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SUMMARY

1. The electroanatomy of motoneuronal dendrites was analysed using data from
fifty-two dendritic trees of four completely reconstructed cat spinal motoneurones
that had been labelled with intracellularly injected horseradish peroxidase. The cells
belonged to m. triceps surae, and their physiological properties covered much of the
known range for this muscle.

2. For each dendritic tree, the input conductance, as seen from the soma, was
calculated by the method of Rall (1959), using anatomical measurements of the
length and diameter of all branches and different assumed values for dendritic
membrane resistivity.

3. There was a strong positive correlation between dendritic stem diameter and
the calculated dendritic input conductance. Dendritic input conductance was
approximately equal to a constant x (stem diameter)312 x (dendritic membrane
resistivity)076

4. The relationship between dendritic stem diameter and computed input
conductance was equal to that of Rall's equivalent-cylinder model of a dendritic tree.
However, from a number of other points of view, the properties of the reconstructed
dendrites differed from those of the model: (a) at branch points, the sum 1(daughter
diameters3'2) was, on average, 19% greater than the 3/2 power of the parent
diameter; (b) dendritic branches often showed a significant amount of tapering, and
the mean overall degree of diameter decrease per branch was about 12%; (c) the
termination of dendritic branches occurred at widely different distances from the
soma within single dendritic trees (true for anatomical as well as for computed
electrotonic distances).

5. When used in conjunction with previously published measurements of
motoneuronal input resistance and proximal anatomy (Kernell & Zwaagstra, 1981),
the present results gave further support to the conclusion that differences in
membrane resistivity are of great importance for differences in motoneuronal input
resistance. Furthermore, this conclusion was also confirmed by direct observation of
the properties of the present four motoneurones: irrespective of the assumed ratio
between somatic and dendritic membrane resistivity, there was a statistically
significant positive correlation between the measured neuronal input resistance and
the required membrane resistivity of soma and dendrites.
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INTRODUCTION

There are large and physiologically important differences between different
functional classes of spinal hindlimb motoneurones with respect to their neuronal
input conductance (e.g., Kernell, 1966; Burke & ten Bruggencate, 1971; Kernell &
Zwaagstra, 1981; Burke, 1981; Burke, Dum, Fleshman, Glenn, Lev-Tov, O'Donovan
& Pinter, 1982; Gustafsson & Pinter, 1984; Ulfhake & Kellerth, 1984). Among such
neurones, the dendritic surface area is about 30 or more times greater than that of
the cell body (Ulfhake & Kellerth, 1981, 1984; Cullheim, Fleshman, Glenn & Burke,
1987). It is a matter of recent discussion to what extent the passive membrane
properties of motoneuronal dendrites differ from those of the soma (lansek &
Redman, 1973; Fleshman, Segev, Cullheim & Burke, 1983; Ulfhake & Kellerth,
1984; Clements & Redman, 1986; Glenn, Samojla & Whitney, 1987). However, in the
case of uniform membrane properties, the input conductance of a motoneurone
would clearly be expected to be determined, to an important degree, by the
properties of its dendrites. The input conductance of a dendrite depends on its
specific membrane resistivity as well as on its size and branching pattern. Hence, for
a given value of resistivity, an accurate estimate of dendritic input conductance
could only be obtained by reconstructing and measuring the whole dendritic tree.
Such reconstructions, measurements and calculations are complex and highly time
consuming (Rall, 1959). Therefore, it has been of interest to try to predict the
electrophysiological properties of dendrites from more limited kinds of measurement.

Rall (1959, 1977) has demonstrated that there is a class of dendritic trees whose
electrical behaviour, as seen from the soma, conforms to that of a simple uniform
cylinder with a finite length. For such a uniform membrane cylinder, the input
conductance is proportional to the 3/2 power of the (stem) diameter. In a preceding
study we made use of this hypothetical relationship between stem diameter and
dendritic input conductance in an electroanatomical analysis of spinal motoneurones
(Kernell & Zwaagstra, 1981). There exists, however, a considerable amount of
uncertainty concerning the extent to which the detailed anatomy of motoneuronal
dendrites actually agrees with the class of dendritic trees that can, from
electrophysiological points of view, be viewed as a uniform cylinder. For the ideal
'equivalent-cylinder dendrite' of Rall (1959, 1977), the required anatomy is such
that: (a) at each branch-point, the ratio X(daughter branch diameters3'2)/(parent
branch diameter3/12) (i.e. the D32 branch-point ratio) equals 1-0; (b) there is no
tapering of dendritic branches; (c) all terminal branches end at the same electrotonic
distance from the soma.

