” chromaffin granules (200-300
nm diameter).

In Fig. 7 the capacitance trace is shown for two filter
settings to illustrate the tradeoff between parameter noise
reduction and the time response. In the first case, where
50-ms of current samples are used per datum, the measured
capacitance noise is approximately o = 1.8 fF. However, by
increasing the averaging time to 800 ms, the noise is re-
duced to o = 0.6 fF, at the cost of limiting the response
time of the algorithm. These experimental numbers corre-
spond well with the theoretical CRB based on the estimated
cell parameters and the SNR of this recording (o = 1.6 and
0.55, respectively). Because the capacitance measurement
noise is Gaussian, we can easily establish a threshold
change in capacitance for a particular probability of false
alarm (Pg,). In this example, using the 800-ms filtered data,
the threshold is AC,, = 1 fF for the case of Pg, = 0.05,
which means that changes in capacitance greater than 1 fF
are relatively unlikely to be the result of recording noise. To
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reduce the P, we must 1) move the threshold to a larger
value, 2) increase the filtering time, or 3) increase the SNR
by enlarging the stimulus voltages, a maneuver that will
eventually be limited by the maximum allowable voltage
excursion.

Whereas the Py, can be controlled, to some extent, by
altering the recording conditions, the probability of detect-
ing the fusion of one or more granules is a function of the
granule size and size distribution. Early measurements of
epinephrine-containing vesicles in bovine chromaffin cells
indicated that there is a broad distribution of diameter size
(Coupland, 1968). A Gaussian fit of Coupland’s data results
in a density function that is characterized by a mean diam-
eter of 348 nm and a standard deviation of 123 nm. How-
ever, to account for the skew of the data, a better fit may be
obtained from a general Gamma density function, f,(x) =
(PM(B)x° e u(x), where b = 7.9 and ¢ = 0.9. This
function is subsequently used to form the density function
describing the capacitance of a single vesicle, which is
proportional to the square of the diameter.

Using this characterization of the capacitance size and the
threshold of AC,, = 1 fF, the probability of detecting the
fusion of a single vesicle in Fig. 7 is P, = 0.93, and the
probability of missing a single fusion event is Py, = 0.07.
The single fusion event, as opposed to multiple granule
fusion, is clearly the limiting case. However, the separation
of the number of vesicles fused is not possible, with any
statistical significance, because of the broad distribution of
granule diameters. Finally, there have been other studies
characterizing granule size reported in the literature that
vastly differ from that reported by Coupland for both rodent
(Doupe et al., 1985) and bovine chromaffin cells (Glavi-
novic et al., 1996). These reports of smaller diameters
(~200 nm) will reduce the Pp, for a single event but, to
reemphasize, they will have no effect on the Pg,.

Rat chromaffin cells are known to have small conduc-
tance Ca®*-activated K* channels (SK) (Park, 1994) that
can produce dramatic changes in membrane conductance
due to depolarization-induced Ca®* entry. This case is il-
lustrated in Fig. 8, where a train of depolarizations (10
200-ms duration pulses from —70 to +10 mV applied at 1
Hz) induces a large drop in membrane resistance (800 to
100 M) over the course of the pulsing sequence (10 s) that
is evident from the development of a large membrane cur-
rent (I,). However, while the value of R, drops, the R,
estimate is relatively unaffected and the C,, estimate indi-
cates a delayed exocytotic response to the Ca®* entry that is
supported by a similar time course in the amperometric
recording. The integral of the amperometric recording, rep-
resenting the total amount of secretory products detected by
the carbon fiber, is well aligned with the capacitance trace
(see Fig. 8 b, middle). The total number of amperometric
events detected (i.e., the number of amperometric spikes)
represents approximately 25% of the number of events
predicted from the capacitance estimate, which is typical of
amperometric recordings (Zhou and Misler, 1995).
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FIGURE 8 Secretion from rat adrenal chromaffin cell measured simul-
taneously by capacitance estimation and amperometric detection of cat-
echolamines (Cs*-IS, ES). (@) In this case, 10 repetitive voltage-clamp
pulses (200 ms to +10 mV) are given at 1 Hz to evoke a large secretory
response. Note the development of a large inward current, due to an
increasing membrane conductance, does not affect the estimation of R, or
C,,.. (b) The time course of C, increments closely matches the time integral
of the amperometric current.

