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D. M. J. Quastel

Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia
V6T 1Z3 Canada

ABSTRACT The mathematics of the binomial model for quantal neurotransmitter release is considered in general terms, to
explore what information might be extractable from statistical aspects of data. For an array of N statistically independent
release sites, each with a release probability p, the compound binomial always pertains, with (m) = N{p), p' = 1 — var(m)/(m)
=(p) (1 + cv3) and n’ = (m)/p’ = N/(1 + cv3), where m is the output/stimulus and cv3 is var(p)/(p)?. Unless n’ is invariant
with ambient conditions or stimulation paradigms, the simple binomial (cv, = 0) is untenable and n’ is neither N nor the
number of “active” sites or sites with a quantum available. At each site p = ppa, where p,, is the output probability if a site
is “eligible” or “filled” despite previous quantal discharge, and p, (eligibility probability) depends at least on the replenishment
rate, p,, and interstimulus time. Assuming stochastic replenishment, a simple algorithm allows calculation of the full statistical
composition of outputs for any hypothetical combinations of p,’s and refill rates, for any stimulation paradigm and
spontaneous release. A rise in n’ (reduced cv,) tends to occur whenever p, varies widely between sites, with a raised
stimulation frequency or factors tending to increase p_’s. Unlike {m) and var(m) at equilibrium, output changes early in trains
of stimuli, and covariances, potentially provide information about whether changes in (m) reflect change in {(p,) or in (pa).
Formulae are derived for variance and third moments of postsynaptic responses, which depend on the quantal mix in the
signals. A new, easily computed function, the area product, gives noise-unbiased variance of a series of synaptic signals and
its peristimulus time distribution, which is modified by the unit channel composition of quantal responses and if the signals

reflect mixed responses from synapses with different quantal time course.

INTRODUCTION

From the first description of the quantal nature of neuro-
transmitter release and its probabilistic character it has been
generally assumed that the distribution of numbers of
quanta released by stimuli is in some sense binomial in
character, with a Poisson distribution appearing under con-
ditions of depressed release (low Ca”* /raised Mg?*), so that
each stimulus effectively samples with low probability from
a relatively large number of release sites (del Castillo and
Katz, 1954a; Martin, 1955). Since then many studies of a
variety of synapses have found deviations from a Poisson
distribution in the direction expected with a binomial dis-
tribution (rev. McLachlan, 1978; Redman, 1990).

A binomial distribution for outputs corresponds to the a
priori consideration that the number of quanta released by a
stimulus must be limited by the number of release sites and
the number of quanta available for release. Equally a priori,
however, there is no reason to assume that the probability of
release is the same for every site and that this probability is
the same from one stimulus to the next, which are both
preconditions for a simple binomial distribution of outputs
for which the mean ((m)) is np and the variance, var(m), is
np(1 — p), where n is the number sampled with probability p.
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The case in which p and n may vary spatially and tem-
porally was considered by Brown et al. (1976), who showed
that the p and n obtained from data assuming a simple
binomial (i.e., p’ = 1 — var(m)/(m) and n’ = (m)/p') then
bear no relation to the true mean p ((p) ) and the true (mean)
number of sites capable of release, except that n’, like the
number of “filled” or “eligible” sites, must be less than the
total number of sites, and p’, like any p, must be =1. Given
that at each release site p must be the product of output
probability (p,) and the probability that the site is “eligible”
(pa), the simple binomial (all release sites equivalent)
should give n’ always equal to the total number of release
sites. Numerous findings that n' varies with stimulation
frequency and ambient Ca>*/Mg>* (see McLachlan, 1978)
therefore indicate that the simple binomial does not apply
generally. Nevertheless, it is still common to find in the liter-
ature the assumption that n’ somehow represents the number of
release sites that have a quantum available for release.

It is my purpose here to consider the binomial model with
minimal artificial constraints, emphasizing the underlying
assumptions and the way in which these translate mathe-
matically into the consequent statistical properties of out-
puts and resulting postsynaptic signals. A synapse or group
of synapses is (conventionally) envisaged as an array of N
independent release sites, each potentially capable of releas-
ing only one quantum at a time, and each with its own p.
Unless all release sites have the same p, giving the simple
binomial model, this is the compound binomial model (rev.
McLachlan, 1978; rev. Redman, 1990; Dityatev, Kozhanov
and Gapanovich, 1992), for which (m) is N(p) , p’ = (p)
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(1+cv))andn’ = NI(1 + cv}), where cv,, is the coefficient
of variation of p (Brown et al., 1976). It is shown that apart
from the simplifying assumption that stimulated release
occurs over an infinitely brief time, the only necessary
assumption for this is site independence, which is also a
precondition for the simple binomial. Notably, if N is en-
larged by any number, corresponding to hypothetical sites
with p = 0, the above relationships remain true, with (p)
and cv;‘; having new values; neither mean nor variance (or
overall distribution) of the outputs contains information
about the number of release sites, unless the distribution of
p among these sites is known. One such distribution, namely
that p is the same at all “active” sites and O elsewhere, gives
n' equal to the number of active sites, but is logically
untenable (see Discussion).

One basic assumption of the binomial model, that release
by a stimulus is limited to a fixed maximum, is reconcilable
with reality (a noninfinitesimal time period of release) only
if the release of a quantum by a site somehow entails the
temporary inability to release another. As the converse of
release, this “depletion” is inherently stochastic, and if
subsequent “refilling” is also stochastic, events at each site
constitute a Markov chain, corresponding to one of the
models considered by Vere-Jones (1966) and more recently
by Melkonian (1993). Here I have generalized this model in
two ways, to the situation in which release sites have
different output probabilities (p,’s) and refill rates, and to
where these parameters vary in time, to make it possible to
compute statistical outcomes for any hypothetical parameter
sets and stimulus sequences, and for spontaneous release.
One result that emerges is that if p, varies between sites, cv,,
and the relative contribution of quanta from different sites
can be expected to change continually early in trains of
stimuli, to vary with stimulation frequency, and to vary with
conditions that modify p,’s or the rate of refilling; n’ tends
to rise with stimulation frequency and with any factor that
increases p,’s. '

I also present derivations of equations for the third mo-
ment of the quantal outputs, for the modification of mo-
ments by quantal amplitude variation of various types
(Walmsley, 1993), and for the expected covariance between
numbers of quanta released by successive stimuli, which,
unlike means and variance, may contain information about
whether any experimentally observed changes in (p) or cv,
might be due to changes in p,’s or p,’s (Vere-Jones, 1966).
Statistical measures are also derived for “spontaneous” release.

In addition, a new function, the area product, is intro-
duced; this is easily computed from data and provides not
only the total variance of sequential synaptic signals, unbi-
ased by recording noise, but also the distribution in time of
this variance before and after the point of stimulation. With
some caveats, the latter can be an indicator of whether the
signals represent a mix from different synapses producing
quantal responses of different time course, and/or provide
an estimate of the amplitude of the channels underlying
quantal responses.
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METHODS

All of the equations presented were derived from basic
principles using approaches found in an introductory text-
book of mathematical statistics (Weatherburn, 1961) and in
Vere-Jones (1966). Various calculations were done on an
IBM-compatible PC, either with a spreadsheet or with pro-
grams written in C. These calculations were of two kinds: 1)
verification with a Monte Carlo simulation of the formulae
for variances and covariances and 2) determination of the
effect of arbitrarily assigned release probabilities and re-
plenishment rates for arrays of up to 100 release sites in
which one or both of these parameters varied between sites.
Some of the results of these calculations are presented in the
illustrative figures in the next section. In the simulations I
used, the ran2() subroutine of Press et al. (1992), which was
checked to verify the absence of correlations between suc-
cessive pseudorandom numbers, to obtain random numbers
between 0 and 1, from which, when required, exponentially
distributed random numbers could be obtained by taking the
negative of the logarithm. For normally distributed random
numbers I used the gasdev() subroutine of Press et al.
(1992).

THEORY AND RESULTS
The simple and compound binomial distribution

Consider a synapse that has been stimulated repetitively at
a constant rate, the outputs of which have settled down to a
value that is constant except for statistical fluctuations. To
obtain the statistical composition of the outputs (i.e., mean,
variance, etc.) imagine records from a very large array of
detectors that cover the whole presynaptic area. Each de-
tector has as its territory an area so small that no more than
one quantum can be released in the (supposedly) infinitely
brief time period, after each stimulus, that release occurs; it
signals a 1 for a “success” and a O for a “failure.” Because
the number of detectors is much larger than the number of
release sites, the record from most of the detectors contains
only 0’s, but others contain 1’s and (’s. For any one of these
active sites there will be a certain number of 1’s, say s, for
k stimuli. The sum over the k stimuli is s, the sum of squares
is s, and the sum of cubes is s. The mean = p; = mean
square = u, = mean cube = uj = s/k, for which the
expected value is p, the probability of release. Thus the
expected value of the mean = p and the second and third
moments about the mean are variance = p(1 — p), third
moment = p — 3p? + 2p° = p(1 — p)(1 — 2p), i.e., outputs
from each active site are binomially distributed with param-
eters 1 and p.

In nearly all experimental situations the data we have for
each stimulus will correspond to the sum of the outputs
from the hypothetical detectors. The mean and variance
(and third moment) of these are obtained simply by sum-
mation if and only if the numbers from each are uncorre-
lated, i.e., whether or not a success occurs at any one
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detector is uncorrelated with whether or not a success oc-
curs at any others. In other words, release sites must be
independent. Then,

Em)=Xp;  var(m)= X p— > p?
p'=1— var(m)/E(m) = X, p*/>, p
n' =Em)p’ = (2 p)42p

In terms of N, the number of release sites,
E(m) = N 2 pIN = N(p) (1a)
var(m) = N(p) — N((p)* + var(p))
= Mp)(1 —(p)1 + var(p)(p)’))

= Mp)1 —(p)(1 + cv}) (1b)

and
p'=(p)1+cv) (Ic)
n' =NI(1 + o)) (1d)

This is the “compound binomial.” Note that Eqns. 1 are
valid for any assumed value of N = n’' (because cvf, = 0);
the mean and variance of outputs can give true N only if cv,
is known a priori, or give true cv, only if true N is known
a priori. For one particular distribution of p, where p is the
same at all active sites and zero elsewhere, the situation is
the same as if the silent sites did not exist and in a sense the
simple binomial (cv, = 0) pertains; n’ is the number of
active sites, invariant with any alteration of p as long as
cvp = 0, but true N remains unknown. Indeed, we could not
determine true N even if we had access to the records from
each and every detector, because a record with no successes
does not preclude a past or future success.

It must be emphasized that if sites are not independent,
Eqns. 1 do not pertain, even for cvp = 0, which is otherwise
the simple binomial (Brown et al., 1976).

Comparison of output distributions for simple and
compound binomials

The third moment of the outputs is given by
M3=2Xp-3Xp +22p°
= Mp) — 3N[(p)* + var(p)]
+ 2NI{p)’ + Xp) var(p) + P3]
= N(pX(1 = (p)(1 — 2(p))
— 3 var(p)(1 — 2p)) + 2P3] (le)

where M3 and P3 denote the third moments of m and p
about their means. In general M3 is not the same for a
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compound binomial as for the simple binomial, and it might
therefore be supposed that from the output distribution one
could determine whether a simple or a compound binomial
pertains. However, simulations of outputs for a compound
binomial show that this is not the case (Brown et al., 1976).
The examples in Table 1 are for arrays of 100 sites with
arbitrary widely varying p. In each case the first column is
a list of the number of outputs with 0, 1, 2, etc. quanta
expected for 1000 iterations. The second and third columns
are calculated using the mean ((m)) and variance of the
outputs to obtain p’ and n’, rounding off n’ down and up to
integers and choosing for each a new p’ = (m)/(new) n'. For
example, in the first set, certain parameters producing (m) =
1 gave p’ = 0.30 and n’ = 3.34; the two simple binomials
for comparison haven =3 andp = 0.33andn =4 andp =
0.25. The true distribution is either between the two for
simple binomials, or different from an extreme of the latter
by no more than 4, i.e., not statistically significant; the same
was true for any set of p’s giving about 30% or more
“failures.” Apart from the appearance of a few outputs more
than n’, appreciable differences between the compound
binomial and the corresponding simple binomials occur
only if p’ is more than about 0.5 and {m) is so high that there
are no failures and few if any unitary responses. The cor-
ollary is that whereas an output distribution may sometimes
show that a simple binomial does not pertain, the absence of
significant deviations from the simple binomial is insuffi-
cient to deny a compound binomial. It may indeed be shown
explicitly that the probabilities of a failure and of a single
unit response are for any mixture of p’s indistinguishable
from the corresponding simple binomial, provided no single
p is more than about 0.3 (see Appendix, 1). Virtually the
only information on the output distribution of p’s at indi-
vidual sites is that none of them can be more than the
fraction of “successes.”

