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SUMMARY

1. The present study has been performed to test for an influence of extracellular
ATP on the potential differences across the cell membrane (PD) in subconfluent
MDCK cells utilizing conventional microelectrodes.

2. In the absence of ATP, the mean measured PD was —47-5+0-:3 mV (+s.E.M.,
n = 320). Application of 10 gmol/l1 ATP leads to rapid (< 2 s) hyperpolarization of
the cell membrane by —18:5+04 mV (n = 221), reduction of input resistance by
14+ 1 MQ (n=106) and increase of the sensitivity of PD to alterations of
extracellular potassium.

3. The concentration needed for half-maximal effect (Ky) of ATP is = 0-5 umol/l.
ATP-y-S (K3~ 04 pmol/l) and ADP (K;=~ 09 gmol/l) are similarly effective,
whereas up to 1 mmol/l AMP or adenosine does not significantly alter PD.
Application of 10 gmol/l theophylline, 1 umol/l phentolamine and 10 gmol/l
indomethacin does not blunt the hyperpolarizing effect of ATP. .

4. The ATP-induced hyperpolarization is completely abolished in the presence of
1 mmol/l quinidine but only incompletely by 0-1 mmol/l quinidine or 1 mmol/l
barium. In calcium-free extracellular fluid (1 mmol/l EDTA added) PD is
—185+ 17 mV (n = 18). With reduced extracellular calcium, the hyperpolarizing
effect of ATP is blunted (—12:3+1:6 mV, n = 18) and only transient.

5. In conclusion, ATP hyperpolarizes MDCK cells by increasing the potassium
conductance. The activation of potassium channels requires calcium.

INTRODUCTION

Despite the increasing recognition of ATP as a neurotransmitter (Drury & Szent-
Gyorgyi, 1929 ; Burnstock, 1976, 1981 ; Gordon, 1986), only little is known about the
potential role of extracellular ATP in epithelial transport regulation. In rat jejunum
1 mmol/l ATP has been shown to increase transepithelial potential difference, an
effect which has been attributed possibly to altered energy supply (Kohn, Newey &
Smyth, 1970); in parotid acinar cells ATP has been shown to increase intracellular
calcium activity, to enhance rubidium efflux and to stimulate amylase secretion
(Gallacher, 1982; McMillian, Soltoff, Cantley & Talamo, 1987); in Madin—Darby
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canine kidney (MDCK) cells ATP has been shown to stimulate chloride secretion
(Simmons, 1981a).

MDCK cells are a permanent cell line from a dog kidney (Madin & Darby, 1958).
If grown to confluency, MDCK cells exhibit transepithelial transport of fluid and
solutes (Cereijido, Ehrenfeld, Meza & Martinez-Palomo, 1980; Simmons, 1981a,
1982). Transport systems at the apical cell membrane include sodium-hydrogen ion
exchange (Rindler, Taub & Saier, 1979; Rindler & Saier, 1981) and chloride
conductance (Kolb, Brown & Murer, 1985), transport systems at the basolateral cell
membrane, potassium conductance (Aiton, Brown, Ogden & Simmons, 1982; Brown
& Simmons, 1982), NaCl-KCl co-transport (Aiton, Chipperfield, Lamb, Ogden &
Simmons, 1981) and sodium, potassium-ATPase (Cereijido et al. 1980; Aiton et al.
1982). The same transport systems are expressed in subconfluent MDCK cells
(Paulmichl, Gstraunthaler & Lang, 1985; Lang, Defregger & Paulmichl, 1986a;
Paulmichl, Friedrich & Lang, 19865b).

The present study was performed to test for an effect of ATP on the cell membrane
potential in subconfluent MDCK cells and possibly to identify the ionic mechanism
of stimulated chloride transport in MDCK cells.

METHODS

The techniques employed have been described in previous papers in detail (Paulmichl et al. 1985).
In short, MDCK cells from the American Type Culture Collection (Madin & Darby, 1958;
Gstraunthaler, 1988) were used from passage 70 to 90. Serial cultures were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) with 10 % fetal calf serum, 100 U/ml penicillin and
100 pg/ml streptomycin, equilibrated with 95% humidified air and 5% carbon dioxide at 37 °C.
After growth to confluency monolayers were dispersed by incubation in a calcium- and magnesium-
free, trypsin—EDTA-containing balanced salt solution (pH 7-4), plated on sterile cover-glasses and
incubated again in the same medium as above for at least 48 h. Cover-glasses with incompletely
confluent cell layers were mounted in a perfusion chamber which allowed rapid fluid exchange
(chamber volume, 0-1 ml; perfusion rate, 20 ml/min). Extracellular perfusates were composed of
(in mmol/l): 114 NaCl, 5-4 KCl, 0-8 MgCl,, 1-2 CaCl,, 1-2 Na,HPO,~NaH,PO, (4:1), 20 NaHCO,,
55 glucose, at pH 74. The solutions were equilibrated with 5% carbon dioxide and 95% air
(pH 7-4) and kept at 37 °C. Where indicated, KCl was increased to 10, 20 or 40 mmol/] replacing
equal amounts of NaCl, or calcium omitted and 1 mmol/l EDTA added. These latter solutions had
calcium activities of less than 1 nmol/l. a-Adenosine, AMP, ADP, ATP, theophylline, indo-
methacin, quinidine, phentolamine and ouabain (all from Sigma, Munich, FRG) and ATP-y-S
(Fluka, Buchs, Switzerland) were added at the concentrations specified.

