Supporting Text

1. Algorithm Details

Consider a corpus of sentences (sequences) of variable length, each expressed in terms of a lexicon of
finite size N. The sentences in the corpus corresponghtdifferent paths in a pseudograph (a nonsimple
graph in which both loops and multiple edges are permitted) whose vertices are the unique lexicon entries,
augmented by two special symboleginandend Each of the N nodes has a number of incoming paths
that is equal to the number of outgoing paths. Fig. 4 illustrates the type of structure that we seek, namely,
the bundling of paths, signifying a relatively high probability associated with a sub-structure that can be
identified as a pattern. To extract it from the data, two probability functions are defined over the graph for
any givensearch pathS = (e; — ex — -+ — e) = (e1;e).* The first one,Pr(e;;e;), is the right-
moving ratio of fan-through flux of paths af to fan-in flux of paths at;_;, starting at; and moving along

the subpathzi — €i41 —> €42 > €51

l(ei;ej)
I(ei;ej-1)

wherel(e;; e;) is the number of occurrences of subpathse;) in the graph. Proceeding in the opposite
direction, from the right end of the path to the left, we define the left-going probability funétion

[1]

Pr(ei;e;) = plejleieiri€ita...ej—1) =

l(ej;e;

Ppr(ej;ei) = pleileir1eira...ej_1e5) = M, (2]
YRR

and note that

I(ei)
Zi\fzo I(ex)
where N is the total number of vertices in the graph. Clearly, both functions vary between 0 and 1 and are
specific to the path in question. The MEX algorithm is defined in terms of these functions and their ratios.
In Fig. 5, P first increases because some other paths join the search path to form a coherent bundle, then
decreases att, because many paths leave itdt To quantify this decline of’r, which we interpret as an
indication of the end of the candidate pattern, we defide@ease ratipDr(e;; e;), whose value at; is
Dr(e;;e5) = Pr(ei;ej)/Pr(ei;ej—1), and require that it be smaller than a presebff parameter) < 1
[in the present examplé)r(e1, e5) = Pr(e1,e5)/Pr(e1, es) < 3.

In a similar manner, the value @f;, increases leftward; the poiag at which it first shows a decrease
Dy (ej;ei) = Pr(ejse;)/Pr(ej;eir1) < m can be interpreted as the starting point of the candidate pattern.
Large values ofD;, and Dy signal a divergence of the paths that constitute the bundle, thus making a
pattern-candidate. Since the relevant probabilitiég(E;; e;) and Py (e;; e;)] are determined by finite and
possibly small numbers of pathiq;; e;) out ofl(e;; e;—1)], we face the problem of small-sample statistics.

We find it useful therefore to supplement conditions suchase;; ;) < n by a significance test based on
binomial probabilities, as follows

Prlei;ei) = Pr(eisei) = (3]

*In general the notatiofe;; e;), j > i corresponds to a rightward subpathSyktarting withe; and ending witte;. A leftward
subpath ofS, starting withe; and ending witke; is denoted by(e;; e;),7 < 7.



l(es5e5)
B(es;ej) = Z Binom(z,l(e;;ej-1),nPr(ei;ej-1)) < a;o < 1. [4]
z=0
We calculate bothP;, and Pr from all the possible starting points (suchesande4 in the example of
Fig. b), traversing each path leftward and rightward, correspondingly. This defines a matrix of the form

Pr(ei;e;) ifi>j
Mij(S) = PL(ej; e;) fi<y [5]
P(e;) if i =j.

One can writeM/ (S) in its explicit form, namely, as an instantiation of a variable-order Markov model up to
orderk, which is the length of the search-path

p(er) p(erle2) ple1|ezes) ... pleileses...ex)
p(ezler) p(e2) p(eales) ... plesleses...ex)
M = p(eslere) p(esle2) p(es) - plesleses...ex) | [6]
pleklerea...ex—1) plexlezes...ex—1) plex|eses...ex—1) .. plek)

Given the matriXMI(S), we identify all the significanD g (eq; ep) and Dy (eq;ec) (1 < a,b, ¢, d < k) and
their coinciding pairs Dr(eq;ep), Dr(ec; eq)), requiring thata < d < b < ¢. The pair with the most
significant scores [on both sideB(e,; ep) and B(eg; e.)] is declared as the leading patter (1; ep—1).