Contribution of large conductance changes to
capacitance transients

During the examination of capacitance changes induced by
single, widely spaced pulses, we observed that when con-
ductance changes were extremely large (increasing to >5
nS), there appeared to be growing cross-talk from the R,
record to the C,, trace and, to a lesser extent, the R, trace
(see Fig. 9). These C,, transients persisted, even after the
correction for possible gating charge artifacts (Horrigan and
Bookman, 1994), and were present in all of the dual-sinu-
soidal algorithms examined herein, as well as for the LN
method. We considered the possibilities that the C,, tran-
sients 1) represented an initial, rapid phase of endocytosis,
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FIGURE 9 Parameter estimates from a rat chromaffin cell (K*-IS, ES)
display cross-talk between the conductance change, due to a large tail
conductance, and an early transient rise in the capacitance estimate. Note
that the conductance transient produces a larger capacitance transient when
the LN algorithm as opposed to the NWLS method is used. The R, and R,
estimates shown were produced using the NWLS solution.
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or 2) were artifacts produced by the large conductance
change. To test the second hypothesis, we performed a
time-varying circuit analysis of a typical cell model with an
exponentially decaying conductance (g, = ge™ “'u(t), where
u(t) represents the unit-step function) in parallel with the
baseline membrane conductance (see Appendix B). This
model was used to simulate the current transients produced
by the tail conductance. In the absence of phase errors, the
NWLS algorithm is fairly insensitive to these transients.
However, when combined with small linear phase errors,
the transients can account for the cross-talk between the
large conductance change and the C,, trace. In addition, our
results show that the transient current alone, without phase
errors, is sufficient to account for the large capacitance
transients produced by the LN algorithm in cases where the
reversal potential shifts, even slightly, because of the large
transient conductance.

Using this analysis, we characterized the response of the
estimation algorithm due to a range of estimation parame-
ters. The maximum cross-talk between the conductance
change and the capacitance trace occurred when the time
constant (7 = 1/a) was approximately the same as the
period of the fundamental stimulus frequency, e.g., when
fi1 =400 Hz and M = 1, the peak occurred when 7 = 3 ms.
As the filtering parameter (M) was increased, the capaci-
tance transient (AC,,) decreased and the location of the peak
shifted to longer time constants that roughly corresponded
to the integration time per estimate (i.e., M/f;). In addition,
for a fixed time constant, increasing M results in R, esti-
mates that increasingly underestimate the change in mem-
brane resistance (AR,,).

