
Supporting Text
Simple Model for Kinesin

To show the validity of the Monte Carlo approach, we will show that it reproduces the previous experimental
results obtained for kinesin (1), which can also be calculated analytically by using the Michaelis-Menten expres-
sion. Kinesin moves processively toward the plus end of a microtubule by taking 8-nm steps. The dependence
of the velocity V on ATP is successfully reproduced by Michaelis-Menten kinetics that describes binding of a
kinesin head, denoted by K, to an ATP molecule and the subsequent hydrolysis

K +ATP
kon
�

koff

KATP
kcat
→ K +ADP+Pi. [1]

kon (koff) are rate constants for binding (unbinding) of an ATP by the kinesin head. kcat is the rate constant
of catalysis or hydrolysis of ATP, and Pi is the phosphate ion. We have included the fact that experimentally,
reversal of hydrolysis is negligible (2).

This leads to the Michaelis-Menten expression for the velocity V of the motor on a microtubule (MT)

V =
Vmax[ATP]

[ATP]+Km
. [2]

Vmax = kcatdε(F) is the maximum kinesin velocity at saturating ATP, d = 8 nm is the step size, F is the load,
and [ATP] is the ATP concentration. ε(F) is the load-dependent coupling efficiency between ATP hydrolysis
and mechanical stepping. It is independent of ATP concentration. We choose ε(F) = 1− (F/Fo)

2 in order to
interpolate between 100% efficiency at no load and zero at the stalling force Fo. Km = (kcat + koff)/kon is the
Michaelis-Menten constant.

One interesting feature of molecular motors is that there is a link between the applied load and their enzy-
matic properties. We can model this load dependence by including it in the rate constants. Kinesin experiments
indicate that increasing load results in a decrease in Vmax and an increase in Km. The decrease in Vmax is ac-
counted for by the coupling efficiency, which allows us to take kcat to be load independent. To account for the
observed increase in Km, we need either kon to decrease or koff to increase (or both) with increasing load. We
choose koff = ko

off exp [Fδ/kBT ] where kB is the Boltzmann’s constant, T = 300 K is the temperature in Kelvin,
ko

off = 55 s−1, and δ = 1.6 nm.
We now describe the Monte Carlo method and how it can be used to simulate the kinetic cycle of a molecular

motor. Monte Carlo is an approach to computer simulations in which an event A occurs with a certain probability
PA where 0≤PA ≤ 1. In practice, during each time step, a random number x is generated with uniform probability
between 0 and 1. If x ≤ PA, event A occurs; if x > PA, event A does not occur. Monte Carlo is also able to handle
cases where multiple outcomes are possible. For example, suppose there are three possibilities so that either
event A can occur with probability PA or event B can occur with probability PB or neither occurs. Then, if
x ≤ PA, A occurs; if PA < x ≤ (PA +PB), B occurs; and if (PA +PB) < x ≤ 1, neither occurs.

We model a kinesin head by having it be in one of two states s. Either an ATP molecule is bound to the head
(s = 1) or ATP is not bound (s = 0). The kinetic cycle corresponds to binding ATP (going from s = 0 to s = 1
with probability Pon = kon[ATP]∆t), followed by hydrolysis of ATP and release of ADP and Pi (transition from
s = 1 to s = 0 with probability Pcat = kcat∆t), and taking a step of size d = 8 nm with probability ε(F). It is also
possible that if an ATP is bound to the kinesin head, it is released without being hydrolyzed with probability
Poff = koff∆t. We set the length of a time step ∆t = 10−5 sec. As Figs. 7 and 8 show, our Monte Carlo simulation
reproduces the experimentally observed relationship between motor velocity and ATP concentration, as well as
the effect of applied load on the velocity. (More details of our Monte Carlo algorithm are available below.) A



further test of consistency is provided by the fact that the results obtained by the Monte Carlo simulation match
very well the analytical results of Eq. 2.

The kinetic scheme indicated above and implemented in the Monte Carlo simulation does not explicitly
include interactions between the two heads. This is certainly incorrect, as we know that in order for a motor
such as kinesin to be processive, there must be precise coupling of the enzymatic cycles for the two heads. In
fact, this simplification is common (3, 4), and is resolved when we realize that in the intact dimeric motor, one
step of the enzymatic cycle (e.g., Pi release) likely requires strain induced from the other head (5-7). While we
have not put such strain into our model, the rate constant kcat implicitly reflects the other head’s activity—if the
motor was really functioning as a monomer, this rate constant would be very different from the one we use. We
use such a simplification for dynein as well, where we choose a single rate constant for the multiple processes of
release of ADP and Pi (see below), at least one of which is presumably dependent on the activity of the second
head.