Measurements of potential difference across the cell membrane (PD) were made using
conventional microelectrodes (tip diameter < 0-5 #m; input resistance, 100-200 MQ; tip potential
< 5mV), back-filled with 1 mol/l KCl. The microelectrodes were made by pulling filament-
containing borosilicate tubes (0.d. 1 mm, i.d. 0-5 mm; Hilgenberg, Malsfeld, FRG) and connected
with a high-input-impedance electrometer (FD 223, WPI, Hamden, CT, USA). Measurements were
made using an Ag-AgCl reference electrode connected with the bath via a flowing 3 mol/1 KCl-agar
bridge. Impalements were made under an inverted phase-contrast microscope (Invertoscop ID,
Zeiss, FRG), using a piezostepper (PM 20 N, Frankenberger, 8034 Germering, FRG) mounted on
a Leitz micromanipulator (Leitz, Wetzlar, FRG). Measurements were performed on a vibration-
damped table. The potential differences were recorded on a chart recorder (Linseis, Selb, FRG). To
determine the resistance of the microelectrodes before, during and after micropuncture, square-
wave pulses up to 50 pA were injected by a stimulator and the voltage deflection was used
to calculate the respective resistance. Experimental manoeuvres were performed only if the
impalement resulted in rapid establishment of PD readings above —40 mV, stable (+2 mV) for at
least 30 s, and if electrode resistance and tip potential were similar (+2 mV, 110 MQ) before and
after intracellular recording.
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The transference number for potassium (tk = slope potassium conductance/slope cell membrane
conductance) was calculated from Helman & Thompson (1982):

= (dPD/61'5 mV)/log (5:4/20),

where dPD is the depolarization following increase of extracellular potassium concentration from
54 to 20 mmol/l. This concentration step has been chosen to minimize errors arising from
potential-sensitive conductances as discussed in detail previously (V6lkl & Lang, 1988).

Data are given as arithmetic means +standard error of the mean (s.E.m.). Statistical analysis was
made by paired ¢ test, where applicable. The number of experiments (z) denotes the number of cells.
For each series cells have been studied from at least five culture dishes. Statistically significant
differences were assumed at P < 0-05.
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Fig. 1. Effect of 01, 1 and 10 gmol/] adenosine triphosphate (ATP) on the potential
difference (PD) across the cell membrane (original tracing).

RESULTS

In the absence of ATP the potential difference across the cell membrane (PD) was
—47-5+0-:3 mV (n = 320). Impalement leads to a reversible increase of microelectrode
input resistance by 66+3 MQ (n = 188).

Application of 10 zmol/1 ATP leads to a rapid ( < 2 s) hyperpolarization of the cell
membrane (Figs 1, 3, 6 and 7) by —185+04 mV (r =221) to —659+04 mV
(n = 221) and reduces the input resistance by 14 + 1 MQ (n = 106). The concentration
needed for half-maximal hyperpolarization (K;, determined from interpolation) of
ATP is = 0'5 ymol/l (Fig. 2). ATP-y-S (K ~ 04 pmol/l) and ADP (K; ~ 0:9 pmol/])
are similarly effective, whereas up to 1 mmol/l AMP and adenosme do not
significantly alter PD (4+01+02 mV, n =8 and 0:0+0'1 mV, n =9 respectively,
Fig. 2).
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Increase of extracellular potassium concentration from 54 to 20 or 40 mmol/l
depolarizes the cell membrane by +124+06mV (n=34) or +22:5+14mV
(n = 34), respectively, in the absence of ATP, and by +23-2+05 mV (n = 10) or
+41:8+0:6 mV (n = 14), respectively, in the presence of ATP (Fig. 3). The values
allow calculation of the apparent transference numbers for potassium (tk), i.e. the
apparent contribution of potassium conductance to the cell membrane conductance

-25

-15 « ATP

o ATP-»S
sADP
sAMP

o Adenosine

dPD (mV)

n=8 ,.g

ol ¥ fnse n=11 n-8 n%9
10° 107 10 10° 10t 10® 10
Concentration (mol/l)

Fig. 2. Dose-response curve: the hyperpolarization of the cell membrane (dPD) following
application of ATP-y-S, ATP, ADP, AMP and adenosine at the respective concentrations
(mean values+s.E.M., n = number of cells tested).