Composition of p

Let us suppose that a release site when stimulated may or
may not be able to release a quantum; one precondition for
capability might be the presence of an available quantum,
i.e., its being “filled”, and for simplicity of expression let us
suppose that this is the case. Then, its p will be the product
of p, (the chance it releases if it has an “available” quantum)
and p, (the chance that a quantum is available), i.e., p =
DoPa- The logic leading to Eqns. 1 remains unchanged, and
it follows that there is no way of determining from an output
distribution (mean, variance, etc.) either N(p,), the mean
number of sites capable of release, or {p,), the mean prob-
ability of release of filled sites, even if N is known a priori,
or if the simple binomial pertains. Correspondingly, any
experimentally induced change in {m) (quantal content)
might be due to a change in (p,) and/or (p,). Furthermore,
if we had detectors of “quantal availability” at each site,
these would each produce a succession of 0’s and 1’s, by
definition binomially distributed.
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TABLE 1 Distributions of quanta released per stimulus for compound binomials
(m) =10 (m) = 2.0 (m) = 4.0
n' =334 3 4 n' = 3.83 3 4 n' =533 5 6
p' =030 0.33 0.25 p' =052 0.67 0.5 "= 0.5 0.8 0.667
0 299 296 316 46 37 62 0 0 0
1 448 444 422 *262 221 249 *2 6 17
2 209 222 211 402 444 375 51 51 82
3 40 37 47 *228 298 251 *258 205 220
4 4 0 4 55 0 63 396 410 329
5 0 0 0 *7 0 0 *230 328 263
6 0 0 0 0 0 0 57 0 88
7 0 0 0 0 0 0 *6 0 0
(m) = 4.0 (m) = 7.05 (m) = 8.0
n' =128 12 13 n' =120 11 12 n' =108 10 11
p' = 031 0.33 0.31 p' =059 0.64 0.59 p' =074 0.8 0.73
0 7 8 8 0 0 0 0 0 0
1 46 46 48 0 0 0 0 0 0
2 129 126 128 2 2 3 0 0 0
3 213 211 210 12 12 15 0 1 2
4 237 238 234 48 43 49 4 6 10
5 187 192 188 *118 107 113 30 27 39
6 110 112 112 *198 191 187 *109 88 103
7 49 48 50 233 244 229 *226 202 197
8 17 15 17 *195 218 204 277 302 262
9 5 3 4 *119 130 129 *211 268 233
10 1 0 1 53 46 55 *103 107 124
11 0 0 0 *17 8 14 *33 0 30
12 0 0 0 *4 0 2 *7 0 0
13 0 0 0 *1 0 0 *1 0 0

Expected numbers for 1000 stimuli, from arrays of 100 sites. In each case the first column gives the number expected for the compound binomial and the
second and third columns give the numbers expected for apparent n (n’) rounded down and up to the closest integers.
*Values where with sufficient iteration, there might be a significant difference between numbers of quanta observed with the compound binomial and

numbers predicted by simple binomials.

Temporal fluctuations in p

In reality p, at each site and therefore p must be a tempo-
rally random variable, because it depends upon the stochas-
tic opening of voltage-gated Ca®>* channels, the stochastic
closing of these channels, the stochastic combination of
intracellular Ca®>* with its receptor(s), etc., which cannot be
identical from stimulus to stimulus. From the derivation of
Eq. 1, this has no effect whatever on the statistical outcome.

Summary of assumptions for binomial distribution

In the above derivation there are a number of explicit and
implicit assumptions:

1. A release site is capable of releasing only one quantum
per stimulus. This has been implicit in all statistical treat-
ments of transmitter release; the Poisson distribution at frog
neuromuscular junction in low Ca®*/raised Mg2+ (del
Castillo and Katz, 1954a) is incompatible with single re-
lease sites releasing more than one quantum at a time. In
principle, if any release site could release more than one
quantum, it would have to be considered as two or more
sites that are possibly linked and correlated.

2. The independence of sites, in the sense that fluctua-
tions of release from one site to another are uncorrelated,

has also been implicit in all statistical treatments of release.
If correlations do exist, positive correlations increase vari-
ance, whereas negative correlations reduce variance (see
Dityatev et al., 1992), for both the simple and compound
binomial.

3. The assumption of stationarity is unnecessary, pro-
vided any nonstationarity of p = p_ p4 at any site is uncor-
related with nonstationarity at any other. If p’s vary in
tandem over time, corresponding to the usual definition of
nonstationarity, this gives a positive correlation and an
increase in variance.

4. The hidden assumption of depletion is necessary to
reconcile assumption 1 and a finite time course of release. It
and its ramifications will be considered in detail below.

Depletion and refilling: statistical measures
in trains

In the classic review by del Castillo and Katz (1956) it was
pointed out that the end-plate potential (EPP) produced by a
nerve impulse represents an intense transient acceleration of
“spontaneous” quantal release, and there is no reason to

doubt that this is generally the case. The time of this
transient, although brief, cannot be instantaneous, and there-
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fore the probability of release from any site can in principle
be expressed as a series of very small probabilities in very
small time periods (6¢). It follows that if site capability were
to remain unaffected after quantal discharge, release in each
ot would be Poisson distributed, and net release would be
unlimited and Poisson. Thus a binomial model depends on
the assumption that the release of a quantum from a site by
a stimulus entails no further release by the same stimulus
from the same site. The incapability of the site to release a
second quantum can be termed “depletion,” and recovery,
for a subsequent stimulus, can be termed “replenishment” or
“refilling,” without necessarily implying that these pro-
cesses physically represent the loss of a preformed quantum
and acquisition by the site of a new preformed quantum.
In the absence of any reason to believe the contrary,
namely, replenishment at a fixed time after a quantum is
released, refilling is hereafter assumed to be a stochastic
process that is not necessarily complete between stimuli. As
will be seen below, this depletion model provides a rationale
for the analysis of data, particularly from short trains of
stimuli, to obtain some insight into whether experimentally
produced changes in (m) reflect change in p,’s or p,’s.

Dependence of p, on p, and statistics of outputs
in trains

Vere-Jones (1966) has rigorously derived the statistical
makeup of outputs produced by a series of stimuli, for the
case in which there is a constant probability of release (p,)
from n equivalent sites, each either filled or unfilled, with
constant probability (a) of unfilled sites becoming refilled
between stimuli. This model constitutes a “simple, discrete-
time, positive recurrent Markov chain.” To summarize his
result, (m) and var(m) tend geometrically to equilibrium
values np and np(1 — p), respectively, with p = p_p, and
pa = al(1 — q,B), B being (1 — a) and g, being (1 — p,).
The number of quanta available for release (np,) is always
binomially distributed and positively correlated from stim-
ulus to stimulus; outputs are binomially distributed, and the
correlation between successive outputs is always negative.
In particular, at equilibrium the covariance of successive
outputs is p>g,B(var(n) — E(n)) = —npZq,B. The geometric
progression to equilibrium, which depends upon constant p,
and a, was known even then to be an oversimplification, in
view of the data of Elmqvist and Quastel (1965).

The logic of Vere-Jones (1966) gives rise to a fairly
simple algorithm that makes it possible to obtain solutions,
in terms of probabilistic outcomes, for any set of release
probabilities and replenishment probabilities at any array of
release sites, and for any stimulation paradigm, without
recourse to Monte Carlo simulation, as follows.

Consider a group of n sites with identical p, and «, and
designate as n; the number of sites with a quantum available
for release, i.e., the number of filled or eligible release sites,
at the ith stimulus, for which p_ is p;, ais o (and B; = 1 —
«;). In general, n; is a random variable with a mean (say n)
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and a variance equal to n(1 — n/n), because n is binomially
distributed. One can keep track of what occurs with each
stimulus and, subsequently, with the following general
scheme:

At the ith stimulus n; = n + €;; E(n;) = n

quanta released = m; = p;(n + €,) + €,; E(m;) = p,E(n;)
filled sites remaining = f; = ¢;(n + €;) — €,

unfilled sites = u; = n — gi(n + €,) + €,

unfilled sites after partial refill = v; = B;(n — ¢;(n + ¢€,)

+ €) + €

filled sites after partial refill = n; ., = o4n + Big;(n + €)
— Bie; — &

quanta released = m; . ; = p;, ,(oyn + Big;(n + €;) — Bie,
—€) t €

Here the €’s designate independent “error” terms; each
has an expected value of 0 and an expected value of the
square (or cube) that accords with the binomial sampling
that generates it, e.g., €,> = np,q;. Expected values for m,, f,,
etc. are given by the expressions with error terms omitted.
In a numerical Monte Carlo simulation, each € occurs where
a decision is made according to the value of a random
number. The variance at each stage can be obtained by
squaring the expression containing one or more €’s and
retaining only terms that include squares of €’s; the variance
obtained in this way will be the same as that deduced from
the binomial distribution of each, with parameter n:

&2 = var(n) = E(n;)(1 — E(n;)/n)
& = pgiE(m)
E(m;) = p,E(n;) = p.E(n;) = nppa; (2a)
var(m;) = p’e’ + &3
= p} var(n) + pigiE(n)
= E(m)(1 — E(m;)/n)
= npipal = pipa) (2b)
& = aBi(n — gEmy))
€ = PiniGin1 E(nis)
E(n;yy) = ain + BigiE(n)
E(mi+)) = pis E(0is)
var(m;y,) = E(mi)(1 — E(m;s,)/n),
where p,; has been written for E(n;)/n, the probability that

a site has a quantum “available” at the ith stimulus. The
covariance between any two stages is given by multiplying
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the two relevant expressions and omitting terms that are not
squares of €’s:

cov(ny, njy ) = G%Biqi

cov(m;, miy,) = Pi+1Bi(Pi‘1i€i2 - 8%)
= pir1Bipigi(var(n;) — E(n;))
= —np;. | BPqdA (2¢)

Equation 2a can also be written in terms of E(m;) and
E(m;.,),
cov(m;, miy,) = E(m)(ps 105 — E(myy,)/n) (2d)
Following the logic to the next and subsequent stimuli,
we find that, in general,

cov(m;, m;,y) = cov(m;, M- 1) Bisk—1Gi+k—1Pik/Pivk-1 2)
e

From the above formulae, given any sequence of p,’s and
o’s, one can list expected values of numbers of filled
(occupied/capable/eligible) sites, expected values of outputs
({m)), variances, and covariances, from which one can also
obtain these measures for sums of outputs over time. This
permits calculation not only of responses to iterated trains of
stimuli (where facilitation might change p_’s and/or a’s),
but also of what happens if release by each stimulus is
dispersed in time, i.e., each p, is replaced by a series of
small p.’s in small time bins after each stimulus (see Re-
lease Asynchrony below), and what happens with continu-
ous “spontaneous” release. The covariances are essential for
the variance of summed outputs. With application to trains,
variances and covariances of course pertain to m’s at times
where the expected values of m are the same, e.g., variance
between the number 3’s of repeated trains, covariance be-
tween seconds and firsts.

For arrays of N independent sites with different p_’s
and/or o’s, one uses the above equations, with n = 1, for
each site, and adds all means, variances, and covariances to
obtain values for the whole array. Such summation gives the
usual expressions for the compound binomial: {(m) (or E(im))
= N(p) and var(m) = N(p) (1 — (p) (1 + cv})), where each
P at each site and at each stimulus, is its p; p,; (P, P at the
ith stimulus), but summed covariances cannot be expressed
in a neat mathematical expression. Notably, because each g,
appears separately from p; , ,p; p4; in Eq. 2c, covariances, as
well as the progression of (m)’s, contain information
on p,’s.

Parameters « and p, are of course always <1. In setting
up models it is convenient to define a parameter R, (refill
rate, =0) and to set &« = 1 — exp(—R,T), where T is the
time between stimuli, so that R,’s may be modified freely
without o’s becoming more than 1. Similarly, p, must
always be less than 1, and it is convenient (also see below)
to define a parameter r, with p, = 1 — exp(—r), that can be
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postulated to rise to any arbitrary extent during a stimulus
train (or with increase in [Ca®"]). Reasonable values for
these parameters can be assessed only roughly from avail-
able data. From Elmqvist and Quastel (1965), for the human
neuromuscular junction {p,) (estimated from “rundown,”
weighted by contribution to EPP, in curare and normal
Ca®*/Mg™") varies considerably between junctions but av-
erages roughly 0.3 at the start of trains and then grows,
depending on stimulation frequency. Mean R, starts at
about 1.5/s, but can grow with high-frequency stimulation
to about 10/s; at 100 Hz (p,) is probably about 0.1 at about
the 40th stimulus in a train and thereafter slowly declines. If
these estimates are even roughly correct, the nearly constant
variance/mean for EPPs, over a wide range of stimulus
frequencies, is incompatible with anything but stochastic
replenishment. Mennerick and Zorumski (1995) give 380
ms for the time constant for recovery from paired pulse
depression for cultured hippocampal EPSCs, i.e., R, =
2.6/s, and from paired pulse depression, (p,) (again
weighted by contribution to EPSC) varies widely but is
often about 0.5. From data on arthropod neuromuscular
junctions (see McLachlan, 1978), initial (p.)’s are much
lower and facilitation (? rise in p,’s) is very prominent.