Monte Carlo Algorithm for Kinesin Model

We will now give more details as to how we used a Monte Carlo algorithm to simulate the chemical kinetic
cycle of kinesin. Let us describe a kinesin head by a two-state variable s = 0,1 with s = 1 representing kinesin
binding an ATP molecule and s = 0 representing kinesin without ATP bound.

1. Initial condition: Start at t = 0 with s = 0 and x = 0, where x is the position of the motor on the MT.

2. Binding/Unbinding ATP: At any given time t, switch the value of s with probability Pon = kon[ATP]∆t or
Poff = koff∆t, depending on whether the current value of s is 0 or 1. Here ∆t sets the basic time step in the
simulation. ∆t must be sufficiently smaller than the typical time scale over which the fastest process in the
mechano-chemical cycle occurs. For example, at saturating ATP levels and moderate loads, the binding
of ATP is the fastest process. Given the ATP on rate for kinesin (kon = 2× 106 M−1·s−1), ATP binding
will take typically 10−4 s for an ATP concentration of 5 mM. This is why we have taken ∆t = 10−5 s.

3. Hydrolysis and Step: If s = 1, hydrolysis takes place with probability Pcat = kcat∆t. After hydrolysis s → 0
and x → x+d with probability ε(F).

4. t → t +∆t and the process repeats.

Details of Dynein Model

Monte Carlo Algorithm

1. Binding/Unbinding ATP: Just as for kinesin, we begin with s = 0 and x = 0 at time t = 0, where s denotes
the number of ATP bound to the dynein head and x is the position of the motor on the MT. At any given
time t, we either add an ATP to a vacant binding site or remove the one that is already bound with the
probability given by the the appropriate kon or koff rates, depending on the current value of s, the number
of ATP molecules already bound. At any given time ATP binding is updated as follows:

(a) If s = 0, set s = 1 with probability p1
on = k1

on[ATP]∆t (bind site 1).

(b) If s = 1, set s = 0 with probability p1
off = k1

off∆t (unbind site 1) or set s = 2 with probability p2
on =

k2
on[ATP]∆t (bind a secondary site).



(c) If s = 2, set s = 1 with probability p2
off = k2

off∆t (unbind a secondary site) or set s = 3 with probability
p3

on = k3
on[ATP]∆t (bind another secondary site).

(d) If s = 3, set s = 2 with probability p3
off = k3

off∆t (unbind a secondary site) or set s = 4 with probability
p4

on = k4
on[ATP]∆t (bind third secondary site).

There is a subtle change in the scheme of binding/unbinding when ADP at site 1 has been released upon
taking a step following hydrolysis. In this case the first addition of ATP (after hydrolysis) is done with
probability p1

on. The removal or subsequent addition of ATP, however, remains same as described above.
To be specific, suppose site 1 is empty. Then the whole scheme can be described as

(a) If s = 0, set s = 1 with probability p1
on = k1

on[ATP]∆t (bind site 1).

(b) If s = 1, set s = 0 with probability p2
off = k2

off∆t (unbind a secondary site) or set s = 2 with probability
p1

on = k1
on[ATP]∆t (bind site 1).

(c) If s = 2, set s = 1 with probability p3
off = k3

off∆t (unbind one of the two ATPs at secondary sites) or
set s = 3 with probability p1

on = k1
on[ATP]∆t (bind site 1).

(d) If s = 3, set s = 2 with probability p4
off = k4

off∆t (unbind third secondary site) or set s = 4 with
probability p1

on = k1
on[ATP]∆t (bind site 1).

We assume that the on-rates for secondary sites, k2−4
on , depend on load as

k2−4
on = k2−4

on (F = 0)exp

(

Fdo

kBT

)

, [3]

where do is an adjustable parameter with units of length. The exponential Boltzmann factor accounts for
the increase in the ATP binding affinities of additional sites when the motor is under load. We assume that
all other on-rates and off-rates are independent of load.

2. Hydrolysis/Taking step: When site 1 has an ATP bound, then it can undergo hydrolysis with probability
pcat = kcat∆t. After hydrolysis, either the hydrolysis can reverse with probability psyn or the motor can
translocate to a new position on the MT with a step size depending on the number of ATP bound to
secondary sites.

