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SUMMARY

1. In a cholinergic synaptic couple in the buccal ganglion of Aplysia californica,
where the synaptic areas are situated close to the somata (500 ,tm), we were able to
control transmitter release by stimulating the cell body of the presynaptic neurone
with long depolarizing pulses in the presence of tetrodotoxin (TTX).

2. Statistical analysis of noise occurring at the peak of the long-depolarization-
induced post-synaptic current (p.s.c.) responses allowed us to calculate the amplitude
and the decay time of the miniature post-synaptic currents (m.p.s.c.s). These data
were used to calculate the quantal content of the responses.

3. Bath-applied tubocurarine reduced the amplitude of the long-depolarization-
induced p.s.c. more than that of the m.p.s.c.s, indicating that tubocurarine exerts
a depressive presynaptic action on the quantal content ofthe post-synaptic responses.

3. Tubocurarine injected into the presynaptic neurone blocked synaptic trans-
mission without decreasing the size of the m.p.s.c.s probably by acting on the
mechanism of transmitter release.

5. Bath-applied atropine (10-6 and 10-5 M) caused a slight decrease of the m.p.s.c.s
but the long-depolarization-induced p.s.c.s increased, as did the quantal content.
Higher concentrations of atropine depressed strongly both the m.p.s.c. and the
quantal content.

6. Injection ofatropine into the presynaptic neurone had the same effect as its bath
application, probably due to the leakage of the drug into the synaptic cleft; the effect
depended on the concentration reached in the cleft, i.e. on the quantity of injected
drug. The synapses of the neighbouring cholinergic neurone were also affected by this
leak of atropine.

7. The presence of nicotinic presynaptic receptors blocked by tubocurarine, and
muscarinic presynaptic receptors blocked by atropine, which regulate synaptic
transmission by facilitating and depressing the ACh release respectively, is discussed.

INTRODUCTION

Tubocurarine and atropine are widely used as tools to study the mechanism of
cholinergic synaptic transmission. The post-synaptic effects of these drugs are
relatively well known. Since the work of Dale, Feldberg & Vogt (1936), the blocking
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action of tubocurarine has been attributed to its ability to bind to the post-synaptic
nicotinic acetylcholine receptors and to prevent the binding of acetylcholine (ACh).
Later it was shown that, besides exerting a competitive antagonism, tubocurarine
can also act as a non-competitive antagonist by binding to allosteric sites on the ionic
channel of the ACh receptor, thus occluding the channel once it has opened (Ascher,
Marty & Neild, 1978; Katz & Miledi, 1978; Colquhoun, Dreyer & Sheridan, 1979;
Lambert, Volle & Henderson, 1980). Furthermore, tubocurarine is a weak agonist in
opening, at low concentrations, the ionic channels associated with ACh receptors
(Trautmann, 1982).
Atropine antagonizes the actions of ACh mediated by muscarinic receptors, and

is especially effective in autonomic effectors innervated by the post-ganglionic
cholinergic nerves. However, at higher concentrations, it can also act on the nicotinic
or nicotinic-like ACh receptors of Aplysia (Tauc & Gerschenfeld, 1962), probably by
shortening the mean open time of the post-synaptic ionic channel as shown at the
neuromuscular junction (Katz & Miledi, 1973; Feltz, Large & Trautmann, 1977).
Both tubocurarine and atropine seem also to interfere with a presynaptic

mechanism. In vertebrate brain preparations (Molenaar & Polak, 1970; Rospars,
Lefresne, Beaujouan & Glowinski, 1977; Szerb, 1979; Nordstrom & Bartfai, 1980;
Raiteri, Leardi & Marchi, 1984; Meyer & Otero, 1985), in Torpedo electric organ
preparations (Michaelson, Avissar, Kloog & Sokolovsky, 1979; Dunant & Walker,
1982; Pinchasi, Burstein & Michaelson, 1984) or in the guinea-pig myenteric plexus
(Kilbinger & Wessler, 1980), the presence of exogenous ACh, carbachol or oxotrem-
orine in the bathing medium reduces the release of endogenous ACh, an effect that
is blocked by the muscarinic antagonist, atropine. Atropine enhances ACh release in
the vertebrate brain preparations in vitro or in vivo (Mitchell, 1963; Molenaar &
Polak, 1970; Jones, Guyenet, Cheramy, Gauchy & Glowinski, 1973; Bourdois,
Mitchell, Somogyi & Szerb, 1974; Hadhazy & Szerb, 1977; Nordstrom & Bartfai,
1980; Weiler, Misgeld & Cheong, 1984). These results were interpreted as indicating
the presence of presynaptic regulation mediated by muscarinic autoreceptors local-
ized on the cholinergic nerve ending itself.
A presynaptic effect of tubocurarine at the vertebrate neuromuscular junction was