Examples of hypothetical outputs during trains

With n = 1, E(n;) is p,; and E(m;) is p,E(n;). Starting with,
for example, p,; = 1 at each site, to obtain the succession
of pa;’s at each site as the train progresses, the required
equation is merely

E(n,) = Pai+1 = o + BiqiE(ni)~

If refill between trains is incomplete, one uses at the end
of each train the « for the intertrain interval to obtain a new
Pa1 and repeats the whole sequence until p,,’s no longer
change. Then,

E(m)=p= piE(n); var(m;) = E(m;)(1 — E(m;));

cov(m;, mi,) = E(m)(pis10; — E(m;..y)).

For the whole array one sums over all N sites to obtain
E(m) = 3 p = N(p) and var(m) = = p — = p*> = N(p)
(1 = (p) (1 + cv2)) and cov(m;, m; ) for each stimulus.

Using a spreadsheet and these equations for an array of N
from 2 to 100 sites with varied initial p,, and given a
tendency for r (and therefore p,) to rise asymptotically, I
find that (m) never falls exponentially but may rise or fall
monotonically, or rise and subsequently fall, or fall and then
rise and fall again, depending upon the parameters intro-
duced; this occurs because outputs from initially high p,
sites run down, whereas outputs from low p,, sites run up to
an equilibrium, all at different rates.

Fig. 1 A shows how p,’s and p’s (each = p_ p,) evolve
during a train of stimuli, for a model, drastically simplified
for illustrative purposes, with only two kinds of sites and
constant p.’s: p, = 0.8 at 20 “high-p” sites and 0.08 at 80
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Evolution of outputs, p,, p, and n’ during a train of stimuli for an array with 20 “high p” and 80 “low p” sites, with p, = 0.8 and 0.08,

respectively. The stimulus frequency is 25 Hz and R, is 5/s, giving @ = 0.181 at all sites. The time interval between trains is 2 s, giving nearly complete
“refill.” As the train proceeds, p,, and therefore p (= p, p,), falls faster and to a greater extent at “high p” sites—p, and p, in A are p_ p, at the two kinds
of sites—resulting in a fall in p’ and an increase in n’ (B). (C) Counterintuitive relation between n’ and the actual number of quanta available, N(p,). The
correlation between m’s at successive stimuli is shown in D. In B and D the small symbols are values realized by a Monte Carlo simulation with 1000 trains.

They illustrate the rather high sampling error of p’ and n’. Lines merely join points.

“low-p” sites with the same constant R, at both sites, giving
a = 0.181 for the interstimulus interval of 40 ms (25 Hz),
and nearly complete refill in the 2-s between-train interval.
As the train progresses to equilibrium, p, declines more and
faster at the high-p sites (Fig. 1 A), resulting in a progres-
sively reduced CVp, and therefore reduced p’ and increased
n' (Fig. 1 B); the small symbols in Fig. 1 B are from a Monte
Carlo simulation with 1000 trains. The theoretical relation
between n' and the actual number of available quanta
(N(p,)) is counterintuitive—n’ rises as the number of filled
sites decreases (Fig. 1 C). The slope of a plot of output
versus previous output (cov(m;, m; . ,)/var(m;) in Fig. 1 D) is

substantially negative only for the first pair in the train—
simulation-realized values (small symbols) are close to the
theoretical.

Fig. 2 shows similar calculations for the same model, but
with hypothetical facilitation, such that r’s—each pgis 1 —
exp(—r)—increase throughout the train (eventually by nine-
fold). At the “low-p” sites, p, increases from 0.08 to 0.53,
but at the “high-p” sites p, rises merely from 0.8 to 0.9999.
This rather high overall facilitation is hardly manifest, ex-
cept as a reduction of how much (m) falls and a small
increase in the extent to which n’ rises, because increases in
D,’s are counterbalanced by falls in p,’s.
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FIGURE 2 Same as Fig. 1, except for the addition of facilitation such that r (p, = 1 — e~") grows with each stimulus, to a maximum of ninefold, at
both kinds of site. Overall mean m rises after an initial fall and is maintained higher than without facilitation (Fig. 1), and n’/N approaches unity (B) as
cv,, becomes small. Note that the evolution of p’ and mean m gives little hint of the rise in p,.

In Fig. 3 are shown plots from Monte Carlo simulations,
of the second m (m,) versus the first (m,) with 200 or 5000
stimulus pairs, here with one “high p” (p, = 0.8) and 4 “low
p” (p, = 0.08) sites, either with p,’s unchanged at the
second stimulus (Fig. 3 A) or with facilitation made so large
(3.2-fold multiplication of r’s at the second stimulus) that
m, is larger than m; (Fig. 3 B). Note: 1) the substantial
number of occasions where output is higher than n’ (for m,,
theoretical 1.885, 1.66 in A, 1.83 in B, for 200 trains); 2)
depletion is not necessarily signaled by a decrease in m
(“paired pulse depression”), because it can be counterbal-
anced by facilitation of p,, but is always signaled by a
negative correlation between m, and m,; and 3) 200 stim-
ulus pairs have been sufficient to show significant negative

correlation between m, and m,. Similar simulations with
high N (not illustrated) gave essentially linear relations
between m, and m, and significant correlation (for 200
iterations) whenever the absolute value of the theoretical
slope (cov(m,, m;)/var(m,)) was more than about 0.2, and
always if all sites start (nearly) full and p,’s at some sites are
high enough that outputs fall at the second stimulus. This
agrees with the highly significant negative correlation be-
tween second and first EPPs in trains reported by Elmqvist
and Quastel (1965) in normal Ca**/Mg?®* and curare, and
the lack of correlation between EPP pairs in low Ca®*/high
Mg?* (del Castillo and Katz, 1954b).

A variation of the theme in Figs. 1 and 2 is given in Fig.
4, where the postulate is that stimuli have been given in the



736 Biophysical Journal

A no facilitation

<m1>=1.125 n'=1.66
<m2>=0.545

(21)

m2

0.0

m1

Volume 72 February 1997

B high facilitation (x3.2)

2.2
2.0
1.8
1.6
1.4 -
1.2
1.0
0.8
0.6
0.4
0.2

<m1>=1.19 n'=1.83
<m2>=1.23

(21)

T

(125)

m2
I

(5)

mi

FIGURE 3 Plots of m at a second stimulus (m2) versus m at a first stimulus (m1) for paired pulses; here the simplified array has one “high p” and four
“low p” sites, with initial p, of 0.8 and 0.08. Monte Carlo simulations were done with 200 pairs (large open circles, number of times value of m1 realized
in brackets) or 5000 pairs (small filled circles, bars within points). In A, p, are unchanged at the second stimulus, whereas in B, r are facilitated 3.2-fold,
giving m2 somewhat bigger than m1. Note that 200 pairs are sufficient to show nonindependence of outputs, resulting from depletion and incomplete refill

between the two stimuli.

presence of Sr** (Bain and Quastel, 1992a), producing after
each stimulus a “tail” of release generated by residual Sr**
in the nerve terminal. The relative contributions of outputs
from low- and high-p sites vary in time, because high-p,
sites become more depleted and are less likely to have a
quantum available to be released by the residual Sr** if, as
here, R, is the same for both types of site.

Not illustrated here is the correlation of outputs, at suc-
cessive stimuli, with the sum of previous outputs. In the
simplest case (complete refill before the train, no refill
between stimuli and uniform p,’s) successive outputs are
E(m,) = Np,,, E(m;) = Npo(1 — po1), E(ms) = Npos(1 —
DPo2)(1 — pgy), etc. The variance of sums is given simply by
N Z E(m)(1 — X E(m)), and the expected slope of m, versus
(my + my + --- + my_,) is simply p,, P, at the kth
stimulus. However, with an array with varied p,’s and some
refill between stimuli, the most that can be said is that the
above slope roughly approximates (p)(1 + cv3)B* ™" for
the first few stimuli in the train—the correlations are as
readily detected as that between m, and m,—provided refill
is nearly complete between trains.

Statistics of equilibrium outputs

With a continued train of stimuli, we can expect to reach an
equilibrium in the sense that p_’s, a’s, and expected values
of n, no longer change, i.e., all &;’s are , all p;’s are p,, and
E(n;,,) = E(n;) = E(n)—the assumption is that (average)

release is balanced by (average) replenishment. At this
equilibrium, for n equivalent sites,

E(n) = an + Bg.E(n) = an/(1 — Bq,)
pa=E@)/n = a/(1 ~ Bq,) = a/(a + p, — ap,) (3a)
E(n) = np,
var(n) = np,(1 = pa).
Writing p for p,pa,

E(m) = np (3b)

var(m) = np(1 — p) (30)
cov(m;, m;.\) = —np*Bg[=Ppig.(varm)—Em)]  (3d)
cov(m;, miyy) = —np*(Bgo)*. (3e)

The formulae for p,, variance, and cov(m;, m;, ) are the
same as rigorously derived by Vere-Jones (1966). As pre-
viously, one sets n = 1 for each site and sums over all N
sites to obtain the mean, variance, and covariance for the
whole array, obtaining the usual expressions for the com-
pound binomial: {m) = N{p) and var(m) = N(p) (1 — {p)
a+ cvpz)), where each p is p, p,. Although the covariances
contain information on p,’s, it may be noted that for a single
site the negative of the ratio cov(m;, m;;)/var(m) is Bp.q./
(g, + poB/a), which has a maximum of 0.125 at p, = g, =
a = B = 0.5, and at these values the covariance decreases
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FIGURE 4 Theoretical outputs with stimulation in the presence of Sr*>*, with one high-p site and five low-p sites and initial R, such that a half “resting”
miniature frequency is from the high p site. At the high p site, higher output from the stimulus (80% of the stimulus available in A, 50% in B) produces
more depletion (second graph), causing the tail of raised miniature frequency for the high p site to be less than the combined tail from the low p sites. In
the first two graphs filled points and heavy lines pertain to the high p site. After one stimulus (A) or a series of stimuli (B), the fraction of total output from
the high p site (third graph, filled squares are fractions of (m)) is lowered. In B (four stimuli) it is assumed that [Sr>*] is less than in A, so that per-pulse
m and depletions are less. The time constant for the removal of intracellular Sr*>* is assumed to be 200 ms.

by 75% for each subsequent stimulus; at equilibrium,
cov(m;, m; ) is unlikely ever to be detectable for k = 2.

“Automatic” changes in p' and n’ with
stimulation frequency

Theoretical equilibrium situations for a range of stimulus
frequencies are illustrated in Fig. 5. Here an array of 100
sites has r’s varying over a 1000-fold range. R,’s were
randomly assigned, with an exponential distribution with a
mean of 5/s. Three scenarios are shown: 1) r’s (and p,’s)
and R,’s remain constant; 2) r’s increase exponentially with
stimulus frequency, 10-fold at 50 Hz and 100-fold at 100
Hz, but R,’s remain constant; and 3) r’s increase as in 2),
but R,’s grow in proportion to stimulus frequency, so that

o’s are constant. Notably, unless R,’s rise with stimulus
frequency (3), potentiation of r’s (2) is scarcely manifest in
net outputs (Fig. 5 A), because high p,’s become associated
with depletion (Fig. 5 B). The apparent number of quanta
available (n') always increases with stimulation frequency
(Fig. 5 B), whether or not the true number of quanta avail-
able (N{p,)) falls appreciably. Why this should be is shown
in the cumulative distributions for the 100 sites of p (p,pa)
in Fig. 5, D-F. At 1 Hz the distributions are nearly the same
for all three scenarios (Fig. 5 D), and p’s are very widely
distributed—a few can be near 1 because refill is nearly
complete between stimuli, but at 50 or 100 Hz (Fig. 5, E and
F), with or without potentiation of r’s, the distributions
always narrow (cv, diminishes and n’ increases), either
because refill is incomplete and high-p, sites develop low
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FIGURE 5 Theoretical equilibria at various stimulus frequencies for an array of N = 100 sites with widely varying r and R, (mean 5/s) for three
scenarios: 1) constant r and R, (open circles); 2) r increases exponentially with frequency, 10X at 50 Hz and 100X at 100 Hz, but R,’s are constant (filled
circles); and 3) same as 2), but R,’s also rise with stimulus frequency so as to keep a’s constant (open squares). The number of available quanta (N(p,))
(large symbols in B) falls most in scenario 2), but this is accompanied by the greatest rise in n'; n' (small symbols in B) always rises with stimulus frequency,
although p’ (small symbols in C) may either rise (scenario 3) or fall (1 and 2). (D, E, and F) Cumulative distributions of p (= pp,) at 1 Hz, 50 Hz, and
100 Hz, respectively. Distributions always narrow at high stimulation frequency, either because depletion is more at high-p, sites and less at low-p, sites
(PoPA’s become more uniform; scenario 1), or because no p can be more than 1.0 (potentiation raises initially low p,’s more than it raises initially high
Do’s; scenario 3), or for both reasons (scenario 2). In D~F the symbols are at every tenth point.

DPA’s (1 and 2) and/or, even if refill accelerates with stimulus
frequency (3), because initially high p,’s, in contrast to low
D,’s, have little room to grow, being limited to the maxi-
mum of p = 1.

Of course, the extent to which n’ grows with stimulation
frequency depends upon the distribution and absolute mag-
nitudes of p,’s and «’s. The only scenario in which n" does
not grow with stimulation frequency that I have been able to
find (not illustrated) is one where o’s are related to p.’s in
such a way that low-p, sites deplete as much as high-p, sites
and p.’s either do not grow with stimulation frequency or
are all so low that with facilitation none approaches unity.