In preceding quantitative studies of the dendrites of intracellularly labelled
hindlimb motoneurones, the average D32 branch-point ratios have generally been
found to be highly variable, and average values have been reported to be close to 1.0
(Lux, Schubert & Kreutzberg, 1970; Ulfhake & Kellerth, 1981, 1983, 1984; Brown
& Fyffe, 1981) or tended to be greater than 1.0 (Egger & Egger, 1982; Cullheim et al.
1987). Appreciable amounts of tapering have been reported to be evident for, at
least, the terminal branches of dendritic trees (Ulfhake & Kellerth, 1981, 1983, 1984;
Brown & Fyffe, 1981). In some studies, a pronounced tapering was also observed
more proximally (Barrett & Crill, 1971, 1974). The calculated electrotonic distance
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from soma to dendritic terminations has generally been found to vary over a
relatively wide range within single dendritic trees (Barrett & Crill, 1974; Egger &
Egger, 1982; Ulfhake & Kellerth, 1984; cf. also findings for brain stem motoneurones
by Bras, Gogan & Tyc-Dumont, 1987). In view of all these differences between real
motoneuronal dendritic trees and the requirements for the simple equivalent-
cylinder model, we felt motivated to make an explicit analysis of one important
aspect of the problem. Our question was: is the overall morphology of motoneuronal
dendritic trees indeed such that their relative input conductance might be reasonably
well predicted from measurements of their stem diameter? If so, would the
relationship between stem diameter and input conductance resemble that of a
uniform cylinder of finite length (i.e. input conductance proportional to stem
diameter raised to the power of 3/2; cf. Rall, 1959, 1977) ?
Some of the present findings have been briefly published as a congress abstract

(Zwaagstra & Kernell, 1987).

METHODS

In the present study we made use of the same material as that of our preceding paper (Kernell
& Zwaagstra, 1989). The analysis concerns fifty-two dendrites of four completely reconstructed
motoneurones of m. triceps surae of adult cats. In order to facilitate the reading of the present
paper, some general physiological and anatomical information from our companion paper is
reproduced in Table 1 (Kernell & Zwaagstra, 1989). The neuronal input resistance of the
motoneurones was measured over a range of weak injected currents using the spike-height method
of Frank & Fuortes (1956; cf. Kernell, 1966; Lux et al. 1970; Kernell & Zwaagstra, 1981; Burke
et al. 1982; Ulfhake & Kellerth, 1984).

For the purpose of the reconstruction and quantitative analysis, each dendritic tree was
considered to consist of a series of branches which were limited by the soma-dendrite border, by
points of division (branching) or by final termination. In producing the measurements, most
branches were further subdivided into a sequence of consecutive segments. Each segment was
measured with respect to its mean diameter and length, and these data were used for the
calculations given below. At branch points, diameter measurements were taken from regions of a
relatively constant thickness (i.e. outside the region of slight 'bulging' sometimes seen in the
immediate proximity of the bifurcation itself). The size of the cell body was estimated on the basis
of measurements of its transverse projection area in a reconstruction based on serial sections. From
these measurements, its total surface area was computed according to the formula for a sphere
(Table 1; Zwaagstra & Kernell, 1981). The stem dendrite diameter (e.g. Fig. 1, Table 1) was
measured at a distance of 40 ,um from the soma-dendrite border (or less if the first branch point
occurred more proximally; Zwaagstra & Kernell, 1981; Kernell & Zwaagstra, 1989). The axon was
not included in the present series of calculations.

Computations of electrical properties
For each dendritic tree, its expected electrical properties were analysed according to Rall (1959).

In all the present calculations, dendritic end-branches were assumed to have sealed terminations
(Rall, 1959). The expected input conductance of a dendrite (GD) was obtained from the equation,

GD = GXBO (1)

where G., is the input conductance of an infinite cylinder of the same diameter as the proximal
dendritic stem and Bo is a weighting factor, calculated as described by Rall (1959). Dendritic size
and branching pattern have a large influence on Bo. The value of G,, may be calculated from
cylinder diameter d, membrane resistivity Rm and intracellular fluid resistivity Ri:

Gx-= d3127 (4RmRi)2. (2)
9 PHY413~~~~oc=d R i 2
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It was confirmed that, when applied to the test cases published by Rall (1959), our calculations
gave the appropriate results.
When performing the calculations, all the dendrites of a given motoneurone were assumed to

have uniform and equal membrane properties. Ri was assumed to be 70 Q cm (Barrett & Crill,
1974). With respect to Rm, we used a number of alternative assumptions (see Results).
Unless otherwise noted, averages are given +S.D.