2. Learning a Simple Context-Free Grammar (CFG)

2.1. Replicating the study of Adriaans and Vervoort (2002): EMILE 4.1

We replicated one of the experiments of ref. 1 (*A 2000 Sentences Sample”, p. 8). The aim of the original
experiment was to reconstruct a specific CFG (29 terminals and 7 rules) from a corpus of 2,000 sentences
using the EMILE 4.1 algorithm. The results of applying theios algorithm to a 2,000-sentence corpus
randomly generated from the given context-free grammar are shown in Table 1. The algorithm (used in
its default Mode Ay = 0.6, « = 0.01, recursion depth set to 15) yielded 28 patterns and 9 equivalence
classes and achieva@0% precision and9% recall. In comparison, the EMILE algorithm, as reported in

ref. 1, induced 3,000—4,000 rules (the recall/precision performance of the EMILE algorithm was not stated).
Table 1 shows a comparison between the induced grammar and its target grammar. The upper part of the
table contains the extracted equivalence classes and their target counterparts, demonstrating the ability of
ADIOS to identify most of the target classes (except one, E43). The lower part of the table showsi teat

distills a set of rules that is larger than the original one (but equivalent to it).

2.2. Inferring the TAL1 grammar: supplement to Fig. 34

Tables 2 to 5 show the performance ofmos model trained on extremely small corpora (200 sentences)
generated by the TAL artificial grammar (listed in Table 6). The tables present the recall-precision values
(with their standard deviations across 30 different trails) in four different running mdeédse 2, Mode

A (context free);Table 3, mode B (context-sensitive mode)able 4, “semantically supervised” mode,



in which the equivalence classes of the target grammar are made available to the learner ahead of time
(training in Mode A); andliable 5, bootstrap mode, which starts from a letter-level training corpus in which

all spaces between words are omitted (training in Mode A). In the first three experiments, the context-
window length was varied while the other parameters were kept fixed (0.6, « = 0.01, corpus size

200). In the bootstrap mode, the algorithm must first segment the sequence of letters into words (applying
only the MEX procedure without extracting equivalence classes) and only then use the identified words
to extract the grammar. This two-stage process requires a larger corpus to attain a comparable level of
performance (up ta0, 000 sentences in this example). Thus, in the last experimienas kept fixed at 3,

w was lowered td.4, and the corpus size ranged fr@®0 to 10, 000 sentences. Performance was assessed

by the F1 measure, definedasecallprecisiory(recall + precision). The best recall/precision combinations
appear in bold and are plotted in Figd 3n the main paper. It can be seen that both context-free mode and
context-sensitive mode reach similar F1 levels; however, while the context-free mode gets higher levels of
recall (83% versus 68%) the context-sensitive mode gets higher level of precision (98% versus 80%). When
semantic information is available to the learner ahead of time, it gives rise to a significantimprovement in the
learning performance (F1 &89 versus0.81), which parallels the documented importance of embodiment
cues in language acquisition by children. Fig. 8 demonstrates the abiliyiofs to deal with the kind of
syntactic phenomena that can be produced by the TA1 grammar (e.g. “tough movement”).

3. Learning a Complex CFG

3.1. Inferring the ATIS-CFG: supplement to Fig. 3B

Table 7 illustrates the recall and precision performance for learning the 4,592-rule ATIS Q$iGy dif-

ferent parameter values (L £3, 4, 5, §; 30 or 150 learners; corpus size between 10,000 and 120,000
sentences). Fig. 9 presents a schematic illustration of the coverage of the target language by multiple learn-
ers, for various settings of L.

4. Further Tests of Grammar Acquisition

4.1. Generativity of the learned grammar in natural language: supplement to Fig. 8

Because the target grammar of a natural language is inaccessible, precision must be evaluated by human
subjects (referees), while recall can be evaluated by the same method described in thd_aagtiage:
Computational Grammar Induction the main paper. In the present experiment,Abeos algorithm was

trained on the ATIS-2 natural language corpus. This corpus coritaijiid3 sentences of natural speech, in

the Air Travel Information System (ATIS) domain. Th@i0s algorithm was trained oh2, 700 sentences
(Ciraining); the remaining 343 sentences were used to evaluate régall{). Two groups of learners