In the absence of phase errors, which produce cross-talk
between the real and imaginary components of the admit-
tance measurements, estimates produced by the NWLS al-
gorithm were fairly insensitive to conductance changes (see
Fig. 10 a). When these phase errors are included in the
analysis, they tend to produce a plateau level, past the peak
transient, that is not highly dependent on the time constant
of the conductance. Over small angles (*+1°), the phase
errors produce results that vary linearly with the angle, as
might be expected, because the admittance projections are
nearly linear for small ¢, (i.e., sin(¢,) = ¢.). If the Nernst
potential of the transient conductance (E,) is the same as the
reversal potential (E,), then the capacitance cross-talk found
in the LN method is nearly identical to that produced by the
NWLS algorithm (lower traces). However, even small
changes in E, can produce large cross-talk because of the
fact that the LN method is highly sensitive to errors in
reversal potential when the conductance is large. The upper
traces of Fig. 10 a illustrate two cases of this sensitivity
(E, — E, = —1 and —5 mV) for a large conductance change
(g = 10 nS). The sensitivity of the LN algorithm to E, is
further illustrated in Fig. 10 b. In this case (C,, = 5 pF,
R, = 1000 MQ, R, = 20MQ, g = 10nS,7=0.5s, Vpc =
-70 mV, E, = —65 mV, ¢, = —0.1°), we find the NWLS
results to be relatively insensitive to E, (left axis), whereas
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FIGURE 10 Simulations of the cross-talk effects due to a large, expo-
nentially decaying, membrane conductance (see Appendix B). (a) In the
absence of phase errors the NWLS estimate of capacitance is only mar-
ginally affected by a large conductance change (C,, = 5 pF, R, = 1000
MQ,R, =20MQ,g=10nS,7=0.5s, Vpc = —70mV, E. = =65 mV,
M = 40), with the peak cross-talk transient (AC,,,) occurring when the time
constant is roughly equal to the estimation rate. Addition of a small linear
phase error (¢, = —0.1°) essentially provides a plateau AC,, level for the
NWLS algorithm (although it increases slightly as a function of 7). In the
LN method, small shifts from the reversal potential (E, = —65) due to the
potential associated with the new conductance (E,) result in larger AC,’s.
(b) For the same cell parameters (and ¢, = —0.1°), the NWLS method (left
axis) provides a close approximation to the change in membrane resistance
(AR,) and AC,, levels that are only slightly affected by E,. However, the
LN estimates are highly dependent on E, because of the high conductance
(right axis). (c) Maintaining all other parameters constant, increases in g
result in a supralinear increase in AC,, (1.5-2.0). (d) The NWLS cross-talk
effects increase with increasing R,, holding C,, constant, or with increasing
C,,» holding R, constant. (e) For a fixed E, (—70 mV), the NWLS algorithm
is fairly insensitive to the holding potential (Vpc), whereas the LN method
improves as Vpc moves away from E,. Use of transient reversal potential
in the LN algorithm (set E, = E,) further improves the capacitance
estimate.

the LN method is highly dependent on E, (note different
scale on right axis).

The variation in cross-talk as a function of the magnitude
of the transient conductance is depicted in Fig. 10 c. Fixing
all other parameters, the relationship between capacitance
transient size and g is supralinear, generally with a power of
1.5-2.0. This behavior coincides with the analysis of Ap-
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pendix B, which describes the time-varying membrane po-
tential in terms of an alternating power series in g, where the
first few coefficients are the most significant. In Fig. 10 ¢
we illustrate that this relationship occurs both with and
without phase errors (for NWLS) and for different changes
in reversal potential (for LN). For the case of varying cell
parameters, Fig. 10 d shows that the NWLS method pro-
duces a larger AC,,, for a fixed cell size, as the access
resistance increases. Similarly, for a fixed R,, the C,, tran-
sient increases as the baseline C,, increases. Finally, Fig. 10
e illustrates the relationship between cross-talk and holding
potential (Vp). Whereas the overall performance of the
NWLS algorithm is relatively unaffected by Vpc, the LN
method improves as the holding potential is moved away
from the reversal potential of the transient conductance.
However, the cross-talk seen with the LN method is still
significantly larger than the NWLS estimates, unless the
algorithm uses the transient reversal potential (E,) in place
of the reversal potential before the opening of the transient
conductance (E,). This technique produces much improved
capacitance estimates, as long as E, does not approach Vp,c,
although the cross-talk is still larger than the NWLS method
because of 1) the time-varying nature of the true reversal
potential and 2) the fact that an exponentially decaying
current has a DC component that is larger than the compo-
nents measured at the frequencies of the AC-based stimulus.
In addition, the LN approach results in biased estimates of
R, as the conductance closes down and reversal potential
returns to E..

The time course of the cross-talk transients, for a typical
perforated-patch recording from a rat adrenal chromaffin
cell (C,, = 5 pF, R, = 1000 MQ, R, = 20 MQ), is
illustrated in Fig. 11 a for varying g (2, 5, and 10 nS) and
in Fig. 11 b for varying 7 (0.1, 0.5, and 1 s). Because the
closure of SK channels in rat adrenal chromaffin cells
produces tail currents with long half-decay times (1 =
~0.5-1 s for 200-ms depolarizations; Park, 1994), these
simulations reflect parameter values that may be encoun-
tered experimentally. To substantiate the model of transient
cross-talk, we compared experimental data from rat chro-
maffin cells that displayed large conductance transients and
AC,,’s (recall Fig. 9) with simulated data. Using typical SK
channel parameters for a rat chromaffin cell (Park, 1994),
the model’s transient conductance value was varied such
that the estimated size and time course of the R, recording
were well matched by the estimation algorithm. In Fig. 11 ¢,
the large but slowly decaying membrane resistance was fit
using g = 4.5 nS and 7 = 0.8 s. Inclusion of a small phase
error (¢, = —0.1°) was required to properly fit the C,
transient produced by the NWLS algorithm.