TABLE 1. General properties of the reconstructed motoneurones

Cell 3 Cell 1 Cell 4 Cell 2

Physiology
Nerve GL G-sol GM G-sol
Axonal conduction velocity (m/s) 65 92 87 102
AHP duration (ms) 140 90 90 50
Input resistance (MQ) 4-0 1 8 1t3 0 7

Anatomy
Soma area (,um2) 8576 8672 12336 15056
Number of dendritic trees 11 11 16 14
X(Ds3/2) (Iam312) 242-4 267-1 4004 426-8

Calculated
'Own' membrane resistivity (kQ cm2) 15-9 54 43 1 8
D/S conductance ratio 454 33-6 26-8 16 8

Abbreviations: GL, gastrocnemius lateralis, G-sol, gastrocnemius-soleus, GM, gastrocnemius
medialis; AHP, after-hyperpolarization. Soma area: total area of cell body, calculated as 4 times
the soma area measured in transverse projection in reconstruction based on serial sections
(Zwaagstra & Kernell, 1981). Y(DS3/2): sum of dendritic stem diameters, raised to power of 3/2.
'Own' membrane resistivity: value of Rm calculated on basis of input resistance and detailed
neuronal anatomy, assuming uniform membrane properties (see text). D/S conductance ratio:
dendrite-to-soma conductance ratio as seen from the soma; calculated for uniform membrane
properties. The neurones have been placed in an order of decreasing input resistance.

RESULTS

General properties of the reconstructed motoneurones

A number of general physiological and anatomical properties of the four
reconstructed cells are shown in Table 1 (cf. Kernell & Zwaagstra, 1989). The four
reconstructed cases were selected to represent as much as possible of the range of
physiological properties of triceps surae motoneurones. Hence, the neuronal input
resistance varied over a wide, nearly 6-fold range (Table 1).

Apparent membrane resistivity of the reconstructed motoneurones
For an initial series of calculations, we made the simplifying assumption that all

membrane portions of a motoneurone had the same specific resistivity (see below and
Table 3 for alternative assumptions). For each assumed value of such a uniform
resistivity, the input conductance of every dendritic tree of the respective cell was
calculated as described by Rall (1959; see Methods). The input conductance of the
cell body was computed from its membrane surface area (Table 1; resistance of
cytoplasm neglected). The input resistance of the whole cell was considered to be
equal to the reciprocal value of the sum of the input conductances of its cell body and
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that of all its dendrites (contribution of axon neglected). By repeating this procedure
with different assumed values for Rm we ultimately found, by trial and error, the
membrane resistivity that would produce a whole-cell input resistance equal to that
measured experimentally (Rall, 1959; cf. Lux et al. 1970; Barrett & Crill, 1971, 1974;
Ulfhake & Kellerth, 1984). In the remainder of the paper, these computed values of
uniform resistivity will be referred to as the 'own' values of the respective cells.
The calculated 'own' values for uniform membrane resistivity spanned an almost

9-fold range, from 1-8 and 15 9 KQ cm2 (Table 1). There was a marked and
statistically significant positive correlation between the calculated uniform mem-

128

o X~~~~
_ /E,~~~~~~~~~~E

0~~~~~~~~

a)m
0

2

c E

1.5 6 24
Stem diameter (,um)

Fig. 1. Plot of computed dendritic input conductance (nS) vs. diameter of dendritic stems
(,um). Stem diameters were measured at about 40,tm from the soma-dendrite border
(Kernell & Zwaagstra, 1989). Logarithmic co-ordinates. Correlation coefficient r = 0 90
(P < 0001). Regression line: Y = 1-49 X+ 0-28. For the calculations of this graph, all the
fifty-two dendrites were assumed to have the same membrane resistivity (5 kQ cm2).

brane resistivity and the measured input resistance (r = + 0 9958; P < 0-0 1). Hence,
among these cells, differences in membrane resistivity were apparently of major
importance for the differences in neuronal input resistance (cf. Kernell & Zwaagstra,
1981; see Discussion for further comments).