Simulations for equilibrium: sampling error

Using Monte Carlo simulations with up to 160,000 stimuli
in each sequence, and arrays of 40 sites with widely varying
Do’s, it was verified that means, variances, and covariances
did not differ significantly from values obtained by using
Eq. 3 and summations. Depending on a’s (R,’s and stim-
ulus frequencies), covariances between successive outputs
were never more negative than —10% of the variances.
Using small groups of & outputs (with subsequent averag-
ing) to determine sampling error showed the ratio covari-
ance/variance to be consistently biased upward by 1/k. The
standard deviation of these ratios was close to k™ (for k )
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100, more for lower k), i.e., ~0.05 for groups of 400
outputs. Thus, one cannot envisage a statistically significant
value for equilibrium covariance/variance with fewer than
four groups of 400 stimuli.

Values of p’ (= 1 — var(m)/(m)) determined from values
of (m) and var(m) within small groups and subsequently
averaged were unbiased, but small group estimates of n’
((m)lp') were systematically biased upward, particularly
when true p’ was less than about 0.2; this bias became less
than 5% for p’ ) 0.3 and groups of 200 outputs or more.
Notably, the sampling errors of p’ and n’ at low p’ are rather
large; the scatter shown in Figs. 1 B and 2 B (1000 samples
at each point) was typical.

Spontaneous loss of quanta from sites

For completeness, one must consider that filled sites might
at any moment become unfilled, by internal loss and/or
spontaneous release, both loss and refill being continuous
processes. An exact mathematical result can be obtained by
dividing the time interval between stimuli (7) into a suc-
cession of small 8’s and taking limits. Assume rate con-
stants for internal loss, R, spontaneous release, R, and
replenishment, R,. In each 8¢ loss is (R, + R,)ndt, and refill
is R,(n — n)dt, where n is the number of filled sites at any
moment. At the limit one obtains the differential equation
dn/dt = Ran —(R, + R_ + R,)n. This is a standard pool
model with entry and exit; n changes exponentially with rate
constant 7 = 1/(R, + R_ + R,), asymptoting to n’ =
nRA/(Rs + Ry + R,). Previously a was 1 — exp(—TR,); it
now becomes 1 — exp(—7/7), and B becomes exp(—7/7),
which is less than previously. Equations 2 and 3 are mod-
ified only by the new definition of a and $ and by replacing
n by n’ in equations for E(n;) or E(n;. ) in which n appears.
The net effect of loss is twofold: 1) maximum p, = R,7,
which is <1, and 2) reduction of covariances.

Relation between p_ and stimulus-evoked release rate(s)

It has already been pointed out that p’s must be constrained
to less than unity in modeling how an array of synaptic sites
may behave if p_’s are to be modulated, e.g., hypothesizing
that p, is increased by raising external [Ca’*], or with
facilitation. The problem of how to do this disappears if one
considers p,, to result from a succession of small probabil-
ities within a total release time ¢. To be precise, let us
suppose that these probabilities are r, 8¢, 1,8, - - -, 101, . . .,
etc. in succession after a stimulus. Here ry, r,, etc. are
release rates, which can have any positive value, provided 8¢
is made sufficiently small. Assume further that ¢ is so brief
that the refill possibility is negligible, i.e., no more than one
quantum may be released. Then the chance of a quantum
being released (if available) is 1 — prob(no release). The
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chance of a quantum from a filled site not being released in
each time period i is Q; = exp(—r;8t); the chance of it not
being released in the whole period ¢ is the product of all
Q,’s. Hence,

po=1—exp(=8t(r,+ r,+r;---)) =1—exp(—rc),

where r, is the average r; over time z. These 7,¢’s correspond
to the r’s already used in modeling how outputs may change
with “global” facilitation (Figs. 2, 3, and 5).

Release asynchrony

There have now been many experimental observations of
the time course of release; although the major portion oc-
curs in a time window of less than a millisecond (e.g. Katz
and Miledi, 1965; Bain and Quastel, 1992a), the situation is
complicated by a tail of raised frequency of “miniature”
quantal events that decays with a time constant on the order
of 100 ms (e.g., Hubbard, 1963; Bain and Quastel, 1992b),
at least some of which may or may not—the decision is
arbitrary—be included in the evoked synaptic signal.

No information currently exists on the extent to which
observed dispersion may represent variation between rather
than at sites. Nevertheless if within-site time dispersion of
high release probability exists at all, stochastic replenish-
ment implies that a single site sometimes releases more than
one quantum after a stimulus, because there is some chance

TABLE 2 Increases in apparent quanta/site (n,) at a single
site with one quantum, and decreases of apparent p (p,)
produced by taking into account partial replenishment during
release period

Tir = 0.5 Tt = 1.0
Ap/JAn, = —095 + 0.20p,  ApJAn, = —0.96 + 0.32p,

Po p An} p Any
0.125 0.105 0.8 0.117 0.8
0.25 0.180 1.1 0.218 0.9
0.5 0.282 1.6 0.387 12
0.75 0.348 26 0.522 1.7
0.875 0373 36 0.580 2.3
0.95 0.385 4.7 0.612 2.9
0.99 0.392 6.5 0.628 4.0

T/t =20 T/t = 4.0
ApJAn, = —098 + 045p,  Ap/JAn, = —0.99 + 0.55p,

Po p An p Anj
0.125 0.123 0.7 0.125 0.7
0.25 0.241 0.8 0.249 0.8
0.5 0.464 1.0 0.495 0.9
0.75 0.671 13 0.740 12
0.875 0.770 1.7 0.861 1.5
0.95 0.827 22 0.933 1.9
0.99 0.857 29 0972 2.5

Listed An’ is the percent change in apparent n (from unity) for f¢/7T =
0.01; for other f.s/T An, is proportional to 7./7. In each case the first
column on the left gives p,, and listed p is pp,. Effective refill between
stimuli is always 1 — exp(—7/7). Changes in apparent p (Ap,) are propor-
tional to An, and dependent upon p, according to the formula.



740 Biophysical Journal

of refill while release probability is still high. The effects of
this on means and variances were calculated using the
general scheme above, with a succession of small p,’s in
small 8’s. The results are shown in Table 2, which is
explained further in the Appendix. The general result is that
each site indeed behaves on average as though it had more
than one quantum available for release (apparent n, n, > 1),
but apparent p (p,) is decreased; mean output is increased
less than variance. By and large, effects are small if most
release occurs within a time that is on the order of 1% or
less of the replenishment time constant. In the rest of this
section it will be assumed that instantaneous release is a
valid approximation for release by stimuli.

Modification of statistical measures by quantal
amplitude and stochastic channel closing

Rarely can released quanta be counted directly in an exper-
iment. Instead one measures signals that represent responses
to individual or summed quanta. Assuming linear summa-
tion, if quanta all give rise to a response of constant ampli-
tude (or area, if time integrals are measured) A, the mean
response is scaled by , the variance and covariances by 42,
and the third moment by A°. Otherwise, the scaling depends
on whether nonuniformity in h occurs at every release site,
or whether 4 varies between release sites, or both; models
currently employed in the analysis of CNS synaptic signals
differ in this respect (Redman, 1990; Walmsley, 1993; Jack
et al., 1994).

(@) Quantal responses are constant at each release site but
vary between sites

In this case, mean, variance, covariances, and third moment
are scaled at each site by its k, k%, h%, and k>, and the mean,
variance, etc. for the array are obtained by addition, i.e., the
only general formulae are E(S) = X (hp), var(S) =
2 (K*(p — pY), etc., where S denotes either signal height or
area. Notably, var(S) is less than if & varies at each release
site. For example, suppose there are three release sites with
h=1,h =2, and h = 3, respectively. Then a “success” at
every site (three quanta) always has § = 6, but if quanta
may have h = 1, 2, or 3 at each site, S can vary between 3
and 9.

(b) Quantal responses vary at every release site (and
not between)

In this case moments can be calculated directly. The mo-
ments about 0 at each release site, u;, w3, and wj, are each
p times the respective moments of A about 0, i.e., p(h),
p(hY* + var(h)), and p((h)* + 3(h)var(h) + H3), respec-
tively, where H3 is the third moment of / about its mean.
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Therefore, for each release site,
E(S) = (S) = ui = (n)P
var($) = p; — (wi)* = (BY’p(1 + cvj; — p)
§3 = 3 = 3(ud(py) + 2(ui)’
= (hYp[(1 — p)(1 — 2p) + 3p(1 — p)ev; + h3")].

Here §3 is the third moment of the signal; cv, is the
coefficient of variation of h and h3' is H3/(h)>.
Summing over N release sites gives

E(S) = (S) = N(pXh) = (m)h)
var(S) = (SXh)(1 — p’ + VD) 3)
= (hY*(var(m) + (m)cv})

@

and
83 = (RY’[M3 + (m)(h3’ + (1 — p')ewd)],

where p’ is, as before, (p) (1 + cv2) and (m) has been
equated with E(m). The first expression for var(S) gives p’
and hence var(m) if cv,, as well as (k) can be inferred from
“miniatures.”

The covariance between successive responses to stimuli
is, of course, simply scaled by (k)?, assuming that there is no
covariance of quantal amplitude from one stimulus to the
next.

It is notable that the coefficient of variation of the signal,
cvg, is given by

cvi = var(S)KSY? = (1 — p' + cvim).

For a Poisson distribution, with p’ = 0, (m) is given by
(SY*/var(S) if cvZ = 0. Because p’ is usually less than 0.5,
and ¢7 is unlikely to be more than 1, (S)*/var(S) generally
gives an approximation of (m) that is accurate within a
factor of 2 or so.

(c) Quantal responses vary both between sites and at sites

In this case one sums as in (a), taking into account the
variance, etc., of h at each site using Eq. 4:

ES) =2 (mp);  var(S) = > ((hYp(1 + cv2 — p))
53 = X (hYpl(1 — p)(1 — 2p) + 3p(1 — p)ev}

Contribution to the variance of stochastic channel closing:
estimation of channel amplitude

If signals are voltage signals with the decay rate dominated
by the cell input impedance, the coefficient of variation of
signal areas (time integrals) is the same as that of signal
heights, but if currents are measured it is greater, because of
the contribution to variance of stochastic closing of the
channels underlying the quantal responses. For exponen-
tially distributed channel durations I calculate (see Appen-
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dix 3) that cv3 for the signal area is higher than for height by
just 1/(n_) whatever the signal-to-signal distribution of n,
the number of open channels in each. An important assump-
tion here is that all quantal responses and all channel open-
ings occur close enough in time that net signal height
represents all channels that open. If not, one could obtain
(n.) and hence channel amplitude, k., from means and
variances of signal heights and subsequent areas somewhere
in the decay phase, beyond which there is no new channel
opening. Of course, to estimate k. in this way, artificially
aligned miniatures would serve as well as responses to
stimuli, and in either case the noise component of variances
would have to be subtracted.

The area product

In practice the determination of means and variances (and
covariances) from experimental data is not simple. It gen-
erally involves finding a baseline for each signal and a
decision whether to measure maximum height, the height at
the average maximum (the latter is unbiased by noise but
more biased by time dispersion of release), or signal area,
which is relatively sensitive to any error in baseline.

A way to avoid such problems and to extract some added
information from the data is to make use of the covariances
of point values with signal sums. For want of a better term,
I call these the “area product” (A). This function can be
determined by accumulating from the record for each stim-
ulus (y,, ¥5, ¥3, - - . etc.), including prestimulus values, the
product of each point value y; with the sum of all values in
the record (S), while also obtaining mean yj’s and mean S.
Designating as A; the covariance at point j, it turns out that
the sum of A;’s for all points in the record is exactly the
same as the variance of S, as calculated simply from values
of S for every record (see Appendix, 4 i):

> A; = var(S) (6a)

where the summations (for S and EAj) are over all j, to
where the signals have decayed to a small fraction of
maximum. Moreover, if certain conditions are met,

A; = E(y,) var(S)/E(S). (6b)

To derive Eq. 6b, consider the signals obtained from a
single release site that releases quanta with a time sequence
of probabilities giving rise to a release time course p(f) with
total probability p (= 2 p()’s). Each quantal response has a
time course A(f), the mean signal being the convolution of
h(¢) and p(¢). For simplicity let us choose a time base so that
the time integral of the response, = h(f), is equal to unity.
We have uncorrelated records. In any single record there is
either no quantum or one; signal area (S) is O or 1. There-
fore, for each record the cross-products of point values with
S are the same as the original record (Fig. 6 A). For all of the
records, at point j, this product has the expected value E(Sy;) =
E(y;). The expected value of mean area, E(S), is p. The covari-

Binomial Transmitter Release 741

ance of the point value with the sum of the signal (), ie.,
«)’j - ()’j))(S —(S)), is

Area product for 1 site at point j = A;
= COV(}’j’ S) = E(SYj) - E(S)E(yj) = E()’J) - PE(Yj)
=(1- P)E()’j)

Because with quantal area = 1, var(S)Y/E(S) = (1 — p), this
result corresponds to Eq. 6b.