(30, 150) were trainedy(= 0.6, « = 0.01, L = 5) on different, order-permuted, versions of the corpus
(several representative acquired patterns appear in Fig. 10 along witlgémeiralization factons After

training, each learner generated 100 sentences, which were then placed together into a single corpus (the
Clearners t€St-corpus). Precision of thepios representation (meahn SD) was estimated by having eight
human subjects judge the acceptability of 20 sentences takerhgme..s and of 20 sentences taken from

the original ATIS-2 corpusi:aining). The subjects had no indication which sentence belonged to which

tMoore, B., & Carroll, J. (2001), Parser Comparison — Context-Free Grammar (CFG) Data
http://www.informatics.susx.ac.uk/research/nlp/carroll/cfg-resources.



corpus; the sentences appeared in a random order and each subject judged a different set of sentences.
Altogether, 320 sentences were evaluated. The original ATIS-2 corpus was sc@fedt 20% precision

while theADIOS-generated sentences attairi@dt 7% precision. Recall was calculated using g, et

corpus. Sets of 30 and 150 learners achie32d and40.5% recall, respectively.

4.2. Structured Statistical Language Modeling (SSLM)

The performance of a grammar acquisition algorithm can be assessed by measuring the utility of the acquired
representation as a language model, that is, a description of the probabilistic constraints on word order. A
model is evaluated on the basis of its ability to predict the next word in a sequence, using sentences taken
from a previously unseen text. Models that result in a high average word probability (equivalent to low
perplexity’) are considered superior. Standard statistical language models, such as those based on estimated
n-gram probabilities, are problematic, for two reasons: (1) probability estimates for rare or unseen events
are unreliable, and (2) low-models fail to capture long-range dependencies between words. An experiment
described below shows that the grammar learneddops can be used to construct a simple, yet effective
SSLM (2, 3). Because the patterns learnedhbyos generalize well, and because they capture long-range
dependencies, the resulting SSLM achieves an improvement in perplexity on the ATIS-2 corpus over state-
of-the-art models, despite requiring much less training data.

Consider ari-word sentenc@®/” = w; . .. w;, and the parse trees induced over it by the learned grammar;
note that a parse tree may be compldtge;( spanning the entire sentence), or partigl;(; 1 <@ < j <
[). Our goal is to assign a probabilipws|T; 1) to every sentence prefiws, ..., wy), and to its every
possible partial derivatioff; ,, wherel < ¢ < k, 1 < k < [, andp(wg|Tk—1,,-n (7)) is determined by
the branching level o, ,—, atw. In Fig. 11, for example, the branching levehat (the next location
in the sequence of terminals) is 2, and thsvailable| P1855, 6) = p(served|P1855,4) = 1/2. We
calculate these probabilities iteratively. At each step, a simple deterministic parser analyzes all the relevant
root patterns (including those that span only parts of the prefix), seeking matching parts (see Fig. 11). The
numbern of matching words defines tHevel of history dependena# the predicted word (this variable
dependence may be contrasted with a standagchm language model, whenrgs fixed).

Then-gram probabilityp(wg |wk—, . . . wix—1) can be calculated as follows:

Pn(wy) = p(wg|Wg—p ... WE—1) = Z P(wg|Ti—1k—n(2))P(Th—1,k—n (7)), (7]
i=1:m
wherep(Ty—_1,,—») is the probability of finding the pattern tré¢_; ,._,, in the corpus, and: is the number
of structures that spafk — 1,k — n). For each word in the test set, the parser provides the values of the
n-gram probability functiong,, (wy). The final probability is estimated by linear smoothing

P(wg|wg—n ... wg—1) = cipr(wg) + cop2(wi) + ... + ck—1pk—1(wg), (8]
where) . ¢; = 1; we setc; = ﬁ When multiple learners are used, we average the probabilities

j=1:k—1
they provide for every predictedjword at every location, then normalize.
Prior to testing, we weighted the elements of each learn@i’®s grammar probabilistically using the

sentences of the training set, by applying the parser to successive prefixes of each of the sentences in that set.

tperplexity measures the degree of uncertainly about the next word, averaged over the test set (2). The lower the perplexity, the
better the model.



The results were used to assign probabilities to the relevant pattern elements (terminals and equivalence class
members). The final probability is the average of the weighted probability and the predicted probability.