Relation between dendritic stem diameter and calculated conductance
The double-logarithmic plot of Fig. 1 shows that there was a highly significant

correlation between the computed value for dendritic input conductance (GD; see
Methods) and dendritic stem diameter (Ds). This was true for all the fifty-two
dendrites taken together, as well as when performing the calculations separately for
the dendrites of each neurone (Table 2; see also symbols for different cells in Fig. 1,
Kernell & Zwaagstra, 1989). When calculated for each cell with its 'own' value of
uniform membrane resistivity, the slope of the relation between log (GD) and log (Ds)
had an average value of 1-5 (range 1-25-1-63; Table 2). A slope of 1P5 was also
obtained when the calculations were made for all fifty-two dendrites together
(Fig. 1), and the value of this slope was markedly independent of the assumed value for

9-2

259



D. KERNELL AND B. ZWAAGSTRA

TABLE 2. Dendrite properties of the reconstructed motoneurones
Cell 3 Cell I Cell 4

log(GD) Vs. log(stem diameter)
Correlation coefficient 0-83 0-93 096
Mean slope 1-63 1-60 1-65
Range of slope (95% confidence) 0-81-2-45 1P14-2-06 1-37-1P93

D32 branch-point ratio
Average
Variability (%)

Endings:
Electrotonic distances
Average
Variability (%)

1P27+0-17 1-28+0414 1-16+0-23 1-09+0-21
381 + 15-3 33-5+6-6 34-1 + 18-0 34-2 + 13-6

1-03+0-14 095+0008 1-23+0026 2-90+0060
22-3 + 11-0 31-5+ 10-8 326+ 12-3 33-2 + 12-1

Anatomical distances (mm)
Average 1-22+0-12 0-71 +004 082 +0-17 1-02+0-19
Variability (%) 182+10-1 25-1+8-3 25-5+10-3 27-4+10-7
GD: input conductance of dendritic tree, as seen from soma; calculations with ' own' value for Rm

of each cell. Stem diameter: diameter of stem of dendritic tree. Mean slope: regression-slope
coefficient for log(GD) vs. log(stem diameter), as calculated separately for the dendrites of each cell
(cf. Fig. 1). Range of slope: 95% confidence range for the respective regression coefficients. In the
lower six data lines, means + S.D. are given for measurements concerning the D32 branch-point
ratio (cf. Fig. 3A) and for the electrotonic and anatomical distances to dendritic terminations. The
D32 branch-point ratio was equal to the expression X(d3'12)/D312), in which D is the diameter of a
parent branch and d the diameters of its daughters. Electrotonic distances (anatomical
distance/space constant) were calculated for each successive branch of a tree, using for each cell its
'own' value of membrane resistivity (Table 1). For each dendritic parameter, the mean + S.D. iS
given for the average as well as for the variability (s.D./average) of measurements obtained for each
one of the various dendrites.
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Fig. 2. Diagrams illustrating how changes in specific membrane resistivity (Rm) influenced
the relation between dendritic input conductance (GD) and dendritic stem diameter (D.).
This relationship could be expressed as loglo(GD) = b loglo(D,) + a (cf. Fig. 1), where b is the
slope and a is the Y-intercept of the regression line. The graphs show how this slope (A)
and Y-intercept (B) were influenced when calculations for all fifty-two dendrites together
were performed with different assumed values for Rm (kQl cm2; plotted as logarithms). For
A, the regression line was Y = 0-046 X+ 1-46 (r = + 0-990), and for B it was Y = -0-76
X+0 79 (r = 0 998). In B, the Y-values are given in units of log1o (conductance in nS).
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membrane resistivity (Fig. 2A). Hence, the relationship between dendritic input
conductance and stem diameter would be approximated by:

log10(GD) = 1.5 loglo(D.)+a, (3)

which may be rewritten as:
GD = D10asD3/2 (4)

As is demonstrated in Fig. 2B, the y-intercept a of eqn (3) varied markedly and
linearly with the logarithm of membrane resistivity. The regression line of Fig. 2B
has the equation,

a =-0-76 loglo(R.) + 0-794, (5)

which may also be written as:

10a = 100-794Rm-0 76 (6)

As 100794 equals 6-22, eqn (4) may now be rewritten as:

GD = Ds312RRm-0 76 6s22. (7)
This equation summarizes our findings concerning the relationship between

dendritic input conductance (nS), dendritic stem diameter (,um) and dendritic
membrane resistivity (kQ cm2).

Comparisons between the reconstructed dendrites and ideal 'equivalent-cylinder
dendrites'

According to the present results (Figs 1 and 2, eqn (7)), the calculated dendritic
input conductance was proportional to the dendritic stem diameter raised to the
power of 3/2. Thus, from this point of view, the reconstructed dendrites behaved
very similarly to the class of equivalent-cylinder dendrites analysed by Rall (1959,
1977). From which other points of view did the reconstructed dendrites resemble or
differ from Rall's equivalent-cylinder dendrites?