If the quantal response has area k, S is either & or 0,
E(Sy;) = hE(y) and E(S) is hp; cov(y;, S) = h(1 — p)E(yy),
and Eq. 6b is again correct. In Fig. 6 A the terminology is
slightly different; here the quantal responses decay expo-
nentially and have height 4 and area A, to contrast the result
with what occurs with single channels, with exponentially
distributed lifetimes (Fig. 6 B), having the same height and
mean area as the quanta in Fig. 6 A.

Now it is important to note that the area product at each
point is a covariance and therefore is additive for indepen-
dent stochastic processes, and that because Eq. 6a is a
numerical identity, scaling of the area product by quantal
height and variance is just the same as that of variance of
signal sums.

Summing over N sites with different p’s, one finds that
there are two essential provisos for the area product function
A(?) to recapitulate the time course of (y(#)) (Eq. 6b), namely
1) every quantal response has the same time course, h(f)/h,
and 2) quanta of different amplitudes have the same p(#)/p.
Thus the time partitioning of var(S) provided by A(#) can
indicate whether these provisos are not met:

1. Release sites producing quanta of different amplitudes
have differing p(¢)/p. Example: Release at large quanta sites
is delayed until the signal from small quanta has decayed—
early values of A;/(y;) pertain to small quanta and late values
to large quanta.

2. If stimulation causes the appearance of quantal re-
sponses differing in h(#)/h, the more prolonged contribute
more to late values of A; and the ratio A;/(y;) is eventually
that expected for the most prolonged alone. Example: One
set of quantal responses is “filtered” by electrotonic con-
duction and therefore is prolonged, whereas others are not
(see e.g., Jack et al., 1994),

3. If there is postsynaptic nonlinear summation of guantal
responses, the height of quanta is in effect reduced as quanta
are superimposed: A;/(y;) characteristically dips when (y;} is
high.

4. Always, with voltage clamp, because quantal re-
sponses, each a composite of currents through a number of
channels with stochastically varying lifetimes, never have
absolutely identical time courses.

The last breach is of particular interest as a common com-
plication, and because it leads to a simple method of determin-
ing unit channel amplitude, provided other complications can
be ruled out, the number of channels per quantal response is
fairly low, and recording noise is not overwhelming.
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FIGURE 6 The theoretical basis for the area product. In A a single site on stimulation may or may not release, with a time-distributed probability p, a
quantum producing an exponentially decaying response with unit area. Four samples of individual responses are shown above and to the left, and the
corresponding cross-products with area, which are the same. Theoretical averages for a large number of such records are shown below, with the
corresponding A(#) and the ratio A(f)/(y(z)). The latter is (1 — p) multiplied by the quantal area, height (4) multiplied by time constant (7). In B the unit
response is the opening of a single channel of height A, with exponentially distributed lifetimes with mean 7. Brief channels give a brief small Sy(f), whereas
prolonged channels give prolonged large Sy(t); the ratio of the area product (A(f)) to (y(#)) rises linearly with slope h (see Appendix, 4 ii). In the plots shown

the scales of A(f) and A(?)/(y(#)) have been chosen for convenience.

In Fig. 6 B, a patch with a single channel is envisaged;
each channel has an Sy(?) that is a square pulse with height
proportional to its duration; durations are exponentially
distributed. For channels with mean duration 7, and ampli-
tude A, opening at the same time with probability p, sum-
ming all products of probability and outcome (see Appen-
dix, 4 ii) gives

A1) = (YONhe1(1 = p) + het), (6c)

where (y(?)) is, of course, hp exp(—t/t,).

As it turns out, the linear growth of A(f)/(y(t)) versus ¢
with slope h_ remains if quantal responses reflect groups of
channels opening; the expected value when the signal be-
gins is the same as if quantal responses were uniform in
time course (see Appendix 4 ii). Moreover, taking as unit
time the sampling interval (i.e., simply adding point values
to make sums), A;/(y;) grows linearly with j, with slope k..

If channels do not all open simultaneously, the theoretical
value of A(#) is more complicated. However, calculations
(and simulations; Fig. 7) show that the linear growth of
A;/(y;) with slope h_ remains, at least after the peak of the
signal, provided most openings occur before most closings.
If channels flicker between open and closed states (these
closings do not count in the previous sense), but net open
times remain exponentially distributed, then the 4. one
obtains is the true A, multiplied by the fraction of time that

the channels are open. This is equally true for A, found from
the coefficients of variation of signal height and area (see
above), which rests on the same assumptions about channel
behavior. Moreover, in both cases, the “extra” variance
disappears with sufficient electrotonic filtering. To obtain A,
in practice, supposing that all but one kind of channel have
been eliminated pharmacologically, and responses are from
a set of synapses with much the same p(f)/p, one would
obtain parameters for the least-squares best fit to baseline
normalized A/(y;) = a + bj, for j past the peak of (y;),
including only j’s with well-defined (yj) > 0, and weighting
by (¥;)° (see Appendix, 5), with b being the putative value
of h.. As with the other method for determining A, this is
equally applicable to artificially aligned spontaneous min-
iatures, or, indeed, evoked signals grouped according to
peak amplitude.

Noise

As a stochastic process not time-locked to the stimulus,
recording noise contributes a positive value to A(?) that is
the same at all times, including prestimulus; for any simple
low-pass filter, the expected value turns out to be the noise
variance of the unfiltered records. Noise also adds some-
what to the noisiness of the area product; but this effect is
small if responses can be seen at all. In the simulation in
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FIGURE 7 Realization of area products for
Monte Carlo simulated data for arrays of 10 sites
of each type with divers p,’s, and refill between
stimuli so as to give (p) = 0.25, (m) = 2.5, and
p' = 0.33. In A are samples of simulated records
(note amplitude scales), and in B the means and
differences from the means of scaled area prod-
ucts (see text), for stimulation of synapses with
large brief quanta (G1 height 1 unit, decay 140
ms/points) or smaller prolonged quanta (G2
height 0.17 units decay 7 120) or stimulation of
both together (G12). G3 refers to synapses where
each quantal response is the sum of a G1 and G2
quantal response, and the samples shown in A
(G3-scat) pertain to highly time-dispersed re-
lease. The samples for G1, G2, and G12 in A are
both without and with simulated Gaussian noise
(rms 0.5 units, enough to make unit G2 quantal
responses invisible), plus spontaneous minia-
tures of both G1 and G2 types, and for illustra-
tion have been low-pass filtered to increase the
visibility of the responses. The graphs in C il-
lustrate the additive properties of the area prod-
uct (first graph), nonequivalence of time course
of A(r) and (y(f)) (second graph) for a mix of
quantal types (G12), and linear rise in A())/(y(?))
versus ¢ for G1 and G2 alone but not for the mix
(filled circles). These graphs pertain to simula-
tions with added noise in which G1 and G2
responses have on average 50 and 10 channel
openings, or 10 and 2, respectively (last graph
only; latter are also shown without noise as
G2-chan in A). The straight lines in the two last
graphs in C are theoretical, corresponding to the
expectation for the respective channel amplitudes.
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Fig. 7 (see below), so much noise was added that the small
quantal responses cannot be seen, but 200 records with 500
quanta in all yield a very “clean” A(¢).

Spontaneous miniatures may constitute an important
source of “noise.” This, too, can be eliminated by subtract-
ing from all values of A(?) the average prestimulus value.
However, if the total area of miniatures in records is much
more than the total area of signals, the resulting point-to-
point noisiness of A(f) may limit the usefulness of the area
product to determination of noise-unbiased var(S) by sum-
ming A;’s after baseline correction.

Monte Carlo simulations

Fig. 7 illustrates how well area products conform to expec-
tation and extract otherwise inaccessible information from
simulated data (samples in Fig. 7 A). From series of 200
synaptic signals with (m) = 2.5, and uniform quanta, area
products had virtually the same time course as averages
(Fig. 7 B), either with relatively large brief quantal re-
sponses (G1) or small prolonged quanta (G2), or quanta
each consisting of the sum of a Gl type and G2 type
quantum (G3). To facilitate visual comparison in Fig. 7 B,
the area products, after subtracting prestimulus values, were
scaled to have the same area as the means; the differences of
scaled area product, sA(f), from means ({y(¢))) are plotted to
the right of the means in Fig. 7 B for three scenarios: no
recording noise, Gaussian noise sufficient to obscure quanta
of the G2 type, and the same noise plus random miniatures
of both G1 and G2 types at an average of one each per
record. In contrast, for synaptic signals corresponding to
G1- and G2-type synapses being stimulated simultaneously
(G12), the differences are substantial. Correspondingly,
plots of ratios of A()/(y(£)) versus time (thin lines) are flat
(but noisy when (y(#)) is low), except for the G12 situation,
where this ratio declines as smaller, more prolonged G2
quanta become the predominant components of both A(¢)
and (y(#)). In the G3 scat simulation, highly time-dispersed
G3 quantal release (see samples in Fig. 7 A), the difference
of sA(?) from (y(r)) wobbles, probably because about 500
quanta was insufficient for the actual release dispersion to
closely approximate p(f)/p late in the signals.

For Fig. 7 C the simulation was continued to 1000
records, for a situation in which G1 quanta contained on
average 50 channels and those of the G2 type 10 channels,
so that h_ (but not 7.) was the same for both types. Simu-
lated recording noise was included in these records, but not
minis. The first graph illustrates the additive properties of
A(?) for the mix (G12); A(?) is indistinguishable from the
sum of A(¢)’s for G1 and G2 alone, the difference (line near
zero) being negligible at all times. The second graph shows
(y(9)) for the mix, and its scaled A(?); the differences (small
circles) are essentially identical to those expected (nearby
line) for an A(f) equal to the sum of A(¢)’s for G1 and G2
alone. The filled circles on the right show SDs of sA(¢) and
¥(z), respectively (each X100), illustrating that the intrinsic
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noisiness of the area product is not much more than the
noisiness of the mean.

The third graph in Fig. 7 C shows how for G1 or G2 alone
the ratio A(£)/(y(2)), past the peak of the signal, indeed grows
linearly with a slope of h_ per point, whereas for the mix
(G12) the ratio gradually falls from an appropriate value for
G1 alone (at the start where G2 responses are negligible) to
the value for G2 alone. This is also seen in the last graph,
where the model was modified by ascribing an average of
10 channels to G1 quanta and an average of 2 channels to
G2 quanta (also see the bottom sample in Fig. 7 A). The
noisiness of the plotted ratios (and initial high values)
comes from including points with very low (y(¢))’s that
would not be included in finding & by least-squares fitting.

However, in the last graph in Fig. 7 C, an intrinsic
ambiguity of the area product is exemplified in that with the
output mix (G12 filled circles), the plot of A()/{y(¢)) versus
time could here be mistaken for that produced by a single
set of quanta, i.e., flat until too noisy for the late rise to be
ascribed to anything but noise. Using subgroups of signals
selected by amplitude would resolve this ambiguity.

Dealing with drift and finding sequential signal covariance

Another problem in analysis is how to compensate for any
drift (nonstationarity) in the signal, i.e., m’s and/or h’s
trending up or down. This can add substantially to variances
(and reverse covariances); being able to compensate adds to
the variety of usable stimulation paradigms (e.g., Elmqvist
and Quastel, 1965). Assuming stimulation at a constant
frequency, one way to exclude effects of such drift is by
determining variance (and covariance) within small groups
of sequential records. The smallest possible group is 2;
determination of the area product now reduces to taking for
each record the point-to-point difference of this record
(;4s) from another nearby (y;,y;’s) to obtain a new series
of numbers (z;’s) and accumulating products (3 2 z). Cor-
responding to Eq. 6, the expected mean of these turns out to
be

E(z X 2)/2 = A} = E(y)(var(S) — cov(S;, S+ ))E(S) (7a)

2 A! = var(S) — cov(S;, Sivp)- (7b)

Because cov(S;, S;) is negligible for k = 2, using differ-
ences between records both one apart and two or more
stimuli apart gives both var(S) and cov(S;, Sj.;). With
simulations, values of equilibrium variance determined in
this way were found to be unbiased, but had a sampling
error increased by about 50%; using two such differences
for every output reduced to no more than 10% the increase
in sampling error. Obtaining covariances by also using
differences between sequential outputs gave sampling errors
for covariance/variance 25% higher than when determined
in the usual way, and no bias.

An alternative that essentially eliminates even rapid drift
effects is to take the sum of point-to-point differences from
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values k stimuli before and & stimuli after, i.e., z; = 2y;; —
Yi+kj ~ Yi-kj- Then,

Ej E(Zj > Z) =6 Var(S) -8 COV(Si, Si+k) +2 COV(Si, Si+2k)

Point-to-point variance and the third moment of S

The area product should not be confused with the point-to-
point variance of signals, which is quite different. At a
single site, with one quantum to release, one has generally

var(y(r)) = p(r) * [(h(H)Y’(1 + cvp)] — (p(1) * (R()))?

where * denotes convolution. In the case of a Poisson
distribution of outputs, which provides an excellent approx-
imation when p’ << 1, and multiple sites, this equation
reduces to

var(y(t)) = m(2) * [(h()))’(1 + cvi)]

where m(t) is the time course of quanta appearing. If quantal
responses consist of currents through not too many chan-
nels, cv,z,(,) can become substantially different from cvﬁ(o)
because of the “extra” variance introduced by stochastic
channel closing. For channels of uniform amplitude, open-
ing simultaneously and closing randomly, one has for point-
to-point variance of quantal responses,

var(h())Kh(t)) = he + (RO} cVio, — he/h(0))

which, of course, provides yet another method for obtaining
h, from artificially aligned miniatures. The terms with A,
disappear if signals are overfiltered (e.g., electrotonically, or
if one is recording voltage) with a time constant >7,.