The SSLM derived fronaDIOS was applied to the ATIS-2 corpus, which contals043 sentences, of
which 11, 386 are unique. Of thesd), 000 sentences were used to train the SSLM. The estimated proba-
bilities were normalized to sum tbfor each word (this experiment involved 30 learners; the probabilities
for every predicted word at every location were averaged across learners, then normalized). We also made
sure that all the words in the lexicon were assigned nonzero probabilities, to ensure the validity of the en-
suing perplexity estimates. Suppose that thereNargords in the lexicon, and the model assigns nonzero
probabilities tad words ¢ < N). The remainingV — d words are then each assigned a small probability of
p = ¢/(IN — d); all the other probabilities are renormalizedid1 — €), with e = 0.01.

The resulting perplexity of thebpios-based SSLM wag1.5. This compares favorably with the pub-
lished figures for regular language grammar induction algorithms (bet@@eamd 40), and for 3-gram
models that use sophisticated smoothingld); (see refs. 3and 5 - 7).

4.3. Languages other than English: supplement to Fig.3

To visualize the typological relationships of different languages, we consider the pattern spectrum repre-
sentation, defined as follows. We first list all the significant patterns extracted from the data during the
application of theanios algorithm. Each of these consists of elements that belong to one of three classes:
patterns (P), equivalence classes (E), and original words or terminals (T) of the tree representation. We next
compute the proportions of patterns that are described in terms of these three classes as TT, TE, TP, and so
on, as shown in Fig. 12. Comparing the spectra of the six languages, we derive a dendrogram representation
of the relative syntactic proximity between them. This is shown in Fig. 3t corresponds well to the
expected pattern of typological relationships suggested by classical linguistic analysis (8).

5. Language: Psycholinguistics

5.1. Learning “nonadjacent dependencies”

Gomez (9) showed that the ability of subjects to learn an artificial language L1 of the éoXnd, b X e, cX f},

as measured by their ability to distinguish it implicitly from LgeXe, bX f, cXd}, depends on the amount

of variation introduced akX (symbolsa throughf here stand for 3- or 4-letter nonsense words, wheieas
denotes a slot in which a subset of 2-24 other nonsense words may appear). Witkindsdramework,

these nonadjacent dependencies translate into patterns with embedded equivalence classes. We replicated
the Gdmez study by trainingp10s on 432 strings from L1 (30 learnersX| = 2,6,12,24, n = 0.6,

« = 0.01). Training with the context window parametérset to 3 resulted in performance levels (rejection

rate of patterns outside of the learned language) that increased monotonicall)\ith correspondence

with the human behavior. Interestingly, when trained with= 4, ADIOS reaches perfect performance in

this task.

The two languages used in ref. 9, L1 and L2, are defined in TaliPel8vot, dak, toodire all nonsense
words that form three-element sequences, in whose middle slot, denoféddgubset of between 2 and
24 other nonsense words may appear. Inaheos terms, X thus stands for an equivalence class with 2-24
elements. We replicated thed®ez study by trainingbios on 432 strings from L1, using 30 learners and

§ A more complicated and time-consuming, but probably better, way of producing a Probabilistic CFG (PCFG) onbobthe
rules would have been to use the Inside-Outside Algorithm (4).



various sizes ofX. Performance was evaluated in the same manner as inGhegstudy. The test set
consisted of 12 strings: 6 from L1 (which should be accepted) and 6 from L2 (which should be rejected).
The results are as follows: whdhnis setto 3 { = 0.6, « = 0.01) and|X| is set t02, 6, 12, 24 elements,
ADIOS accepts all the sentences of L1 while rejectidgt 27%, 50 + 17%, 86 + 14%, 82 + 17% sentences

of L2, respectively. Performance level increases monotonically \th in accordance with human data.
Training with L = 4 yielded100% acceptance rate for L1 arl®0% rejection rate for L2, irrespectively of

| X |, indicating a perfect ability of the algorithm to capture the nonadjacent dependency rule with the proper
choice of parameters.

5.2. Grammaticality judgments

A single instance oADIOS was trained on the CHILDES (10) corpus, using sentences spoken by parents to
3-year-old children. It was then subjected to five grammaticality judgment tests. One of theséteherG
multiple-choice ESL (English as Second Language) test, consists of 100 sentences, each containing an open
slot; for each sentence, the subject selects one word from a list of three choices, so as to complete the
sentence grammatically. In this tesios scored at0%, which is the average score for 9th grade ESL
students. Interestingly, the average scoremifos on the entire collection of tests was at the same level.