In an ideal equivalent-cylinder dendrite (see Introduction): (a) the 'D32 branch-
point ratio' should be equal to unity; (b) there should be no tapering; (c) all branch
terminations should occur at the same electrotonic distance from the soma; and
furthermore, (d) although it is not a necessary equivalent-cylinder requirement (Rall,
1977), model representations of dendritic trees are often drawn with a branching
pattern that is symmetrically dichotomous (both daughters have the same diameter).
Such a branch-point symmetry, if present, simplifies the quantitative analysis of a
dendrite, partly because there will then be a closer correspondence between relative
anatomical and electrotonic distances within the tree. The present reconstructed
dendrites are analysed below with respect to points (a)-(d).
D32 branch-point ratio. This ratio showed a great deal of variation. When analysed

for each dendritic tree separately, the index of variability (s.D./mean) was, on
average, about 34% or more (Table 2). When comparing average values between the
separate trees of a given motoneurone, the variability was about half as great, but
still considerable (mean, 15-9% for the four neurones of Table 2). As is shown in
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Fig. 3A and Table 2, the mean D32 branch-point ratio tended to be higher than unity
for the present dendritic trees. This trend was statistically significant for all dendrites
taken together (mean, 1 19 + 021) as well as, in three out of the four cases, for the
dendrites of each neurone analysed separately (Table 2; t test for difference from 1 0
gave P < 0-02 or less for all except cell 2). There was a slight but significant tendency
for the mean D32 branch-point ratio to become somewhat greater at increasing
somatofugal distances (Fig. 3A; r = +055, n = 16, P < 005; cf. Fig. 6B of Kernell
& Zwaagstra, 1989).
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CL ~~~~~~~~~E
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CNC

.0 O 1-

0 1000 2000 0 1000 2000

Distance (Mm) Distance (gm)
Fig. 3. Plots of mean dendritic branch-point properties (Y axis) vs. path distance from the
soma-dendrite border (Distance). Plotted means + S.D. calculated for the average values
obtained per dendrite. A: 'D32 branch-point ratio' is the expression l(d312)/D312, as
calculated for each individual branch point for parent (D) and daughter (d) dendrite
diameters. B: 'Daughters diameter ratio' is the diameter ratio between the largest and
smallest daughter branch, as calculated for each individual branch point. In A and B,
distance bins with < 1 branch point were excluded; for plotted mean values, the number
of cases (dendrites) was four or more.

Tapering. As mentioned already in our preceding paper (Kernell & Zwaagstra,
1989), the present dendrites often showed a significant amount of tapering. We
estimated the average degree of such tapering to be around 12% per branch (Kernell
& Zwaagstra, 1989). For further information on tapering, see below (section headed
'Combined effects of D32 branch-point ratio, tapering and distributed termination:
'D32 stem ratio' vs. distance').

Distribution of dendritic terminations. As is demonstrated in Table 2, dendritic
terminations were scattered over a considerable range of anatomical as well as
electrotonic distances. When calculated separately for each individual dendritic tree,
the mean variability in electrotonic distance to terminations was, for all dendrites
together, about 30% (see Table 2 for values per cell). Thus, in this respect also the
reconstructed dendrites clearly differed from the ideal equivalent-cylinder dendrite.
Symmetry of branching. There was a great degree of variability in symmetry of

branching (cf. Fig. 3B). In general branching tended to be markedly asymmetric with
respect to the diameters of sister branches (cf. Bras et al. 1987). There was a
significant tendency for this asymmetry to become less marked at increasing
somatofugal distances (Fig. 3B; r = -0'76, n = 16, P < 0'001). For all the dendrites
and branch points taken together, the average ratio between the largest and smallest
daughter diameter was 1'75.
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Combined effects of D32 branch-point ratio, tapering and distributed termination:
'D32 stem ratio 'vs. distance. In the ideal equivalent-cylinder dendrite, the expression
l(branch diameter312) would retain a constant value at all electrotonic distances from
the cell body. This would also be true for all anatomical distances, provided that
none of the branches terminated (termination would happen at different anatomical
distances for branches of the same electrotonic length if they differed in diameter).
Hence, in cases behaving like the ideal equivalent-cylinder model, the ratio l(branch
diameter3/2)/(stem diameter3/2) (i.e. the D32 stem ratio) would remain at a value of
10 for all somatofugal distances until the various branches terminated.