Using the same baseline parameters, the predicted errors
in the capacitance estimate produced by the LN algorithm
are also well modeled (see Fig. 11 d). In addition, the large
resistance transient apparent in the LN estimate of R, is also
replicated (Vpc = =70 mV, E, = —64 mV, E, = —71 mV).
Although this example represents a worst-case scenario of
application of the LN method, because E, is near Vp, it
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FIGURE 11 (a) The time course of NWLS estimates (¢, = —0.1°), as
simulated with one time constant (7 = 0.5 s) but for varying levels of g,
indicates the increasing effect on both AC,,, and AR,. (b) Similar graph
depicting the effect of varying 7 while maintaining a constant g (g = 10
nS). The initial AC,’s are essentially the same size, because these time
constants are in the plateau area shown in Fig. 10 a. To verify the computer
model, the C,, and R,, estimates shown in Fig. 9 (from a rat adrenal
chromaffin cell) are modeled by the transient membrane conductance
simulation. (c) The NWLS R, estimate is fit using g = 4.5nS, 7 = 0.8 s.
The C,, cross-talk requires the inclusion of a small linear phase error
(¢, = —0.1°) to account for the small transient. (d) Based on the same
model parameters and the appropriate DC potentials (Vo = —70 mV,
E, = —64 mV, E, = —71 mV), simulation of the LN results agree with the
measured data. In this case, the C,, transient is substantially larger and the
R, trace actually indicates a resistance increase rather than a conductance
increase.

demonstrates the validity of the transient analysis outlined
in Appendix B and thus supports the simulations presented
in Fig. 10. Overall, the LN algorithm and the Donnelly
method uniformly displayed larger susceptibility to this type
of parameter cross-talk than the NWLS method. Whereas
the cause of the larger transients in the LN method is due to
the shifting reversal potential, the susceptibility of the Don-
nelly algorithm to cross-talk is not clear, although it does
coincide with the fact that the Donnelly estimates become
noisier as the conductance increases. Transients in the
Rohlicek solution were generally of the same order as in the
NWLS method.

DISCUSSION

In a variety of cells, including excitable endocrine cells,
neurons, and mast cells, measurements of cell membrane
capacitance have been extensively utilized to assay the
secretory process by linking changes in membrane surface
area, and hence capacitance, to the exocytosis and endocy-
tosis of secretory granules (Fernandez et al., 1984; Augus-
tine and Neher, 1992; Heidelberger et al., 1994; Barnett and
Misler, 1995a). Of the currently available techniques, single
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sinusoidal-based methods are the most common. However,
these techniques are based on assumptions, such as large R,
and/or known E,,, that may not pertain in experimental
circumstances in which membrane resistance and capaci-
tance are changing simultaneously. To overcome this prob-
lem, Rohlicek (Rohlicek and Rohlicek, 1993; Rohlicek and
Schmid, 1994) and Donnelly (1994) proposed the use of a
dual-frequency stimulus that provides for an overdeter-
mined system of equations. However, their solutions were
not based on an optimal approach to fitting the cell model to
the data. In this paper we have examined an optimized,
nonlinear weighted least-squares solution that minimizes
the variance of the estimates.