We have assessed the ability of theios model to deal with novel inpulsby introducing arninput
module(described below). After training on transcribed speech directed at children [a corpus of 300,000
sentences with.3 million words, taken from the CHILDES collection (10)], the input module was sub-
jected to grammaticality judgment tests, in the form of multiple choice questions. The algbidtantified
3,400 patterns and 3,200 equivalence classes. The input module was used to process novel sentences by
forming their distributed representations in terms of activities of existing patterns [a similar approach had
been proposed for novel object and scene representation in vision (11)]. These values, which supported
grammaticality judgment, were computed by propagating activation from bottom (the terminals) to top (the
patterns). The initial activities; of the terminals:; were calculated given a stimulys, . . . , s, as follows:

P(Sla 8]‘) }
P(s1)P(ej)

where P(s;, e;) is the joint probability ofs; ande; appearing in the same equivalence class, B(s})
and P(e;) are the probabilities of; ande; appearing in any equivalence class. For an equivalence class,
the value propagated upward was the strongest nonzero activation of its members; for a pattern, it was the
average weight of the children nodes, on the condition that all the children were activated by adjacent inputs.
Activity propagation continued until it reached the top nodes of the pattern lattice. When this algorithm
encounters a novel word, all the members of the terminal equivalence class contribute a vat€.61,
which is then propagated upward as before. This enables the model to make an educated guess as to the
meaning of the unfamiliar word, by considering the patterns that become active. Fig. 13 shows the activation
of a pattern (#185) by a sentence that contains a word in a novel conésx}, @s well as other words never
before encountered in any contekir(da, Paul).

We assessed this approach by subjecting a single instaneeiof to five different grammaticality
judgment tests reported in the literature (12 — 15); see Fid.efd The results of one such test, used in
ESL classes, are described below. This test has been administereédeibo@ (Sweden) to- 10,000
upper secondary levels students (that is, children who typically had 9 years of school, but only 6-7 years

a; = max {P(sl,ej) log [9]

I=1..k

YIncluding sentences with novel vocabulary items that are not fully represented by the trained system.
I'An earlier version ofsD10s, which did not use the full conditional probability matrix of Hg].



of English). The test consists @00 three-choice questions (Table 9), with% being the average score

for the population mentioned. For each of the three choices in a given question, our algorithm provided a
grammaticality score. The choice with the highest score was declared the winner; if two choices received
the same top score, the answer was “don’t know.” The algorithm’s performance is plotted in RHgght4
against the size of the CHILDES training set. Over the course of training, the proportion of questions that
received a definite answer grew (red bars), while the proportion of correct answers remainedéaféund
(blue curve); compare this to th% precision with20% recall achieved by a straightforward bi-gram
benchmark:*

6. Bioinformatics

6.1. Classification of enzymes classes

We evaluated the ability of root patterns found Ayi0s to support functional classification of proteins
(enzymes). The function of an enzyme is specified by an Enzyme Commission (EC) name. The name
corresponds to an EC number, which is of the form: n1:n2:n3:n4. In this experiment, we concentrated on
the oxidoreductases superfamily (EC 1.x.x.x). Protein sequences and their EC number annotations were
extracted from the SwissProt database Release 40.0; sequences with double annotations were removed.
First, ADIOS was loaded with all the 6751 proteins of the oxidoreductases superfamily. Each path in the
initial graph thus corresponded to a sequence of amino acids (20 symbols).

The training stage consisted of the two-stage action described in section 2.2. In the firsh sta@é (
a = 0.01), the algorithm identified 0, 200 motifs (words). In the second stage & 1.0, « = 0.01)
after removing those letters that were not associated with one of the identified motifs, it extracted additional
938 patterns. Classification was tested on level 2 (EC 1.x, 16 classes) and on level 3 (EC 1.x.x, 54 classes).
Proteins were represented as vectorsmbDs root patterns. A linear SVM classifier (SVMt&HT package,
available online at http://svmlight.joachims.org/) was trained on each class separately, taking the proteins of
the class as positive examples, and the rest as negative examples. Seventy-five percent of the examples were
used for training and the remainder for testing. Performance was measuiee-ad'P + T'N)/(TP +
TN+FP+FN),whereél'P, TN, FP,andF N are, respectively, the number of true positive, true negative,
false positive, and false negative outcomes. Table 10 presents the performancemfthalgorithm on
level 2 alongside the performance of the SVM-®Rsystem (16); Table 11 presents the performance on
level 3. TheaDblos performance matched the performance of the SVMePRystem (Fig. 18), even
though the latter uses a representation composed of features such as hydrophobicity, normalized van der
Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent accessibility,
whereas we use solely the structure found by our algorithm in the amino acid sequence data. The average
recall/precision on level 2 wad + 13% and90 + 9%, respectively, whereas recall/precision on level 3 was
70 +26% and93 + 23%, indicating that theDI0S representation can accurately discriminate the enzyme’s
low-level functionality.