1.20
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(0 0.80

E
cN4 0.40-

0.00 II
0 1000 2000

Distance (,im)
Fig. 4. Plot illustrating how the 'D32 stem ratio' (Y-axis) of dendritic trees varied with
distance from the soma (,um). The D32 stem ratio was equal to X(d312)/D312, where d was
the dendritic segment diameter at a given somatofugal distance and D. was the diameter
of the corresponding dendritic stem. The plotted means were calculated from the average
values obtained per dendrite for all the reconstructed trees together (K>). The crosses show
the same relationship under the assumed condition that none of the dendritic branches
terminated; in this case all branches were assumed to continue to infinite length with the
diameter measured just prior to termination. In order to facilitate analysis of the plot, a
dashed line has been drawn for a D32 stem ratio of 1-0. In an ideal equivalent-cylinder
dendrite, all the values should have followed this line (Rall, 1959, 1977). Values of D32
stem ratio became significantly different from 1-0 at distances exceeding 400 ,um (t test).

The diagram of Fig. 4 shows that, for all the present dendrites analysed together,
the average D32 stem ratio remained reasonably close to 1 0 over the initial 400-500
um (average not significantly different from 10 at < 400 #sm). Thus, for these
moderate somatofugal distances, there was apparently a balance between the effects
of tapering and the effects of the relatively large D32 branch-point ratio (cf. Fig. 3A).
At somatofugal distances of about 500-1500 ,um there was a progressive and
continuous decline in the average D32 stem ratio. In Fig. 4, the upper curve (+)
corresponds to the D32 stem ratio that would be obtained ifnone of the branches ever
terminated (cf. Ulfhake & Kellerth, 1981; Rose, Keirstead & Vanner, 1985). Hence,
this upper curve represents the isolated effect of net changes in branch diameter on
the D32 stem ratio (summed effects of tapering and D32 branch-point ratios), and the
difference between the upper and lower curves represents the relative effect of branch
termination. The average results of Fig. 4 indicate that, at least over an intermediate
range of distances (about 500-1000 ,um), the decline in D32 stem ratio was caused by
diameter decline as well as by branch termination.
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The data of Fig. 4 show averages for mean values obtained from each one of the
present fifty-two dendrites. When the corresponding types of measurement were
plotted separately for the dendrites of each cell (Fig. 5), the results indicated that
individual motoneurones may show distinct differences with respect to the manner
in which their D32 stem ratio declines with somatofugal distance. In the two cells
with the highest input resistance, the D32 stem ratio even seemed to show an initial
overshoot to values above 1.0 (Fig. 5, cells 3 and 1). A similar tendency was recently
described for slow-twitch motoneurones in the study of Cullheim et al. (1987). In the
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Fig. 5. Plots like that of Fig. 4, but for values calculated separately for the dendrites of
each reconstructed neurone. The cells have been arranged in order of decreasing input
resistance (cf. Tables 1-3). Values ofD32 stem ratio became significantly different from 1 0
at distances exceeding 600 gm (cell 1), 300 pm (cell 2), 800 um (cell 3) and 100 pm (cell 4).

present case, however, none of the apparent 'overshoot values' were significantly
greater than unity (t test, P > 0 05). The present number of cells is too small for any
general conclusion concerning the possible relation between the decline of D32 stem
ratio and other neuronal properties.

Effects of differences in membrane resistivity between soma and dendrites

The calculations of the 'own' membrane resistivity of the present motoneurones
(Table 1) were performed on the assumption that the membrane of the soma had
the same passive properties as that of the dendrites. If this was the case, the
neuronal input conductance would largely be determined by the resting properties of
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its dendritic membrane (large dendrite-to-soma conductance ratio; see last line of
Table 1).

In order to explore some of the effects of differences between the somatic and
dendritic membrane resistivity, we performed a number of additional calculations
for which some results are displayed in Table 3. In these cases, the input conductance
of each dendritic tree was computed from its stem diameter using eqn (7).
A proportionality factor was assumed for the ratio between dendritic and
somatic resistivity. Given this assumption, resistivity values were computed that
would produce a neuronal input resistance equal to that measured experimentally
(cf. Table 1).

TABLE 3. Predicted electrical cell properties for different degrees of inhomogeneity
between soma and dendrite membranes

Cell 3 Cell 1 Cell 4 Cell 2
Dendr. Rm = 35 x soma Rm
Soma Rm (Q cm2) 716 308 325 198
D/S conductance ratio 109 097 1-03 087

Dendr. Rm = 500 x soma Rm
Soma Rm (Qcm2) 386 174 180 115
D/S conductance ratio 0-12 0-11 0-12 0-09

Dendr. Rm: resistivity of dendritic membrane. Soma Rm: resistivity of soma membrane. D/S
conductance ratio: cf. Table 1. Tabulated values calculated using eqn (7) and measurements of
I(D83/2) and soma area (cf. Table 1). See text for further explanation.