In developing an optimized method for estimating the cell
parameters, we began by approaching the problem from a
classical statistical framework. First we presented a statis-
tical model of the raw current samples that are obtained
from the patch-clamp amplifier. In the whole-cell mode of
recording, and its perforated patch variant, the primary
current noise originates from the membrane resistance and
the access resistance of the pipette-cell interface. The noise
spectrum of the cell, which is frequency dependent because
of the membrane capacitance, is ultimately shaped by the
filters in the signal pathway of the patch-clamp amplifier.
Hence the covariance matrix of the data is a function of the
circuit parameters and the characteristics of the specific
patch-clamp amplifier. Although there are advantages to
using the complete raw data set, the computer costs in terms
of storage, memory, and processor requirements are cur-
rently prohibitive. Therefore, we examined a reduced data
set, obtained from a dual-frequency digital lock-in detector,
consisting of measurements of the complex admittance
function at the two stimulus frequencies. Using these re-
duced data, we compared the parameter variance predicted
by the NWLS solution to the theoretical lower bound for
variance of unbiased parameter estimates (CRB). By using
a weight matrix that is based on the statistical description of
the reduced data (Q = Ry 1), the algorithm produces nearly
efficient estimates, i.e., the estimates essentially reach the
CRB of the reduced data. Similar results are obtained by
using a diagonal weight matrix, based on the SNR at the
stimulus frequencies, that compensates for frequency-de-
pendent noise and allows for different stimulus magnitudes.

We have shown that the optimal properties of a complete
ML solution, based on the reduced data, can be obtained
from a nonlinear weighted least-squares solution to the
overdetermined system of equations. This NWLS method,
which does not require an exhaustive description of the
amplifier, produces results that closely approach the CRB
based on the reduced data. However, the CRB established
by the complete raw data set was typically about 10% lower.
This indicates that reducing the data sacrifices much of the
information contained in the noise covariance of the raw
current samples. The efficiency of the NWLS estimator can
be proved in an asymptotic sense (Gallant, 1987) if we
ignore the insignificant contribution of the parameter-de-
pendent noise in the reduced data.
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The implementation of the NWLS solution was based on
an iterative Gauss-Newton approach that takes advantage of
an ad hoc solution to the estimation problem to initialize the
algorithm very near the optimal solution. Hence failure to
converge is more likely to result from cases in which the
three-parameter model is insufficient, thus indicating a
problem more severe than algorithm convergence. If this is
of concern, implementation of the full Newton method is
only a minor extension of the approach presented here. The
NWLS algorithm was tested using computer simulations,
model circuits, and rat adrenal chromaffin cells. Although
capacitance recordings from actual cells were slightly (1.4)
noisier than predicted, the efficiency of the model circuit
data suggests 1) that the excess noise is due to unmodeled
sources, e.g., basal membrane cycling of vesicles; and 2)
that the software lock-in is performing satisfactorily, i.e.,
the excess noise found in the real cells is not due to the use
of a software, as opposed to a hardware, lock-in amplifier.

The transient analysis developed here details the condi-
tions under which rapidly developing conductance changes
are reflected in the other parameter estimates. This is of
particular concern in cells that display prolonged tail cur-
rents after extended depolarization, e.g., Ca**-activated K*
currents in chromaffin cells (Park, 1994) and Ca®"-acti-
vated chloride currents in pituitary cells (Korn and Horn,
1989). These large conductance changes can produce tran-
sient changes in capacitance that appear similar to a rapid
phase of endocytosis, with the peak cross-talk occurring
when the time constant of the exponentially decaying con-
ductance is nearly equal to the base period of the stimulus.
This result is similar to the findings of Debus et al. (1995),
which showed that the cross-talk due to finite gating kinet-
ics was at a maximum when the rate constant was close to
the angular frequency of the sine wave.

Accurate measurements of membrane conductance im-
mediately after a depolarizing pulse allows one to more
readily detect the potential for parameter cross-talk and,
hence, reduce the risk of misinterpreting the capacitance
transients. However, single-frequency methods either
“group” the conductance measurements into one channel of
the phase-sensitive detector (Neher and Marty, 1982) or are
prone to R, bias because of the unknown E_., (Lindau and
Neher, 1988). In the former method, cross-talk generated by
a large linear conductance change is relatively small when
the phase setting is correct. However, the errors become
significantly larger when the phase is misadjusted, which is
a condition that may be difficult to avoid (Debus et al.,
1995). The NWLS approach is still susceptible to the tran-
sient cross-talk produced by a time-varying model, although
in many cases the primary source of the cross-talk is actu-
ally due to the existence of small phase errors. Although
these phase errors are inherent under practical experimental
conditions, they can be minimized by careful calibration
and capacitance compensation. Even with these phase er-
rors, the NWLS method is much less susceptible to cross-
talk than the LN method when the reversal potential shifts
from the assumed value because of a large, transient change
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in conductance. Under these conditions, the LN method can
also produce large errors in the estimate of R, (especially as
E, approaches V), whereas the NWLS method provides a
reasonably valid measurement of R,,, immediately after con-
ductance change.