also deduced from experiments which showed that the decline in amplitude of
successive end-plate currents or potentials during a train of impulses was faster when
tubocurarine was added to the preparation (Lilleheil & Naess, 1961; Hubbard, Wilson
& Miyamoto, 1969; Galindo, 1971; Glavinovic, 1979; Magleby, Pallotta & Terrar,
1981). Although the mechanism of this depressive action on quantal release could not
be ascertained, these observations suggested the presence of pre-junctional nicotinic
receptors which mediate positive feed-back control of ACh release and are blocked
by tubocurarine (Briggs & Cooper, 1982; Rowell & Winkler, 1984; Bowman, Marshall
& Gibb, 1984).

In the present study we have obtained evidence that both tubocurarine and
atropine act on quantal transmitter release in a central cholinergic synapse of
Aplysia. Extracellularly applied tubocurarine leads to a decrease of the number of
quanta released during a long-lasting depolarization imposed on the presynaptic
endings. On the contrary, atropine applied in the bath at low concentration enhances
the quantal content of the post-synaptic responses. We propose that the effects of
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tubocurarine and atropine could be explained by the presence on the nerve ending
of the presynaptic neurone of both nicotinic and muscarinic autoreceptors.

METHODS
Preparation

Dissected and desheathed buccal ganglia of Aplysia californica obtained from the Pacific
Biomarine Supply Co. (Venice, CA, U.S.A.) were used. Each buccal ganglion contains two large cells
(250 ,um diameter) which are presynaptic to a group of post-synaptic cells (300 ,um) situated close
by (Gardner, 1971). After removing the connective tissue, the resting potentials recorded from both
pre- and post-synaptic cells were between -50 and -60 mV. The post-synaptic cells produced
Cl--dependent inhibitory post-synaptic potentials when spikes were generated in the presynaptic
neurone. Because 3 M-KCl-filled micropipettes were used, the Cl- equilibrium potential had a
tendency to shift towards less negative values; therefore it was continuously controlled throughout
the experiment by establishing the holding potential for which the evoked or ACh ionophoretic
responses gave zero current.
The monosynaptic nature of the connection between the pre- and the post-synaptic cells is well

established (Gardner, 1971; Tauc, Hoffmann, Tsuji, Hinzen & Faille, 1974) as well as its cholinergic
nature (Tauc et al. 1974; Baux, Simonneau & Tauc, 1979; Tauc & Baux, 1982; Baux & Tauc, 1983).

Solutions
The ganglia were bathed with artificial sea water (ASW) of composition (mM): NaCl, 460; KCI, 10;

CaCl2, 11; MgCl2, 25; MgSO4, 28; Tris HCl buffer, 10; pH 7.8. When it was necessary to block Na+
channels, tetrodoxin (TTX, Sigma) was added to the normal ASW at a final concentration of 10-4 M.
Bath-applied tubocurarine chloride (Sigma) and atropine sulphate (Merck) were used at
10-6-10-4 M. Tubocurarine (10-3 M in ASW) was injected intracellularly by an air-pressure system.
Injection of ASW alone was without any effect. Atropine sulphate (1 M) in distilled water
was injected into the soma of the presynaptic cell by ionophoresis using a constant-current
device. For ionophoretic application of ACh on the somatic ACh receptors (Tauc & Gerschenfeld,
1961) of the post-synaptic cell, the micropipette was filled with a solution of ACh (1 M) in distilled
water.