(see Methods). ATP increases tk significantly from 0-36 +£0-02 (n = 33) to 0-66 1+ 0-02
(n = 10). Increase of extracellular potassium concentration from 54 to 10 mmol/l
depolarizes the cell membrane by +50+04 mV (r = 12). The presence of barium
(1 mmol/1) depolarizes the cell membrane to —29-7+09 mV (r = 20, Fig. 4) by a
reduction in the potassium conductance: in the presence of barium step increase of
extracellular potassium from 54 to 10 mmol/l does not significantly alter PD
(—02+03 mV, n = 6), i.e. tk is virtually abolished (Fig. 4).

In the presence of 1 mmol/l barium, ATP leads to a transient hyperpolarization to
—60:7+ 17 mV (n = 20) followed by a decline to —39-54+3-6 mV (n = 5) after ~ 2
min (Figs 4 and 5). Despite the reduction in the apparent potassium conductance
observed in the presence of barium, ATP may still induce a marked hyperpolarization
of the membrane by an increase in the apparent potassium conductance : increase of
extracellular potassium concentration from 5-4 to 10 mmol/l leads to a depolarization
of the cell membrane by +7:1+0:6 mV (z = 10) during the transient hyper-
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Fig. 3. Effect of increasing extracellular potassium concentration from 54 (54 K*) to 20

(20 K*) mmol/l on the potential difference across the cell membrane (PD) both in the

absence and presence of 10 gmol/1 ATP (original tracing).
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Fig. 4. Effect of 10 zmol/l ATP and of increasing extracellular potassium concentration
from 54 to 10 mmol/l on the potential difference across the cell membrane (PD) in the
presence of 1 mmol/]l barium (original tracing).
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Fig. 5. Effect of 10 gmol/l ATP and of 1 #mol/l adrenaline on the potential difference
across the cell membrane (PD) in the presence of 1 mmol/] barium (mean values +s.E.M.,
n = number of cells tested).
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Fig. 6. Effect of 10 umol/l ATP and of increasing extracellular potassium concentration

from 54 to 40 mmol/] on the potential difference across the cell membrane (PD) in the
presence of 1 mmol/l quinidine (original tracing).

polarization and by +4:3+1:0 mV (n = 7) during the sustained hyperpolarization
(Fig. 4). Apparently the potassium channels activated by ATP are in large part
subsequently blocked by barium. Removal of ATP in the continued presence of
barium depolarizes the cell membrane by +6:7+3:5 mV (n = 5) to —31'4+1-:6 mV
(n = 5, Fig. 5). As apparent from Fig. 5, the hyperpolarization following application
of ATP in the presence of barium is clearly more sustained than the hyperpolarization
following application of adrenaline in the presence of barium. Application of
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10 gmol/l theophylline, 1 gmol/l phentolamine and 10 gmol/l indomethacin do
not significantly alter PD (4+04+04 mV, n=7, —03+02mV, »=11, and
—024+0:3 mV, n =717, respectively) and do not significantly modify the hyper-
polarizing effect of ATP (—183+10mV, n=7, —21-0+1-4 mV, »=11, and
—254+2:6 mV, n =17, respectively).
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Fig. 7. Effect of 10 umol/1 ATP on the potential difference across the cell membrane (PD)
in the nominal absence of calcium and presence of 1 mmol/l EDTA (original tracing).

Quinidine at 01 mmol/l depolarizes the cell membrane to —2354+3-:0 mV
(n = 24), but does not block the ATP-induced hyperpolarization (—22:7+43 mV,
n = 19). Quinidine at 1 mmol/l depolarizes the cell membrane to —6:94+2-7 mV
(n =8) and completely abolishes the hyperpolarizing effect of ATP (Fig. 6).
Reduction of extracellular calcium activity to = 10 nmol/] (calcium omitted and
1 mmol/l1 EDTA added) depolarizes the cell membrane to —18:5+1-7 mV (n = 18).
With reduced extracellular calcium, the hyperpolarizing effect of ATP is blunted
(—12:3+16 mV, n = 18) and only transient (Fig. 7). A similar blunting of the ATP
effect is observed, if calcium is omitted without addition of 1 mmol/l EDTA.

Ouabain depolarizes the cell membrane by +4:8+1:3 mV (n = 10) within 72 s.
Subsequent application of ATP hyperpolarizes the cell membrane by —29-9+1-9 mV
(n = 10).

DISCUSSION

The present study illustrates that subconfluent MDCK cells are sensitive to
extracellular ATP. The efficacy of ATP-y-S indicates that metabolism of ATP is not
required for its effect. Since the effect of ATP cannot be mimicked by adenosine
(Fig. 2), it appears that the hyperpolarizing effect of ATP in MDCK cells is mediated
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by P, receptors. Accordingly, the effect of ATP is not affected by theophylline, which
has been shown to interfere with P, purinergic receptors (Burnstock, 1981).