One of the primary advantages of using a dual-frequency
approach for calculating cell parameters is the ability of
these algorithms to generate valid estimates when R, is low
and/or changing during the course of an experiment. Under
these conditions, the single sinusoidal based methods gen-
erally deteriorate. Although the LN method can be applied
to many situations by providing the algorithm with the
postulated (or measured) value of the transient reversal
potential (E,), this approach creates C,, estimates that are
highly dependent on the E,, chosen. In addition, the use of
E, in the LN algorithm will produce biased R,, estimates as
the true reversal potential returns from E, to the baseline
reversal potential (E,), and furthermore, this solution still
fails to account for cases in which E, shifts toward the
holding potential (Vpc). This type of researcher-dependent
input can be eliminated by using a dual sinusoidal based
method to generate on-line, real-time, valid estimates of all
three model parameters. Finally, if experimental protocol
results in a continuously changing reversal potential, such as
the application of a secretogogue that induces the insertion
of channels (e.g., a-latrotoxin from the black widow spider;
Barnett et al., 1996), then a dual-frequency method is re-
quired for estimating the true time course of exocytosis.

The drawback of the dual-frequency method is that the
signal is no longer concentrated at one frequency, which
generally results in larger parameter variances when the
overall stimulus magnitude is held constant. Although this
is a function of the frequency and magnitude of each stim-
ulus chosen as well as the noise spectrum, we would
roughly expect a single 10-mV signal to produce parameter
estimates that are characterized by standard deviations that
are 1/V/2 lower than the case of two 5-mV signals. How-
ever, as demonstrated here, the NWLS method was able to
detect small capacitance steps (>1 fF), such as might be
expected from the fusion of a one or more chromaffin
granules with the plasma membrane of an adrenal medullary
cell. The data shown in Fig. 7 combined moderate stimulus
levels (v; = v, = 10 mV) with an 800-ms filter to reduce the
probability of false alarm (Pg,). To reduce the filtering
while maintaining a low Pg,, we can utilize more intelligent
schemes of selecting the magnitudes and phases of a mul-
tifrequency input stimulus such that the waveform provides
more energy at each frequency while limiting or shaping the
overall voltage excursion. For example, if it is critical to
limit the positive voltage excursion, then an appropriate
stimulus waveform can be generated using equal magnitude
signals, a frequency factor of 2, and a phase shift of 180° on
the higher frequency term (v, = v,, f, = 2f;, ¢, = 0°, b, =
180°). This waveform exhibits a positive excursion only
slightly greater than v, but a negative excursion equal to
2v,.
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In conclusion, our simulations and model circuit results
demonstrate the advantages of the NWLS solution, namely,
that with appropriately selected weighting factors the
NWLS produces efficient parameter estimates. Although
this paper discusses a dual-frequency stimulus, extension of
the method to include additional stimuli is relatively
straightforward. These additional stimuli may be selected,
perhaps, such that the voltage excursion is held constant or
even reduced. Experiments show that the NWLS algorithm
is capable of estimating changes in capacitance while mem-
brane conductance changes by nearly an order of magni-
tude. This method appears to be less sensitive to the param-
eter cross-talk induced by large conductance changes than
single sinusoidal techniques. The improvements in param-
eter noise levels (33-42%) offer an advantage over other
dual-frequency approaches in a system that is implemented
entirely in software and is not amplifier-dependent.