(a) If s ≥ 1, hydrolyze with probability pcat.

(b) If hydrolysis has occurred, reverse hydrolysis can occur with probability psyn.

(c) If reversal occurs, s and x remain unchanged. If there is no reversal, a step occurs (x → x + d), and
ADP is released from site 1 with s → s−1.

Here kcat, which is an effective rate for hydrolysis, can depend on the number of ATP bound to the sec-
ondary binding sites – first, through the ATPase rate being dependent on whether or not a secondary site
is bound, and second, through the step size and load-dependent Boltzmann factor. We take

kcat = A(s)ko
cat exp(−αFd(s)/kBT ), [4]

where d(s) depends on the number of ATP bound to secondary sites. d(s) equals the size of the step that
may be taken. Here A(s) gives the reduction factor in the catalytic rate when a secondary site is not bound
and α is the load distribution factor for the hydrolysis (4, 8). The reversal of hydrolysis also depends on
load as

psyn = p0
syn exp(βFd(s)/kBT ), [5]

where β is the load distribution factor for the reversal of hydrolysis. As suggested in refs. 4 and 8,
α+β = 1.



3. t → t +∆t and the process is repeated.

Experimental Constraints

As inputs to any model, we need numerical values for various rate constants. For guidance into the values
of these constants, we use experimental data as available. As axonemal dynein has been more extensively stud-
ied biochemically, many of the approximate rate constants we use reflect these measurements. First, the binding
affinity of ATP at site 1 lies in the range of 104 −105 M−1 (9, 10). Second, the binding affinity of ATP at a sec-
ondary site is likely be an order of magnitude lower than site 1, and the binding of ATP at additional secondary
sites could be still lower (9). Further, we need to choose rate constants such that the motor moves at the correct
speed. It is also known that at saturating ATP levels (11), cytoplasmic dynein moves with an average speed of
≈ 700 nm/s and around ATP concentrations of 1 mM, the motor attains 80% of its maximum velocity. While
the step sizes at very low levels of ATP are mostly 32 and 24 nm, the step sizes even at saturating levels of ATP
in the absence of any load are not all 8 nm (12).

Actual Choice of Values

It turns out that these constraints are satisfied by the following choice (which is not unique): k1
on = 4× 105

M−1·s−1, k1
off = 10 s−1, k2

on(0) = 4×105 M−1·s−1, k3
on(0) = k2

on(0)/4, k4
on(0) = k2

on(0)/6, k2
off = k3

off = k4
off = 250

s−1, k0
cat = 55 s−1.

To implement the effect on ATP hydrolysis at site 1 by ATP binding/hydrolysis at site 3, we use a prefactor
A(s) for the probability of ATP hydrolysis at site 1:

A(s) = 1 for s > 1

=
1

100
otherwise. [6]

In the simulation the load on motor is given by the restoring force F = ktrapx as it moves away from x = 0, the
center of the trap. We take the trap stiffness ktrap = 0.007 pN·nm−1 as in ref. 12. The simulations were done
using d0 = 6 nm, α = 0.3, β = 0.7 and psyn = 0.23.

It is worth mentioning that the simulations use an ATP off-rate for k2
off that is somewhat higher than one

might expect from the argument given above (see Experimental Constraints) concerning the relative binding
affinities. It should be noted, however, that once a step is taken, the leading head becomes the trailing head, and
ATP unbinding from the trailing head would increase the effective off-rate. In addition to ATP detachment, the
secondary binding sites can lose ATP through hydrolysis (13). So we use an effective off-rate that reflects all of
these pathways.

Alternative Choice of Values

The binding affinities do not uniquely constrain the values of the on-rates and off-rates. In some monoclonal
antibody-antigen systems, the variation in the binding affinities are a reflection of the dissociation rates (14, 15).
So we also tried values with ki

on fixed for all i, and with all the load dependence and variation in the binding
affinities being reflected in the off-rates. The binding affinities were the same as before. The alternative values
for the on-rates and off-rates that we tried are k1

on = k2
on(0) = k3

on(0) = k4
on(0) = 4×105 M−1·s−1, k1

off = 10 s−1,



k2
off = 250 s−1, k3

off = 4× k2
off, k4

off = 6× k2
off. The load dependence on the secondary sites was given by

k2−4
off = k2−4

off (0)exp

(

−
Fdo

kBT

)

, [7]

where do = 6 nm as before. These alternative values did not change our original results if the error bars are taken
into account.
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