For a Poisson distribution, the third moment of y(¢) is
given by m(¢) * Kh@®))Y*(1 + x)], where x is the sum of terms
that disappear if quanta are uniform in height and time
course.

For the third moment of S (S3), the analog of Eqs. 6a and
6b is obtained by taking the mean product B; = ((y; —
NS — (S)?). The sum of By’s is numerically identical to
$3, and B(¢) has the same time course as (y(f)), subject to the
same provisos as for A(f). For quanta that vary in time
course because of stochastic closing of channels, Bj/(yj) -
2A/(y;) grows linearly with j?, with slope hZ.

“Spontaneous” release

In the original quantal analysis of synaptic signals, at the
neuromuscular junction, it was shown that the quantal com-
ponents of the stimulation-evoked synaptic signal corre-
spond (in amplitude, time course, and sensitivity to postsyn-
aptically acting drugs) to the “miniature” signals that
represent spontaneous release of quanta of neurotransmitter
(del Castillo and Katz, 1954a, 1956). There are now many
reported examples of miniatures at diverse synapses.

The frequency of “spontaneous” miniature signals can be
increased in a variety of ways, but from the statistical point
of view it does not matter whether release is truly sponta-
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neous or is evoked by a steady stimulus such as nerve
terminal depolarization or raised osmotic pressure. In either
case, miniatures occur apparently randomly. Vere-Jones
(1966) has shown that if there are a limited number N of
release sites and at each site quantal discharge is followed
by a waiting time (presumably stochastic and exponentially
distributed) before release can again occur, outputs will be
underdistributed relative to a Poisson. This is manifested in
three ways: 1) the variance is less than the mean for num-
bers of miniatures in nonoverlapping time periods; 2) there
is a small negative covariance between such numbers; and
3) the rate of occurrence of miniatures is transiently dimin-
ished after each miniature.

Variance, means, and covariances of outputs in
nonoverlapping time periods

These are derived from Eq. 3 by envisaging a succession of
small p.’s (and «’s) in small 6¢’s, adding outputs for a given
time period 7, and obtaining variance and covariances of
these outputs by adding variances and appropriate (nega-
tive) covariances. By taking limits, I obtain the following
for outputs (0) from a single release site with rate of release
from a filled site, R, rate of refilling of an empty site, R,,
and rate of internal loss from a filled site, R;. The net
release rate, R, is equal to R R, T, where 7, the time constant,
is I/(R, + R + R,) and R, is the expected number of
filled sites at any moment (see also above):

mean = E(o) = RT

var(o) = RT{1 — 2R{1 — (1 — e V)/W]}
cov(0;, 0i+1) = —[Rr(1 — e™™)F ®)
cov(0;, 0;4+,) = cov(0;, 0,4, )e & DV

where W denotes 7/7. The formula for variance differs from
Vere-Jones (1966), which has a misprint.

Ignoring the hypothetical R;, the ratio of variance to
mean is close to unity if R, << R, or R, => R, orif T <<
7, otherwise the ratio progressively declines as T is in-
creased, to 1 — 2R7, which has a minimum of 0.5 at R, =
R,. The covariance between successive outputs, cov(o;, 0;4 1),
has a (negative) maximum relative to variance when T is
somewhat greater than 7; the ratio of covariance/variance is
most negative when R, = R, at which it is only —0.133.

For N sites with different R, etc., one adds means,
variances, and covariances to obtain the behavior of the
array. I find that if R, varies widely and R, is similar at the
N sites or varies randomly between sites, minimum vari-
ance/mean is about 0.6 and is found at T about 10/(R,) and
with (R)T on the order of one per site. If at some sites R, is
more than R,, a T can usually be found at which covariance/
variance is about —0.1 (i.e., is potentially detectable exper-
imentally with long data runs), in a situation in which
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miniatures represent release from a few sites at rates that
produce major depletion.

Net release rates after each miniature: the autocorrelogram
of miniatures

Imagine miniatures from a single release site. After one
appears, the next cannot occur until the site is refilled. The
time constant for refilling is 7 = 1/(R, + R, + Ry). The
overall release rate, R, is R,R,7. It turns out that the ex-
pected rate of occurrence of miniatures, after a miniature put
at time 0, is

R(t) =R(1 —e™"). (9a)

This may look wrong, because the average of R(¢) is less
than R. However, the times at which a quantum is released
from a site are not typical—they are times at which a
quantum is available.

To obtain the expected rate after every miniature, for N
independent release sites, with release rates R,, R,, etc., one
notes that 1) depletion occurs only at the site from which
that particular miniature came—the subsequent occurrence
of miniatures from other sites is uncorrelated, and 2) the
chance of a miniature being from site i is R, divided by f,,,,
the overall release rate or miniature frequency, which is the
sum of all R’s. The summation is simple if at all sites 7 is
much the same. At time ¢, the expected rate of occurrence of
miniatures from all sites after a miniature from the ith site is

R(?) = f,, — Rie”"" with probability R/f,,.
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Summing products of expected rate and probability,

ful® = 2R — e 2 (RYfyn
= fu — € "(RY(1 + cv}) (9b)

=ful(l = e7""(1 + cv})IN),

where cvy, is the coefficient of variation of R. Thus, if R’s
were the same, and N not too large, extrapolation to ¢ = 0
would give N; instead it gives N/(1 + cvi). Except for
scaling, f,,(?) is the same as the autocorrelogram (i.e. auto-
correlation function) of miniatures.

Simulation

In Fig. 8 spontaneous release comes from one site with
R, = 1/s and four sites with R, = 0.1/s, all with R, = 5/s
and negligible R;, giving a total output rate of 1.225/s
(0.833/s + 4 X 0.098/s). With a total 1000-s sample time
(1220 minis), the graph of f,, versus time after each mini
(Fig. 8 A, open circles) shows an early drop, indicating that
most release is from no more than two sites; with a very
long data series (five sets of 8000 s; filled points) the
observed function is very close to the theoretical (line). The
ratios of variance/mean of numbers of miniatures in non-
overlapping time periods of varying duration, T, clearly
become less than 1.0 at sufficiently long T, in close confor-
mity to the theoretical curve (Fig. 8 B), even for the shorter
recording period.

@

R,=5/s
1 site with Ro=1/s
4 sites with Ro=0.1/s

1.0 -

0.9

0.8

©)

0.7

variance/mean of numbers of minis
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0.1 1 10

non—overlapping time periocd (s)

FIGURE 8 Spontaneous release. (A) The frequency of miniatures following a miniature (the autocorrelogram) and (B) variance/mean ratios of numbers
of miniatures in nonoverlapping time periods, for an array with only five sites, one with R, = 1/s and four with R, = 0.1/s, with R, = 5/s for both kinds
of sites. The open circles represent values obtained for a 1000-s simulation period (total of 1220 miniatures), and the small filled circles are for 8000 s
repeated five times (to give SE’s in B), showing how simulation eventually fits theoretical values (lines).
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DISCUSSION

For any series of fluctuating synaptic signals there is a mean
and variance, and if the mean and variance of the quantal
components are known, one can obtain the mean, (m), and
variance, var(m), of numbers of quanta released, and, from
these, p’ = 1 — var(m)/{m) and n’ = (m)/p’. What is the
meaning of n’ and p’, except as parameters that sometimes
(Table 1) give a good approximation of the output distribu-
tion? In terms of the simple binomial model, in which all N
independent release sites are equivalent (have the same
probability of release p), n’ is N, which must be invariant
under all experimental conditions and no less than the
maximum output obtainable under any conditions. Hence
experimental results showing n’' to vary with stimulation
frequency and/or ambient Ca’>*/Mg®*, at both vertebrate
and invertebrate neuromuscular junctions (for references
see McLachlan, 1978), negate this model. The question now
arises whether n’ might instead represent the number of
active sites, rather than the total number. Here two distinct
untenable models seem to be confounded in the literature. In
the first, an active site is one with a quantum available; n’
is their number and p’ is the (uniform) output probability of
these, here designated p,. For this to apply, the number of
available quanta would have to be constant from stimulus to
stimulus, despite fluctuations in release—i.e., the model
presupposes a presynaptic monitor that counts outputs and
then adjusts the available quanta at every site accordingly.
Apart from its implausibility, this model denies the princi-
ple of release site independence, invalidating the use of
binomial statistics. The second model is a constrained spe-
cial case of the compound binomial in which r' active sites
all have the same p’ = p = p_pa, P being the probability
at any moment that an active site has a quantum available,
the other N-n' sites being silent (p = 0). This model is
self-contradictory, because release sites are presumed to be
both identical and dissimilar simultaneously; if sites are
active and can ever release a quantum, they do so with the
same probability, but at the same time each site differs from
others with respect to an absolute threshold for an extracel-
lular Ca®*/Mg?", or for stimulus frequency, depending on
which happens to have been varied experimentally, below
which it is silent. Thus the mathematical simplicity of the
simple binomial model is incompatible with any simple
model of presynaptic function; output distributions and fluc-
tuation analysis based on mean and variance cannot indicate
the number of active sites.

With the unconstrained compound binomial model, no
such implausible partition arises. Once it is accepted that p,
and/or p, and therefore p may vary between sites, n’ is seen
tobe N/(1 + cvf,) and, defining N as the total number of sites
that might release a quantum at any time, any observed
change in n’ must by definition reflect a change in cv, and
therefore gives information as to how the distribution of p
varies with, e.g., stimulation frequency or change in extra-
cellular Ca®*.
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When one considers that release entails “depletion” (a
temporary incapacity to release again after release of a
quantum), which is also an assumption, albeit usually hid-
den, in the simple binomial, a stochastic repletion model
(Vere-Jones, 1966) gives p, as a function of replenishment
rate, time between stimuli, and p_, and as a result cvp and n’
can be expected to vary with the experimental situation. In
particular, n’ should increase with stimulus frequency, be-
cause cv, declines automatically as sites with high p,’s
develop low p,’s (Eq. 3a), unless refill rates match p.’s in
just such a way to prevent this. Furthermore, an increase in
n' is predicted for any global increase in p,’s (or, rather r’s,
with each p, = 1 — "), because the limitation of p, to a
maximum of unity at each site implies that it can grow less
at initially high-p, sites than an initially low-p, sites, with
consequent reduction of cv,. The many examples in the
literature of paired-pulse depression attributable to “deple-
tion” (from Liley and North, 1953, to Mennerick and Zo-
rumski, 1995) that disappears with lowered outputs in low
Ca®*/high Mg?* are fully consistent with it being p,’s that
alter with Ca®>* entry per stimulus.

The compound binomial model is also not without its
implausible element, namely that release sites apparently
differ enormously in their tendency to release. The variation
between sites cannot be as extraordinary as is implied in the
simple binomial model (second version above), but it is far
from small. Accounting for an n'/N on the order of 1/10
(some data cited in McLachlan (1978) imply even lower
n'/N) requires a cv,, of 3. This cannot occur with a normal
distribution without (forbidden) negative values. If sites
have a log-normal distribution of p, one-third have a p
outside of a 25-fold range about the geometric mean! A
Poisson distribution among sites of numbers (r.,) of local
Ca®* channels, with each P, (and p, if refill is complete)
proportional to the fourth power of n,, produces a cv, of 3
only if (n.,) is less than 2 and (p) { 0.02. Counting only sites
that have at least one channel, the data of Dityatev et al.
(1992) for sensorimotor synapses in frog spinal cord give
for cv,, a mean value of 1.35 * 0.26, which, with the mean
{p) = 0.200 (*0.008, for 21 connections!) is too high to be
accounted for by Poisson distribution of numbers of Ca®*
channels per site. It would seem therefore that release sites
must differ intrinsically in their propensity to release trans-
mitter, quite apart from possible differences in local Ca**
influx per stimulus.

That refilling must be stochastic rather than fixed is a
logical extension of the stochastic nature of release itself,
has no implications negated by present knowledge, and is
supported by observations that release remains stochastic
(apparently Poisson) under conditions in which release is
likely limited by “mobilization” (Elmqvist and Quastel,
1965). The resulting model is one that was given rigorous
mathematical treatment by Vere-Jones (1966) and more
recently considered by Melkonian (1993), whose double-
barrier model is identical. It is neutral as to the physical
meaning of “availability” of a quantum or how a quantum is
formed and released (Melkonian, 1993). In the present
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context I have generalized the Vere-Jones model to one in
which release sites can differ in p, and refill rate, and these
may vary in time, to obtain a method by which any hypoth-
esis giving values to these parameters may be translated into
predictions of measurable quantities in experimental data.