APPENDIX A

The elements of the R, matrix, expressed previously as the matrix product
R, = (DD)"'D"RD(D'D) ", can also be written directly as a summation,
so that the relationship to the discrete Fourier transform (DFT) is evident.
The individual diagonal elements are given as the sum of two components:

Ryn =EAA}=oa + B: Ryn =E{BB}=a — B
R,, = E{AA}=a,+ B, Ry, =E{B,B)}=a,— B,

(Al)
where the a and B terms are
1 g 27k;
=3 > r(m)cos(TJ m)(N — |m|)
m=—(N-1)
(A2)

e —sin((4wk/N) m) _(2mk;
B = 'EO r(m) 1 — cos((27k/N)m) sm( N m).

The a term is now recognizable as one-half of the DFT of r(m), the samples
of the raw data autocorrelation, times a triangular (or Bartlett) window. In

= AAA Vin

Ra

<+ V=Ve+Vpc c.,

geOty(t)

FIGURE 12 Standard cell circuit model, characterized by R,, R,,, and
C.,» is expanded to include an additional tail conductance, ge™“u(t), in
parallel with the membrane capacitance and resistance. The voltage sources
define the sinusoidal stimulus V,, the holding potential Vp¢, the cell
reversal potential E,, and the reversal potential of the transient conduc-
tance E,. The membrane potential, V,, is at the node separating the access
resistance from the membrane circuit elements; the patch-clamp current is
labeled as 1.
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contrast, the B term consists of r(m) times a “sin window,” so that it has
little effect when r(m) is concentrated near the origin. Hence the «
component of the variance is equal to the smoothed power spectrum at that
particular frequency, whereas the 8 component is zero when the noise
process is perfectly white, i.e., (m) = 0 for m # 0.

The off-diagonal elements of R,, which are much more complicated,
also contain a “sin window” effect, as shown below:

Ryuz yzn E{A Bl} =N Ryu y43 E{AZBZ} Y2
Ryu = y4| E{A BZ} Y2 Ryaz = yzs E{AZB l} Y

N-1

21rk;
Y= - 2 r(m)sin(—ITJ—J m) (A3)

m=0
Ry13 = y3| E{AlAz} =K+ A
R,,=R,, =E{BB)}=x—A

1 N-1
K=7 mgo r(m)

(sin((21'rk2/N) m) — sin((27k,/N) m)sin(Rm/N)(k, — k)
' 1 — cos(@mN)(k, — k) )

N-1

)\=§ > r(m)

m=0

) (—sin((Zﬂ'kz/N) m) — sin((27k,/N) m)sin((27/N)(k; + k2)))

1 — cos(RuIN)(k, + k)

APPENDIX B

Here we examine the effect of a transient membrane conductance change,
such as that underlying a slowly decaying tail current after a depolarization,
on the estimate of C,. To accomplish this, we expand the standard
three-parameter cell model to include an exponentially decaying conduc-
tance, ge *u(t), in parallel with C,, and R,,, as shown in Fig. 12. A
solution to this time-varying problem will allow us to determine the
measured current transients that are used by the capacitance estimation
algorithms. Then, by using measurements of tail current size and decay
time, we may compare our model with experimental results.

The initial analysis will isolate the sinusoidal stimulus V,, leaving the
contributions of the DC sources, i.e., Vpe, E., E, to be added in later
using superposition. Hence we begin by applying Laplace transform tech-
niques to solve for the membrane voltage in the s-domain:

Is(s) - ng(S + a)
G, +sCn

Vals) = (BI)

where the current source I(s) = V(s)/R, is obtained from a source
transformation of the stimulus voltage, and G, is the conductance associ-
ated with the parallel combination of R, and R,,. In an approach similar to
that of Belmont and Matthews (1995) to determine the generalized fre-
quency response, we note that Eq. B1 represents a recurrence relationship,
so that we may write

I(s + &) — gVu(s + 2a)
G, + aC, + sC,

V(s +a) = (B2)
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By substituting this expression for V(s + a) back into Eq. Bl and
subsequently repeating the process, we obtain the following series:

1(s) s

_ (=1)"g"I(s + na)
Vals) = G, + sC,

n§l [ 2-o(G, + maC, + sC.)
(B3)

(= )MV (s + (N + 1)a)
nit(G, + maCy, + sCp)

As N goes to infinity, the last term will tend toward zero, so that we may
ignore its influence and merely retain the first I(s) term, which reflects the
membrane voltage without any transient conductance change, and the
summation of /(s + na) terms, all of which are s-domain shifted versions
of the known stimulus function. A valid expression for V(s) can be
obtained as long as the summation converges.

