	Adsorbed sample		Grafted sample
T, °C	25.0	56.1	57
$ ho_{H_2O}, e^-/\text{\AA}^3$	0.344	0.344	0.344
$D_{h,2},$ nm	$2.35 {\pm} 0.05$	$2.41 {\pm} 0.02$	2.1 ± 0.1
$ ho_{h,2}, e^-/\text{\AA}^3$	$0.11 {\pm} 0.02$	$0.1 {\pm} 0.1$	$0.13 {\pm} 0.02$
$\sigma_{h,2},$ nm	$0.6 {\pm} 0.1$	$0.2{\pm}0.1$	$0.4{\pm}0.1$
$ ho_{CH_2}, e^-/\text{\AA}^3$	$0.32{\pm}0.02$	$0.29{\pm}0.02$	$0.32 {\pm} 0.01$
$ ho_{CH_3}, e^-/\text{\AA}^3$	$-0.14 {\pm} 0.05$	$-0.14 {\pm} 0.05$	-0.13 ± 0.03
$\sigma_{CH_3},$ nm	$0.17 {\pm} 0.03$	$0.10 {\pm} 0.05$	$0.15 {\pm} 0.05$
$ ho_{CH_2}, e^-/\text{\AA}^3$	$0.32 {\pm} 0.02$	$0.29{\pm}0.02$	$0.32 {\pm} 0.01$
$D_{h,2}, \operatorname{nm}$	$2.35 {\pm} 0.05$	$2.41 {\pm} 0.02$	2.1 ± 0.1
$ ho_{h,2}, e^-/\text{\AA}^3$	$0.11 {\pm} 0.02$	$0.1 {\pm} 0.1$	$0.13 {\pm} 0.02$
$\sigma_{h,2},$ nm	$0.6 {\pm} 0.1$	$0.2{\pm}0.1$	$0.4{\pm}0.1$
$D_{H_2O,2}, \operatorname{nm}$	$1.9{\pm}0.1$	$2.4{\pm}0.4$	2.1 ± 0.1
$ ho_{H_2O,2}, e^-/\text{\AA}^3$	0.344	0.344	0.344
$D_{h,1}$, nm	2.31 ± 0.02	$2.41 {\pm} 0.02$	$1.55 {\pm} 0.05$
$ ho_{h_1}, e^-/{ m \AA}^3$	$0.13 {\pm} 0.02$	$0.12{\pm}0.01$	$0.055 {\pm} 0.005$
$\sigma_{h,1},$ nm	$0.39 {\pm} 0.03$	$0.41 {\pm} 0.03$	$0.40 {\pm} 0.01$
$ ho_{CH_2}, e^-/{ m \AA}^3$	$0.29 {\pm} 0.02$	$0.27{\pm}0.02$	$0.32{\pm}0.02$
$ ho_{CH_3}, e^-/\text{\AA}^3$	-0.15 ± 0.01	$-0.14 {\pm} 0.01$	-0.14 ± 0.02
$\sigma_{CH_3},$ nm	$0.14{\pm}0.02$	$0.25 {\pm} 0.05$	$0.36 {\pm} 0.05$
$ ho_{CH_2}, e^-/{ m \AA}^3$	$0.32 {\pm} 0.02$	$0.29{\pm}0.02$	$0.32 {\pm} 0.01$
$D_{h,1}, \operatorname{nm}$	2.31 ± 0.02	$2.41 {\pm} 0.02$	$1.55 {\pm} 0.05$
$ ho_{h_1}, e^-/{ m \AA}^3$	$0.13 {\pm} 0.02$	$0.12 {\pm} 0.01$	$0.055 {\pm} 0.005$
$\sigma_{h,1},$ nm	0.39 ± 0.03	0.41 ± 0.03	$0.40 {\pm} 0.01$
$D_{H_2O,1},$ nm	$0.33 {\pm} 0.05$	$0.33 {\pm} 0.05$	
$ ho_{H_2O,1}, e^-/\text{\AA}^3$	0.344	0.344	0.344
$D_{sil},$ nm			2.6±0.1
$ ho_{sil}, e^-/{ m \AA}^3$			$0.02{\pm}0.01$
$\sigma_{sil},$ nm			$0.25 {\pm} 0.02$
$D_{SiO_2}, \operatorname{nm}$	2.3 ± 0.2	2.3 ± 0.2	1.5 ± 0.2
$ ho_{SiO_2}, e^-/{ m \AA}^3$	$0.34{\pm}0.02$	$0.34{\pm}0.02$	$0.27 {\pm} 0.02$
$\sigma_{SiO_2}, \mathrm{nm}$	0.13 ± 0.02	0.27 ± 0.02	0.25 ± 0.02
$ ho_{Si}, e^-/{ m \AA}^3$	0.376	0.376	0.376

Table 2. Structural parameters for di- C_{18} -PC (adsorbed and grafted samples) at various temperatures used in Eq. 1.

D, box thickness; ρ , electron density amplitude; σ , standard deviation of the box interface position (averaged over the coherence length $2\lambda/\theta \cdot \delta\theta$). Data are obtained by specular reflectivity experiments using the 1G-hybrid box model (Eq. 1) in which some boxes lack *D* or σ . They are presented from top to bottom: bulk water 1, lipid layer 2 (floating bilayer), water layer 2 (intermediate), lipid layer 1 (adsorbed or grafted), water layer 1 (hydration), and substrate. h= head, sil=silane, Si=silicon.