Electrical recordings and calculation of quantal parameters
Glass micro-electrodes were pulled on a De Fonbrune microforge and filled with 3 M-KCI; their

resistance was 1-5 MQ1. Measurements of post-synaptic current (p.s.c.) responses evoked by a
presynaptic spike or an ionophoretic application of agonist were performed using the classical
voltage-clamp method.

Because of the great number of neurones afferent to the post-synaptic cell in this preparation
it was not possible to record the spontaneous individual miniature post-synaptic currents (m.p.s.c.s)
resulting from the release of quanta by a given presynaptic neurone. Hence, the quantal aspects
of synaptic transmission in the buccal ganglion were studied by an indirect method previously
described by Simonneau, Tauc & Baux (1980). Briefly, pre- and post-synaptic cells were simul-
taneously voltage-clamped to holding potentials of -50 and -80 mV respectively. When the volt-
age-dependent Na+ conductance was blocked by TTX (10-4 M), a 3 s step depolarization of the
presynaptic neurone induced a post-synaptic response (long-depolarization-induced p.s.c.) at the
peak of which appeared fluctuations (noise) resulting from the summation of discrete events which
could be identified as m.p.s.c.s. The amplitude of the m.p.s.c. was calculated using the Campbell's
theorem, in which the size of the unitary element or individual m.p.s.c. (imin) is related to the
variance of the noise (E2) and the mean observed current change (I) by the equation: imin = 2FP/I
(Katz & Miledi, 1972). Because the Cl- reversal potential could shift during the course of
experiments, the results were expressed as conductances by the following equation gmin = 2E2/l( V-
Veq) where V is the holding potential and Veq the Cl- reversal potential. This method also permitted
calculations of the relative number of quanta released during a 3 s long-depolarization-induced
p.s.c., using the ratio: (IL 3)/(imin. Tmin) where Tmin (0-013 s) is the decay time of the m.p.s.c.
calculated from the noise by using a Fast Fourier Transform. Such a calculation of the quantal
content is independent of the post-synaptic modifications, since the latter affect imin and I to the
same proportion.
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RESULTS

Action of tubocurarine on ACh receptors
Tauc & Gerschenfeld (1961) showed that, in Aplysia central neurones, pharma-

cologically identical ACh receptors are present not only on the synapse but also on
the cell bodies, and that these H-type receptors that activate a Cl- permeability are
blocked by turbocurarine. In order to obtain information on the potency of
tubocurarine on the receptors of the post-synaptic cell used in the present study, ACh
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Fig. 1. Effects of tubocurarine applied in the bath at different concentrations, on
post-synaptic and ACh responses recorded in a post-synaptic cell of the buccal ganglion.
A, post-synaptic responses to ionophoretically applied ACh on somatic receptors were
depressed by indicated concentrations of tubocurarine to 81, 48 and 35 %, respectively,
of the control. B, long-depolarization-induced p.s.c.s induced by presynaptic depolar-
izations to 0 mV were depressed by the same concentrations of curare to 50 %, 25 % and
10% of the control. Quantal content calculated by the relation: (I/2P/I) (3/Tmin) =
(Pl/2E2) (3/0-013) was 12 883 for the control, 9030 in curare (2 x 10-6 M) and 6787 in curare
(5 x 10-6 M). The size of the m.p.s.c.s calculated from the same responses were depressed
to a similar proportion as the ionophoretic responses (control: 1-63 nS; curare (2 x 10-6 M):
1-15 nS; curare (5 x 10-6 M): 0-68 nS; incalculable for curare (10-5 M)). The post-synaptic
cells were voltage clamped at -80 mV. Bi: d.c. recordings; B2: a.c. recordings. 5 nA
represent 90 nS.

was applied ionophoretically to the somatic ACh receptors in the presence of different
concentrations of tubocurarine chloride (Fig. 1). Concentrations which were effective
without abolishing the responses ranged from 10-6 to 10-5 M, depressing the ACh
currents by about 30-75 % of the control response in a few minutes. Wash-out of the
drug led to a slow recovery ofthe ACh responses to about 80 % ofits control size within
30 min.