We now define the stimulus as Vjcos(wr), which leads to the current
source Igcos(wt) (note that I, = V/R,), and apply inverse Laplace tech-
niques to obtain the time-domain expression for the membrane voltage.
The result for the first term (n = 0) and each term of the summation can
be written as

I(—=1)"g"(s + na)
I-[',‘,,=0(Gp + maC,, + sC)((s + na)® + «?

B 2Re{A}s + na)
T (s + ne)? + o

2Im{A}w
((s + na)* + &)

(B4)

B,
+2s+((GP/C)+ma)

where
I(—1)g"
Ay = ; ,
2H?n=0(Gp + (m - n)aCm —jwcm)
and
B - ~I(—=1)"(g/C)"(G, + (m — n)aC,)

([Tio((k = M)(G, + (m = maCy)? + (@Ca?)

The expression for the s-domain membrane voltage can then be written:

2Re{A }(s + na)
(s + na)® + o?

2Im{A,}w
(s + na)’ + o?

N
Vals) = 2
n=0

Bum (BS)
M Eo 5+ (GJCp) + ma) |

The inverse of the first two terms leads to damped (for n > 0) cosine and
sine terms, and the last term results in exponential terms with time
constants equal to

R,Cn

I+ maR,Cp " (B6)

T =

These purely exponential terms have a very rapid decay time for typical
cells (1 = R,C,, = 0.1 ms for R, = 20 MQ, R, = 1 G, C,, = 5 pF)
compared to the period of the stimulus sinusoid (2.5 ms for f = 400 Hz),
so that their effect is minimal and can essentially be ignored, if after a
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depolarizing pulse the first cycle of the sinusoid is not used by the
estimation algorithm.

It can be shown via a simple ratio test that the A, series converges, and
in fact, for typical cell parameters this occurred by N = 5 (although we
usually truncated the sum at N = 10). Although the series in B, also
converges, because these rapidly decaying terms have no real effect on the
membrane voltage after a fraction of a sinusoidal period, we will not
evaluate them directly. Furthermore, because the membrane voltage cannot
change instantaneously, the sum of the A, and B, terms must equal zero.

For completeness we must also include the DC components that were
initially ignored in the circuit model. These sources include the DC holding
potential (V¢), the membrane reversal potential (E,.,), and the potential
source associated with the transient conductance (E). By following an
identical analysis approach, accounting for initial conditions on the capac-
itor, and ignoring the insignificant rapid decay terms, the following addi-
tional components can be added to the previous expression for V,(s) of
Eq. BS:

c X b,
s + n% s+ na’
where
VocRn + ER, (B7)
C= ",
Ry
and

_ (=1)¢"((Voc/R) + (E/R,) — (E/Ry))
Hnm=0(Gp + (m - n)acm)

Therefore, we can now write the time-domain membrane voltage as

D,

vm(?) = 2Re{Ag}cos(wt) + 2Im{A}sin(wt) + C

N
+ 2 e " (2Ref{A,}cos(wt) + 2Im{A, }sin(wt) + D,),

n=1
(B8)

which can be used in the expression for the patch-clamp current:

() — vald)

i(r) R (B9)

The lock-in amplifier uses this current to determine the in-phase and
quadrature components that are used in the estimation algorithms (the DC
component can also be calculated for use in the LN algorithm). Equiva-
lently, because the integrals performed by the lock-in involve only expo-
nential and trigonometric functions, we can solve these analytically to
determine the “predicted” effects of the transient conductance on the
lock-in outputs. The lock-in outputs, as calculated from the time-varying
model, can be used in the estimation algorithm to compare predicted
capacitance transients to measured data.
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