When refilling of sites is considered, even if it is some-
how fixed rather than stochastic, incomplete refilling be-
tween stimuli is seen to imply negative covariance between
outputs from successive stimuli (Vere-Jones, 1966). To my
knowledge, the only published observation of such a co-
variance is that by Elmqvist and Quastel (1965), who found
it where it is most likely to have a high value, between
outputs by first and second stimuli in repeated trains. In
principle, rundown in trains (paired-pulse depression) can
reflect p,’s if repletion rates are low and if (perhaps hypo-
thetical) facilitation of p,’s does not counterbalance deple-
tion. That such rundown is obviated by low Ca**/raised
Mg>* (e.g., Elmqvist and Quastel, 1965; Mennerick and
Zorumski, 1995) conforms with the usual views on the role
of Ca*" in release (i.e., in p,), and rundown enhancement
with posttetanic potentiation (Elmqvist and Quastel, 1965)
suggests that p, grows with potentiation. Apart from run-
down, covariances provide in theory the only way to pro-
vide information on whether an experimentally produced
change in outputs represents a change in p, as distinct from
p (= popa), in which p, and p, are inextricably mixed in
means and variances. Notably, wherever n’ has been re-
ported to be much lower than the maximum m that a
synapse is capable of producing (see McLachlan, 1978),
significant covariance between paired-pulse responses
should appear if indeed the variance/mean relationship in-
compatible with a low p’ binomial (or Poisson) did not arise
merely from error, such as neglecting the effect of time
dispersion of release on the heights of synaptic signals or
insufficient correction for nonlinear postsynaptic summa-
tion, which can be obviated only by a perfect (focal) voltage
clamp. One important caveat about the use of covariance is
that postsynaptic depression after quantal release (Menner-
ick and Zorumski, 1996) would lead to negative covariances
between successive stimuli in much the same way as pre-
synaptic depression arising from depletion.

From the calculations presented above covariance is un-
likely to be detectable at equilibrium, with repeated stimu-
lation, except in very large data series. However, it should
be readily detectable in the autocorrelogram of miniatures if
these occur at a sufficiently high frequency and most come
from only a few release sites. In principle, this can provide
information on refill rate(s), as well as confirm the under-
lying binomial model.

It is clear from the derivation of Eq. 1 that the critical
assumption for the compound binomial model is not the
absence of temporal or spatial variation of p, or of p,, all of
which are in fact to be expected, but that release sites be
independent. Thus, to take an extreme example, at CNS
synapses an action potential may not always invade a bou-
ton. If there is one release site per bouton, and boutons are
independent with respect to noninvasion, this can have no
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effect on overall release statistics. However, if groups of
boutons are together noninvaded or invaded (Liischer,
1990), the release sites become nonindependent and their
outputs positively correlated. In general, any positive cor-
relation between output signals from release sites increases
variance, and any negative correlation (which could be
postsynaptic: mutual occlusion of signals generated on the
same dendrite) reduces variances (Dityatev et al., 1992). In
the case of large synapses, such as neuromuscular junctions,
a positive correlation between sites would be expected
unless Ca** that enters with each impulse (of necessity
varying because of the stochastic nature of Ca®>* channel
opening and closing) is effectively confined to domains that
include only one release site (Quastel, Guan and Saint,
1992) and is denied by experimental data showing essen-
tially Poisson outputs in low Ca®*/raised Mg>* (del Castillo
and Katz, 1954a,b; Bain and Quastel, 1992a).

A major objective of much current work is to sort out the
pre- and postsynaptic contributions to changes in synaptic
efficacy (e.g., Korn and Faber, 1991). To accomplish this,
the sine qua non is that one should be able to distinguish
experimentally between changes in quantal amplitude or
number ({(m)). At neuromuscular junctions this is easy be-
cause miniatures and quantal components of evoked signals
are the same; this cannot be assumed for any cell with more
than a single synaptic input in a well-defined small region.
Indeed, in certain reductio ad absurdum scenarios, pre- and
postsynaptic change may be indistinguishable by any crite-
rion—a p ceasing to be zero at a site will be manifested in
a manner identical to that of its postsynaptic response ceas-
ing to be zero. However, in all but rather artificial con-
structs, the ratio (S)*/var(S) always changes in the same
direction as m, and it is in the context of providing a simple
method for determining var(S) without noise bias that the
area product has been introduced. This function also in-
cludes other information extracted from the raw data, in the
time partitioning of var(S), that may sometimes be ambig-
uous but sometimes useful. In particular, it could signal
whether one is recording from a mix of synapses with
different quantal responses (Redman, 1990; Walmsley,
1993; Jack et al., 1994). If not, and with important caveats,
it may yield an estimate of the amplitude of the channel
components of the postsynaptic response, which is also
obtainable in principle from comparison of the coefficients
of variation of response amplitude and area. It is also one of
a group of functions, including its third-moment analog,
point-to-point variance, point-to-point third moment, and,
indeed, the mean of the signals, that can each be calculated
easily from a data set and compared with theoretical func-
tions, to discriminate between different models as to the
make-up of the synaptic signals (e.g., Redman, 1990; Jack
et al., 1994).

Information on the amplitude, time course, and variability
of unit quantal synaptic events, as well as their number (m),
is of course embodied in evoked synaptic signals and might
be extractable with sufficiently sophisticated programs and
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reasonable assumptions about the distribution of p between
release sites (rev. Redman, 1990; e.g., Dityatev et al., 1992).
More directly, the essential problem would disappear if
quanta in evoked responses could be counted unambigu-
ously, or if one could be sure that miniatures were the same
as the quantal components of evoked responses. Especially
pertinent to this is the observation by Abdul-Ghani and
Pennefather (1993) that synapses in cultured hippocampal
neurons in the presence of Sr** produce poststimulus “af-
ter-discharges” of miniatures. It was previously shown that
at the mouse neuromuscular junction this phenomenon can
be attributed to presynaptic persistence of Sr** that has
entered through impulse-opened Ca”* channels, acting on
the release system(s) in the same way as Ca®* (Bain and
Quastel, 1992a), except for the multiplicative component of
facilitation (Bain and Quastel, 1992b). Assuming the same
for hippocampal synapses, “tail” miniatures must come
from boutons that have been stimulated. Moreover, they can
be regarded as time-dispersed synaptic signals whose m’s
can be found by counting rather than complex signal anal-
ysis. A complication is that varied p values among release
sites implies that the quantal mix from different sites will
not be the same as in the “phasic” responses—sites with
high p,’s have fewer quanta available for subsequent release
by residual Sr** (Fig. 4), but if the amplitude distribution of
such miniatures is invariant with time after each stimulus
(or with stimulation frequency), one could be confident that
they fairly represent the quantal components of the “phasic”
signals. The same, of course, applies to miniatures acceler-
ated by repetitive stimulation without Sr**, the advantage
of Sr** being the plethora of miniatures obtainable at low or
moderate stimulation frequencies, permitting, if release sites
are associated with quantal responses uncorrelated with
their p’s, a direct measure of the presynaptic contribution to
any change in synaptic efficacy.

APPENDIX

1. Distribution function of outputs (Table 1)

At each site this function takes the form prob(failure) = ¢ = 1 — p,
prob(success) = p. With one site the probability of a failure, P,(0) = ¢,,
and the probability of obtaining a single quantum, P,(1) = p,; with two
sites P,(0) = g,P,(0), P»(1) = g,P,(1) + p,P,(0), and the probability of
having two quanta in a response, P»(2) = p,P,(1); with three sites P;(0) =
43P2(0), P3(1) = q3P5(1) + p3P5(0), P3(2) = q3P(2) + p3Pa(1), P3(3) =
P3P>(2); and so on. Thus, for any number of sites, the output distribution
is found by successive convolutions.

With respect to the number of expected failures the compound binomial
gives

P(0) = 41929394 - * g
InP(0)=1In(1 —p,) +In(1 = py) +In(1 —p3) + - --
In general,

In(l —x)=-(x+x22+x3+-..)

With x < 0.3 the first two terms in this expansion give a good approxi-
mation, hence,

~InPO)=p,+p,+ps+---(pi+ps+pi+---)2
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= N(p) + N(pY*(1 + cv})I2

= Np)(1 + (p)(1 + cv)/2)

The simple binomial gives, for the probability of a failure,
P(0) = (1 —p")"
In P(0) = n' In(1 — p')

—[NI(1 + e)I(p’ +p? 12+ --+)

I

—In P(0) = [N/(1 + c)I(p)(1 + o) + (pY(1 + cv})*12)

= Np)(1 +{p)1 + cv)/2)

Thus, provided no single p is more than about 0.3, the simple and com-
pound binomials give the same number of failures.
For the number of unit responses, P(1), the simple binomial gives

P(1) = n'p'(1 = p)"
= PO)m)/(1 = p)
= POY)(1 + p')

The compound binomial gives P(1) as the sum of probabilities that any site
releases one quantum while others release none:

P(1) = 2 (PO)p/(1 = p) = PO) X (p; + p})
= P(O)N(p) + (p)* + var(p)) = P(0OXm)(1 + p")

That is, the expected number of unit successes is also the same for both
models, to a first approximation valid for small p’.

2. Release asynchrony (Table 2)

The calculations for Table 2 used a variant on Eq. 2, which was considered
as pertaining to a series of k (small) p;’s, each in a small time (8t = T/k),
the output for one stimulus being the sum of the k outputs. Using these
equations as they stand would require storing k*/2 covariances to obtain the
variance of the sum; the following approach, using equations for covari-
ances in terms of outputs, is more economical. Writing m;, etc., for E(m,),
etc., and putting n = 1, for one release site, from Eq. 2:

cov(m;, miyy) = m(pis 04 — my)
cov(m;, miz) = mi(piattivy + piaiCiBicigivy — Miso),
etc. These lead to a fairly simple recursive formula. Defining:

& = Py My=m—m,
Zk-1 = Peo1 T Be-1@Gi-15 My, =My — my_,
-2 = Pr—2 T Br-2Zk-19k-25 My =M, —m_,

etc., and designating as m, the sum of outputs, m, + m, + my + .. + m,,
variance is given by

var(m) = m(1 — m) + 2D

where

D = oy zMy + oy oz My F o3z oMy + - - -
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For any sequence of k p,’s, repeated indefinitely, the series of n;’s
is given by starting with n; = 1. Then, n, = a;, + Bign;, N3 = a, +
Bagony, . oMy = oy F B 1 iMi— 1o 1y = 04 + Bygimy (o being the
last before the next stimulus), and the sequence starts again with the new
value for n,. A few iterations give equilibrium n,, n,, etc., each m; is p;n;,
and from the above z’s and M’s, variance is obtained. The covariance between
outputs from sequential stimuli is obtained by using the same logic for a group
of two adjacent stimuli, seen as a sequence in 2k time bins; the mean is 2m and
the variance of the pair is 2var(m) plus twice the covariance.

For Table 2 it was assumed 1) that R, is constant and R; and R, are
negligible, so that 7 = 1/R,, giving @ = 1 — exp(—¥t/7), for each 8¢, and
2) that instantaneous release rates follow a time course proportional to
(exp(—at) — exp(—bt)), with b/la = 4. The time between stimuli, T, was
divided into k = 20,000 bins of duration 6t. The resulting series of release
rates, ry, rp, ..., Iy . . . , results in a net p, = 1 — exp(—2 r;8/) that is the
same as would be caused by a steady “square pulse” with amplitude r,
equal to maximum r; maintained for a time period #.. The calculations
showed that (m) and var(m) become greater than for instantaneous release
to an extent that depends upon p,,, t.¢, 7, and T. The summarization in Table
2 is based on the observation that changes in apparent n (n,, defined by
var(m) = m(1 — m/n,) and An, = n, — 1), were nearly exactly proportional
to t.¢ Changes in apparent p (defined by p, = 1 — var(m)/m and Ap, =
Da — p) were negative; Ap,/An, was nearly linearly related to p,. The
tabulated numbers give changes in n, and p, (from 1.0 and p, respectively)
that together give the change in variance and m (= mean output = n_p,).
For example, if the refill rate is 2/s, 7is 500 ms; stimulation at 0.5 Hz gives
T/t = 4.0; if t.5 is 10 ms, t.¢/7 is 2%. For a site with p, = 0.99 (last item
in Table 2), n, (apparent n) is increased from 1.0 by 2.5 X 2% (= 5%) to
1.05; p, is decreased by the formula by (0.99-0.54) X 5% (= 2.23%),
from 0.972 to 0.950. With instantaneous release m would be 0.972 and the
variance would be 0.972 X (1 — 0.972) = 0.027; with release spread in
time m becomes 1.0 and variance becomes 1.05 X 0.95 X (1 — 0.95) =
0.050. For the same parameters a site with p, = 0.5 would have n,
increased from 1.0 to 1.018; and p, decreased from 0.495 by (0.99 —
0.55 X 0.5) X 1.8%, to 0.489.

Varying the ratio b/a altered the results to some extent; with b/a = 1.1
changes in n, were 16% lower than tabulated, and with b/a = 10, changes
in n, were 18% higher than tabulated; equations relating Ap, to An, were
virtually the same.

The changes in covariances produced by release asynchrony (not listed)
were rather complex but relatively small, except when covariances were so
small as to be below any possibility of experimental detection. However, if
a high release probability persists for an appreciable time between stimuli,
there are substantial negative covariances between outputs within this time.