6.2. A compression ratio analysis

Our algorithm provides a useful tool for identifying open reading frames (ORF) and coding regions in DNA
sequences, based on comparing the description length abtloes representation before and after learning.

**Chance performance in this tesiz%. We note that the corpus used here was too small to traingram model fom > 2;
thus, our algorithm effectively overcomes the problem of sparse data by putting the available data to a better use.



The description length of theD10s representation consists of two parts: the graph (vertices and paths) and
the identified patterns. Theompression ratimf the description length can be quantified by evaluating the
decrease in the physical memory it occupies (in bits).

Following its iterative applicationaDIOS compresses the initial graph to a final graph plus a forest of
distilled root-patterns. Although the latter can generate a much larger corpus than the original one, the
description length of thebDlos representation is diminished. The recall levelaafios increases with
compression. ApplyingpIos to the coding region of th€aenorhabditis elegangenome (Fig. 1B), we
conclude that the syntax of ORFO (the correct open reading frame) is the one to be preferred. Moreover, we
are able to distinguish between coding and non-coding regions (FI§v$515”), because for the latter
different ORFs lead to similar compression levels.

We have also calculated the compression at several points along the curves of the ATIS-CFG recall/precision
graph (Fig. 3). Fig. 16 shows the correlation between the recall/precision levels (ordinate) and the com-
pression rate (abscissa). It can be seen Almabs recall level strongly depends on (increases with) the
compression level, but the precision level only weakly depends on the latter. The compression ratio char-
acteristic is particularly useful when comparing the performancepods on different data for which the
target “grammars” are not available. The ORF problem is a typical example of such an analysis.

7. Computational Complexity

We conducted several experiments based on the TA1 grammar to estimate the computational complexity of
ADI0S. We found four variables that have major effects: the total number of words in a given corpus, the
average sentence length, the size of the initial lexicon and the value of the context window parameter L.
For each of these, we conducted an experiment that exclusively manipulated the variable in question, while
measuring the time until convergence. The results, plotted in Fig. 17, reveal the following dependencies:
the training time grows linearly with the size of the corpus and logarithmically with the average sentence
length. It shows inverse power dependence both on respect the lexicon size and on the value of L. Overall, the
computational complexity ofD10s according to this empirical estimate@)s(nlog )/ (LANV)), wheren

is the total number of words in the corpuss the average sentence lengthis the value of context window
parameter, andV is the lexicon size. The conclusion from this experiment is #mabs is easily scalable

to larger corpora,; this finding is consistent with the actual tests described in the main text.

8. Conclusions

The massive, largely unsupervised, effortless, and fast feat of learning that is the acquisition of language
by children has long been a daunting challenge for cognitive scientists (17, 18) and for natural language
engineers (19 — 21). Because a completely bias-free unsupervised learning is impossible (17, 22, 23), the
real issue in language acquisition is to determine the constraints that a model of “grammar induction” should
impose — and to characterize those constraints that infants acquiring language do in fact impose — on the
learning procedure. In our approach, the constraints are defined algorithmically, in the form of a method
for detecting, in sequential symbolic data, of units (patterns and equivalence classes) that are hierarchically
structured and are supported by context-sensitive statistical evidence.

In linguistics, our method should be of interest to researchers of various theoretical persuasions who
construe grammars as containing — in addition to general and lexicalized (24, 25) rules — “inventories” of
units of varying kinds and sizes (26, 27) such as: idioms and semiproductive forms (28, 29), prefabricated



expressions (30, 31), “syntactic nuts” (32), frequent collocations (33), multiword expressions (34, 35), and
constructions (36 — 39). In addition, the growing collection of patterns revealed by our algorithm in various
corpora should complement both syntax-related resources such as the Penn Treebank (40) and semantics-
oriented resources such as the WordNet (41), the PhraseNet (42), and the Berkeley FrameNet (43, 44).
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