For a dendritic resistivity of 35 times that of the soma, the dendrite-to-soma
conductance ratio was close to 1-0 (Table 3). Thus, in this case the dendritic and
somatic membranes were of about equal importance for determining the total
neuronal input resistance. For a dendritic resistivity of 500 times that of the soma
(cf. Clements & Redman, 1986; Glenn et al. 1987), the dendritic input conductance
would be only about 10% of that of the soma. In this case, the cellular input
conductance would clearly be dominated by the properties of its somatic membrane.
For all the conditions shown in Table 3, there was a statistically significant

correlation between the measured neuronal input resistance and the required
membrane resistivity (somatic or dendritic; r > +0-98, P < 0-05).

DISCUSSION

A major result of the present study is summarized in eqn (7), which shows how the
approximate dendritic input conductance of triceps surae motoneurones might be
calculated from measurements of their dendritic stem diameter and an assumed
value for dendritic membrane resistivity.

In a preceding study, we used more restricted anatomical reconstructions for
analysing the relationship between size and input resistance among cat's hindlimb
motoneurones. We then concluded that the differences in neuronal size were far too
small to be responsible for the measured differences in neuronal input resistance
(Kernell & Zwaagstra, 1981). Hence, we also concluded that the differences in
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motoneuronal input resistance between high- vs. low-resistance cells (or slow-axoned
vs. fast-axoned cells) were to an important degree caused by differences in specific
membrane resistivity (see also Burke et al. 1982; Ulfhake & Kellerth, 1984;
Gustafsson & Pinter, 1984). This conclusion receives further support from the results
of the present study. Firstly, the argument of Kernell & Zwaagstra (1981) was partly
based on the assumption that dendritic input conductance would be proportional to
the 3/2 power of dendritic stem diameter. This assumption is completely in
accordance with the present experimental findings (eqn (7), Figs 1 and 2A, Table 2).
Secondly, although our present number of neurones is small, the results from these
four cells provide direct evidence that differences in input resistance between
motoneurones are, to a great extent, caused by differences in membrane resistivity
(cf. Table 1). As we pointed out in our previous study (Kernell & Zwaagstra, 1981),
differences in membrane resistivity are likely to be of great importance for the way
in which the various motoneurones will be recruited in postural control and
movement.

In a number of ways, the properties of the present motoneuronal dendrites clearly
deviated from those of the ideal equivalent-cylinder dendrites described by Rall
(1959, 1977): (a) the 'D32 branch-point ratio' tended to be greater than unity (Table
2, Fig. 3A); (b) there was tapering (Fig. 4; cf. Kernell & Zwaagstra, 1989); (c) the
various end-branches of a given tree did not terminate at the same electrotonic
distance from the cell body (see Table 2).

All these kinds of deviations from the ideal equivalent-cylinder model have also
been noted by various preceding investigators (see Introduction). In spite of these
deviations, the present motoneuronal dendrites resembled those of the ideal
equivalent-cylinder model with respect to the relationship between stem diameter
and calculated input conductance: in both cases, input conductance was proportional
to the 3/2 power of stem diameter (cf. eqn (7)). This model-like behaviour was
apparently partly due to the fact that various non-model-like properties of the
neuronal dendrites tended to balance each other. Particularly within the most
proximal portions of the tree, the relatively great D32 branch-point ratio (Table 2,
Fig. 3A) tended to become balanced by dendritic tapering (cf. Fig. 4). As a result, the
D32 stem ratio, as obtained for the whole material together, remained close to unity
during several hundred microns. The proximal portions of the dendrites would, of
course, be those most important for dendritic input conductance as seen from the
soma.
A D32 stem ratio similar to that of Fig. 4, remaining close to unity over initial

somatofugal distances of several hundred microns, has been reported in several
previous investigations of hindlimb motoneurones (Ulfhake & Kellerth, 1981, 1983;
Cullheim et al. 1987). In some other cases, a continuous decline ofD32 stem ratio was
found to be the most typical pattern (Barrett & Crill, 1971, 1974; Egger & Egger,
1982). The latter type of behaviour resembles that of our cell 4 (Fig. 5).
In addition to the relationship between dendritic input conductance and stem