3. Coefficients of variation of heights and areas

Suppose we have a series of k records, in each of which a certain number
of channels are open (sometimes 0, sometimes 1, sometimes 2, etc.), with
relative frequencies f;, f}, f>, etc., adding up to unity, so the number with
n channels that open is kf,. Moments for record area (S) can be calculated
in much the same way as for Eq. 4. Each record with n open channels is
expected to contribute on average nS, to the overall sum of areas and (nS D2
+ nV, to the overall sum of squares, where S, and V, denote the average
area and within-group variance of records with just one channel. Thus,

E(S) = pi = 2 (fnS)lk = S, 2. fun
> (k= ps = 2 (fu(nS)Ik + 2 (kfunV)/k
=X () + Vi 2 (fim)
var($) = w3 — () = 2 fm® + Vi 2 fon — S fon)
o = ml(ui)* — 1
= DA i) + (VISH 2 fn = 1,
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where the summation is over all n. With exponentially distributed channel
durations S, = h_7, and V, = (h.7.)>. Moreover, = f,n = {n), the mean
number of open channels per response, and £ f,n*/(Z f,n)? — 1 is c¢v2. Also,
if channels open simultaneously, var(height)/(height)? = cv = cv2. There-
fore,

v =cv2 + 1Un)( = vl + 1/Kn)

however n is distributed. Using similar logic,
S3KSY = N3Kn)’ + (3/n))cv: + 2/(n)?

where N3 (note H3/H)*> = N3/(n)) and 53 are third moments about means.
To obtain this one uses §3 = 2(h.7.)* for records with just one channel.

It is notable that for Poisson distributed n, as might be expected in a
multichannel patch where a small fraction of channels open and then close
in response to repeated constant stimuli, E(n) = var(n) = N3, and therefore
(S) = (mh,1,, var(S) = 2n)(h.7.)* and S3 = 6{(n)(h T.)’.

4. The area product
i. Numerical equivalence of area product sum and var(S)

We have k records, each with K values. To avoid double subscripts, let us
say that the first record consists of values a,, a,, . . . , ag with sum S,, the
next b, b, ..., by with sum Sy, etc. By definition,

k(yj)=aj+bj+cj+--~
and
k<S>=Sa+Sb+Sc+"'=k2(yj>’

where the summation is over all X values of j.
Each A; multiplied by & is

kA; = (S, = (SN(a; — (y) + (S — (SN(B; = (yy) + -
= (S,a; + Spb; + Sec;+ -+ ) —(SMaj + bj+¢;+---)
— (S + Sy + S + -+ ) + KyXS)
= (S, + Spb; + Scc; + - -+ ) — (SHk(yy) — (yk(S)
+ k<y,~><S)
= (S,a; + Spb; + Sec; + - ) — K(SKy).
Summing over the K A;’s,
kXA =Say+ay+ - +ag) + Sy(by + by + - -+ by)
+8cy e+ -+ k) —k(SY
= 2 8% — kK(S)* = k var(9).
Because the above equations involve actual numbers, not expected values,

2 A; = var(S) is therefore a numerical identity, whatever the values in the
k groups of K numbers.

ii. Linear growth of A, with j with slope h,

Assume the same model and terminology as in (3) above, with channels
opening simultaneously. To calculate A;’s we first obtain Z.8y; for records
with any distribution of numbers of 0, 1, 2, etc. channels opening in each.
Because in general, A; = (Sy;) — (SX;), the expected contribution of a
group of records to overall = Sy; is the number of records in the group
multiplied by its (Sy;) + A;. Analogous to variance, if we know A; for
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records with just one channel, say A,;, we can simply write for the group
of records, each with n open channels, that its A; is nA,;; this follows from
(i) above, because the average time course of signals is the same for any n.
Furthermore, for records with one channel, (S) = h.1. and (y;) =
heexp(—jdt/t.). For brevity designate these S, and y,;, respectively. Then,
for records with just n channels, {(S) = nS, and (y)) = ny;

For all of the k records, summing over all n,

2 Syilk = Ay; 2+ Sy YA

Now = f,n is (n), the mean number of channels opening per response, and
2 fn? is var(n) + (n)>. Thus, (S) = (n)S,, (j) = (n)y,;, and, equating
means and expected values,

A; = (Sy)) — (SXy)
= Aj(n) + Siyi(var(n) + (n)?) — (nS))(ny;;)
= Alj<n> + Sy var(n)

Ay = Ayly,; + S, var(n)/n). (A1)

We must now find A,;, or rather, A,(#). Consider records at which one
channel opens at 0 time, and a sample time ¢ that can be as small as we
wish. The probability that a channel is still open at time & is 1 —
exp(—dt/1,), the probability it is still open at time 28 is 1 — exp(—28t/7,),
etc. Let a = exp(—6t/7.). Then the probability that the channel is open for
just one point (or less) is 1 — a, for just 2 points (1 — a®-(10-a)=
a(l — a), . . . for x points a*~'(1 — a), and these are associated with sums
(S) he, 2h,, . .., xh, respectively, and with respective cross-products (y;S)
h.2 only at point 1, 2k at points 1 and 2 only, . . . , xh.? for all points <x
and elsewhere 0. Hence, summing to infinity products of value and the
probability of that value occurring,

(SR =(1—a)(1 +2a+3a*+4a+--)
=1/(1—-a)
(»SV=(1-a)2a+3a+4a’ +---)
=al(l —a)+a
(y3S)h:= (1 — a)(3a* + 4a® + - - - ) = a*/(1 — a) + 2a°
(ySYH: = a~ /(1 — a) + (i — Da'™".
By the same logic,

i—1

Yh.=(1 —a)d '+d+ad*"'+---)=a

and
SYh.=(y)+ )+ +---=1+a+a*+a*+---
=1/(1 - a),
hence
A; = (0:S) — (yiXS)
=nad U1 —a)+i—1-1/(1-a)]
=ha"'i—1)
and

Aly) = h(i = 1).
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Taking limits as 8¢ — 0, and taking into account that all time summations
are multiplied by &8¢, we obtain

SI = thc; Al(t)/yl(t) = hct

and, substituting into Eq. Al,
AWWKy(®) = ht + h., var(n)/n)
or
Afyp) = jhe + here var(n)/(n),

the latter pertaining if summations (time integrals) use the digitizing
interval as the time unit and 7, is expressed in these units. Thus, A;/(y;) rises
linearly with j, with slope k., for any distribution of numbers of channels
per response. For the situation in Fig. 6 B, where a patch with a single
channel is envisaged, and p is the probability of it opening, (n) = p and
var(n) = p(1 — p).

5. Practical considerations in determining
channel height from the area product

To determine how well channel height (k) might be determined from the
area product, I have made long series of simulations (at least 50 in each
group) with various combinations of channel time constant (7.), channels
per quantum (n.), mean quantal content ({m)), number of records analyzed
together (k), time constants governing dispersion of channel opening, and
noise at various amplitudes. These were all found to interact in a rather
complex way to influence the accuracy and variability of putative h.. The
results are summarized below.

Finding h.

If channels all open simultaneously, theory (see (4) above) gives A;/(y;) =
a + bj, where a is what Aj/(y;) would be if all quanta had a uniform time
course and b corresponds to channel height, A.. In principle, a and b can be
found in two ways: 1) linear correlation of Aj/(yj) with j, or 2) fitting of A;
to the equation A; = a{y;) + b(j(y;)), in each case by least squares, and after
subtracting average prestimulus values from A; and (y;). In practice, it was
found that with method 1) values of b best corresponded to true s, when all
points were weighted by (yj)3, and this gave results identical to those of
method 2) with weighting by (y;). Points used were from (y;) at 90% of its
peak to 2.5% of its peak, to exclude (most) of the error otherwise arising
from (minor) time dispersion of channel opening. Invariably, this method
gave less bias and less variability of putative h_ than simply using coeffi-
cients of variation of signal heights and areas (see (3) above).

Noise and quantal visibility

All simulated records were constructed to correspond to signals plus
Gaussian noise as they would appear using a low-pass filter at a frequency
(f) corresponding to one-half the A—D conversion rate, to avoid aliasing. It
is convenient to define Z as the baseline noise standard deviation (“rms
noise”), when records are recorded/filtered in this way, divided by channel
height, h, Then a simple rule of thumb is that a (nearly) exponentially
decaying signal such as a quantal response becomes indistinguishable from
random noise fluctuations by eye or by cross-correlation with a template,
when Z is about n (7/80)°3, where n_ is the mean number of channels per
quantum and 7, is expressed in time units equal to the digitizing interval.
This applies whatever apparent improvement can be produced by filtering
with lower f. Thus, in the simulation in Fig. 7 where “unfiltered” rms noise
was 0.5 units, unitary G1 quanta (mean size 1 unit, 7, = 40 ms or points)
are visible but G2 unit quanta (mean peak amplitude = 0.167 units, 7, =
120 points) cannot be seen in the records with added noise in Fig. 7 A4,
despite (for the illustration) a low-pass 25-Hz filter.
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Filtering the mean and area product

Although smoothing individual records was not useful, smoothing of both
A(?) and (y(#)) by simple low-pass filtering before finding b by least squares
led to less variability of b. The time constant for this was chosen as 10%
of the apparent time constant by which (y;) decayed from 90% to 10% of
its peak; this had a negligible effect to reduce b (see below). Any further
smoothing with this or smaller time constants, or using running averages,
had a negligible effect.

Uncertainty in h,

In the absence of added noise the standard deviation of b/h, (which was
apparently normally distributed) was always within about 20% of the value
given by the following empirical formula:

SD,(b/h;) = (1 + 0.75/7)[1 + 1.2(n.w)* VK%,

wherew = (1 = p’' + cv,i), cv, being the coefficient of variation of quantal
height. Alternatively, in terms of a, n.w = al(h.7.). Thus SD(b/h.) can be
quite appreciable if n_ is not fairly small and & is only a few hundred. For
example, in the simulation in Fig. 7 C (k = 400), with quanta having 7, =
40 and p' = 0.33, the variation of b/h, is about * 0.2 with n, = 10, and =
0.4 with n, = 50.

In the presence of noise, the standard deviations of b/h, fit well to the
formula

SD(b/h,) = (V, + V,)*,
where V, is [SD (b/h.)]?, and V,, within about 30%, is given by
Vn — (15/k)Z‘2+")w°‘5(m)‘"251';0'75.

Here x = 1.25 exp(—17.n/125). For example, in the simulation for Fig. 7
C the noise making G2 quanta invisible raises the SD(b/h,) for these quanta
from 0.13 to 0.16 when n_ is 2 and from 0.2 to 0.4 when n, = 10. The
tendency for V,, to increase with reduced 7, results in no gain in accuracy
of determining A by reducing the sampling rate and, with it, the prefilter
frequency (f); in the other direction no gain in accuracy occurred with
increasing sampling rate, to make 7, more than about 40 points.

Systematic error produced by noise

Without noise, b was an unbiased estimator of h,, except (see below) with
time dispersion of channel opening or filtering. However, noise produced
a downward bias that was evident when {m) and/or k was low. Empirically:

blh, = exp[—(450/k)Z*/(n T {m))].

Thus, for example, with quanta composed of an average of 10 channels, a
noise level that just makes individual quanta invisible (Z = 10 if 7, = 80)
gives with (m) = 1, b/h, = 0.57 at k = 100 and b/h, = 0.87 with k = 400;
with (m) = 2.5, b/h, = 0.80 and 0.96 at k = 100 and 400, respectively.
Such error is signaled by the b obtained from using all records together
being higher than the average of b’s obtained by analyzing subgroups of
records separately.

Systematic error due to filtering or time dispersion

If channels do not all open simultaneously, (Sy(#)) and (y(¢)) are convoluted
by the time course of channel opening; exponentially distributed lags of
channel opening with a mean of 74 have the same effect as a low-pass filter
with time constant 7, applied to the records. For any particular “filter”
(including, for example, electrotonic conduction) the net effect can be
calculated by setting up theoretical A;’s and (y;)’s, calculating (Sy;)’s,
convoluting the two latter by the appropriate function, and recalculating the
resulting A;’s and Aj/(y;)’s. Using this method or simulation with time-
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dispersed channel opening (with up to three time constants) gave the same
results:

1. Effects to reduce b are less than 2% if the largest time constant, 7,
is less than about 20% of .. Thus, in Fig. 7 C, where quanta of both G1
(1. = 40) and G2 (7, = 120) type were assumed released with lag time
constants of 2 and 4.5 points, and channel opening had mean lags of 4 ms
and 20 ms respectively, these parameters could be expected to have little
effect on b.

2. With higher 7, the graph of Aj/(y;} versus j becomes curvilinear,
curving upward to a slope of k. when 74 < 7. and curving down to a slope
of 0 when 74 > 7. With b determined as described above (fitting to a linear
relation that is no longer true), b/h_ averages 0.86 at 14/7. = 0.5, 0.68 at
747, = 0.75, and 0.5 at 74 = 7; with higher 7,4, b/h_ declines approximately
e-fold for each increment of 7,4 by 7.
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