The ATP-induced hyperpolarization is the result of enhanced potassium con-
ductance, as reflected by the increased potassium selectivity and the reduced
input resistance. Apparently the ATP-induced hyperpolarization does not require
stimulation of sodium, potassium-ATPase since ouabain does not blunt the effect of
ATP. The stimulation of potassium conductance by extracellular ATP contrasts
with the inhibitory effect of intracellular ATP on potassium channels in a variety of
tissues (Romero, 1978; Noma, 1983; Trube & Hescheler, 1984; Findlay, Dunne &
Petersen, 1985; Arkhammar, Nilsson, Rorsman & Berggren, 1987; Findlay, 1987;
Horie, Irisawa & Noma, 1987 ; Stanfield, 1987 ; Sturgess, Hales & Ashford, 1987). The
question of whether intracellular ATP similarly regulates potassium channels in
epithelia cannot be answered with certainty at present (Lang, Messner & Rehwald,
1986b). Increased potassium permeability of the cell membrane in response to
extracellular ATP has been reported for fibroblasts (Okada, Yada, Ohno-Shosaku,
Oiki, Ueda & Machida, 1984) and activation of potassium channels by ATP has been
observed in cultured myoblasts and myotubes (Kolb & Wakelam, 1983).

The hyperpolarization due to enhanced potassium conductance may contribute to
the ATP stimulation of chloride secretion (Simmons, 1981a) by increasing the
driving force for chloride exit across the luminal cell membrane. Whether ATP
stimulates in addition a chloride channel cannot be answered from these studies. In
MDCK cells chloride channels are stimulated by cyclic AMP (Lang et al. 1986a;
Lang, Paulmichl, Defregger, Gstraunthaler, Pfaller & Deetjen, 1987) and ATP has
been shown to stimulate cyclic AMP generation in some tissues such as intestinal
cells (Korman, Lemp, Jackson & Gardner, 1982), adipocytes (Crooke, Allan,
Pattinson & Sneyd, 1980) and fibroblasts (Westcott, Engelhard & Storm, 1979). Any
stimulation of chloride channels may have been masked by the marked stimulation
of potassium channels. In the case of adrenaline, the effects can be dissociated
since stimulation of chloride conductance is mediated by f-receptors (Lang et al.
1986a; 1987). Isoprenaline leads to a slight depolarization and an increase of chloride
selectivity of the cell membrane. Following application of adrenaline, stimulation
of potassium channels by far outcasts the stimulation of chloride channels and the
cell membrane approaches the equilibrium potential for potassium (Paulmichl,
Defregger & Lang, 1986a).

The hyperpolarizing effect of ATP is blunted and only transient in the nominal
absence of extracellular calcium. Similarly to ATP, both adrenaline (Paulmichl et al.
19864) and bradykinin (Paulmichl, Friedrich & Lang, 1987) hyperpolarize the cell
membrane by stimulation of potassium conductance. The effect of these hormones is
similarly transient but it is not blunted in the nominal absence of extracellular
calcium. Possibly ATP is less efficient in recruiting intracellular calcium than
adrenaline or bradykinin. In any case release of intracellular calcium alone is not
likely to account for the sustained hyperpolarization. Rather calcium entry must
occur in addition across the plasma membrane and, in fact, an ATP-stimulated
calcium channel has been identified recently in smooth muscle (Benham & Tsien,
1987).

The effect of ATP is blocked by 1 mmol/l quinidine, but apparently only in part
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by 1 mmol/l barium. Prior studies revealed that the potassium channels activated by
adrenaline are, with some delay, completely blocked by barium. The comparison
of the effects of ATP and adrenaline reveals that in the presence of barium the
ATP-induced hyperpolarization is clearly more sustained than the effect of
adrenaline. Thus, in contrast to adrenaline, ATP hyperpolarizes the cell membrane
in part via a mechanism which is not sensitive to barium, even after some delay. This
observation may again point to a difference in signal transduction of the two
hormones.

The observation that ATP-induced hyperpolarization was not blunted by
indomethacin is compatible with prostaglandin-dependent stimulation by ATP of
short-circuit current (SCC) in confluent MDCK cells (Simmons, 19815). Possibly
prostaglandins stimulate chloride conductance at the luminal cell membrane and
activation of basolateral potassium channels by ATP increases SCC only if luminal
chloride channels are patent.

In conclusion, ATP hyperpolarizes MDCK cells by activation of potassium
channels. The effect is mediated by P, receptors and depends on calcium. By
increasing the driving force for chloride exit, the hyperpolarization could lead to
stimulation of chloride secretion.
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