diameter, our results also showed that the computed dendritic input conductance
tended to be proportional to membrane resistivity raised to the power of -076 (see
eqn (7)). If all dendrites had had an infinite electrotonic length, dendritic input
conductance would have been proportional to membrane resistivity raised to the
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power of -05 (see eqns (1) and (2)). For equivalent-cylinder models, however, a
slope more negative than -0 5 would be obtained for a population of dendrites of a
finite electrotonic length and a fixed anatomical length. We performed control
calculations with uniform cylinders of a diameter equal to that of an average
dendritic stem (844tm). If these cylinders had a length of about 1-2 mm, then the
relation between log (GD) and log (Rm) had a slope of about -075 (correlation
coefficient r = + 0 99).
As calculated for uniform properties of the soma-dendritic membrane, the present

values of specific membrane resistivity (1P8, 4-3, 5-4, 15 9 kQ cm2; Table 1) overlap
with, but tend to be higher than, estimates obtained by similar techniques in
previous investigations (Lux et al. 1970: 1P5-441 kQ cm2; Barrett & Crill, 1974:
1P3-3 6 kQ cm2 when maximally compensated for possible incompleteness of staining
of terminal endings; Ulfhake & Kellerth, 1984: 0-75 and 2-0 kQ cm2). These
differences might partly reflect sampling variations. Our estimates of mean
electrotonic length (10, 1-0, 1P2, 2 9 space constants; Table 2) also overlap with those
of earlier electroanatomical studies (Lux et al., 1970: 1P2-2-0 space constants; Barrett
& Crill, 1974: P1-P5 space constants; Ulfhake & Kellerth, 1984: 2-8 and 4 6 space
constants).

It is also of some interest to compare the present calculated cell properties for
uniform membrane properties (Tables 1 and 2) with corresponding data from
electrophysiological experiments; the measurements concerned were done according
to procedures appropriate for uniform equivalent-cylinder models of motoneurones
(Rall, 1977). Such experimental determinations of membrane time constant have
shown values in the range of 2-10 (sometimes to 14) ms (Nelson & Lux, 1970; Lux
et al. 1970; Burke & ten Bruggencate, 1971; Jack, Miller, Porter & Redman, 1971;
Jansek & Redman, 1973; Barrett & Crill, 1974; Gustafsson & Pinter, 1984; Ulfhake
& Kellerth, 1984; values up to about 14 ms: Zengel, Reid, Sypert & Munson, 1985).
That fits fairly well with the membrane time constants that one would obtain for the
presently reconstructed cells with their 'own' membrane resistivity and a normal
specific membrane capacitance of 1 jF/cm2 (about 2, 4, 5 and 16 ms; cf. Table 1).
Electrophysiological estimates of electrotonic length for whole motoneurones have
usually given values in the range of 1-2 space constants (Nelson & Lux, 1970; Lux
et al. 1970; Burke & ten Bruggencate, 1971; Jack et al. 1971; lansek & Redman,
1973; Gustafsson & Pinter, 1984; Ulfhake & Kellerth, 1984). Our estimates of
average electrotonic distance to dendritic terminations fall within this range for the
present cells 1, 3 and 4, whereas the mean value was as great as 2 9 space constants
for cell 2 (Table 2). It should be noted, however, that commonly used methods for
electrophysiological estimates of electrotonic length will not give accurate results at
long real lengths (Rall, 1977); great uncertainties may be expected for real lengths
exceeding about 1P5-2 space constants (de Jongh & Kernell, 1982). Electro-
physiological estimates of dendrite vs. soma conductance ratios have usually
suggested ratios in excess of 5, which is consistent with the values of Table 1.
However, the available electrophysiological methods have usually been considered to
give rather uncertain and highly approximate results (Nelson & Lux, 1970; Jack
et al. 1971; lansek & Redman, 1973; Ulfhake & Kellerth, 1984).

There is increasing evidence suggesting that, at least under normal experimental
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circumstances (microelectrode in cell body), the membrane resistivity might be higher
for the dendrites than for the soma (lansek & Redman, 1973; Fleshman et al. 1983;
Ulfhake & Kellerth, 1984; Clements & Redman, 1986; Glenn et al. 1987; cf. also
Barrett & Crill, 1974). Thus, the present estimates of the 'own' uniform membrane
resistivity of the various motoneurones may be too high for the soma and too low for
the dendrites (Table 1; see Table 3 for alternative values of membrane resistivity and
dendrite vs. soma conductance ratio). As a consequence, the mean electrotonic length
of the dendrites might in reality be shorter than those given in Table 2. These
considerations are not, however, of paramount importance in relation to the main
question of the present analysis, which concerns relative comparisons between
dendrites and motoneurones rather than their absolute membrane properties.
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