Action of tubocurarine on the evoked post-synaptic response
The responses to depolarizations of the presynaptic neurone to 0 mV in the

presence of different concentrations of tubocurarine are shown in Fig. 1. Both the
long-depolarization-induced p.s.c. and the m.p.s.c. decreased as the concentration of
tubocurarine was increased over a range similar to that which reduced the response
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Fig. 2. Reduction by two concentrations of bath-applied tubocurarine of the calculated
miniature post-synaptic current (m.p.s.c.) expressed as a conductance (A) and of the
quantal content of long-depolarization-induced p.s.c. (B) for increasing presynaptic
depolarizations. Preparation different from Fig. 1. *: control; *: tubocurarine
(2 x 10-6 M); A: tubocurarine (5 x 10-6 M).
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Fig. 3. Decrease by tubocurarine of the p.s.c. induced by depolarizations of the pre-

synaptic neurone to + 10 mV. Upper traces: d.c. recordings; lower traces: a.c. recordings.
Tubocurarine was injected into the presynaptic neurone just before the recording that
we used as the control. The post-synaptic response began to decrease 10 min after injection
of the drug. 3 nA represent 150 nS.
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to ionophoretic application of ACh. The decrease of the size of the m.p.s.c. was,
therefore, attributed to the action of the drug on the post-synaptic receptor-channel
complex. However, the decrease in amplitude of the long-depolarization-induced
p.s.c.s was more pronounced than that of the underlying m.p.s.c.s. The ratio mean
long-depolarization-induced p.s.c./m.p.s.c. decreased, while Tmin (0-013 s) was un-
changed, indicating that the quantal content of the response was diminished. A
'dynamic' representation of the changes of the calculated m.p.s.c. amplitude and of
the quantal content of the responses with different presynaptic depolarizations is
shown in Fig. 2.

It seems reasonable to suppose that the voltage-sensitive Ca2+ permeability in the
somatic membrane is identical to that in the synaptic terminal membrane (Stinnakre
& Tauc, 1973), to which we have no access. Therefore, we tested the effect of
tubocurarine on the Ca2+ conductance of neurones of the group L1-L6 of the
abdominal ganglion, which generate spikes in Na+-free saline or in the presence of
TTX (Baux et al. 1979). Tubocurarine did not alter the Ca2+ spikes.

Action of tubocurarine injected intracellularly into the presynaptic neurone
The large size of the cell body of the presynaptic cell and the short distance

separating the soma and the nerve endings make it possible to study the effects on
transmitter release of substances which, following their introduction into the soma,
migrate to the presynaptic terminal (Tauc et al. 1974; Baux & Tauc, 1983). When
tubocurarine was injected, it was found to depress the synaptic transmission
(Fig. 3, and Davies & Hinzen, 1979). This depression was attributed by Davies &
Hinzen (1979) to a leakage of tubocurarine from the terminal, a conclusion not in
agreement with our present findings. The method using the long-depolarization-
induced p.s.c. and the synaptic noise analysis showed. that the depression of the
synaptic transmission after pressure injection of tubocurarine is not due to a
diminution of the m.p.s.c.s but to a decrease in the number of quanta released
(Fig. 4). This excludes the existence of any significant leakage of the injected drug at
the synapse and points to a presynaptic mechanism for the depression, by which
intracellular tubocurarine would decrease the number of quanta liberated per given
stimulus.

Action of atropine on the post-synaptic response
Atropine also acts as an antagonist on the H-type receptors, but higher concen-

trations of the drug are needed to produce depressions of the post-synaptic responses
identical to those produced by tubocurarine (Tauc & Gerschenfeld, 1982, and
compare Fig. 2 with Fig. 5).
Quantal analysis revealed that both long-depolarization-induced p.s.c. and

m.p.s.c.s were depressed when the concentration of atropine was 10-4 M or greater.
But at 10-6 and 10-5 M, the size of the m.p.s.c. was only slightly decreased and the
quantal content of the post-synaptic response was increased, since the amplitude of
the long-depolarization-induced p.s.c. was enhanced (Fig. 6). Moreover, it appeared
that atropine, besides being more efficient at 10-5 M than at 10-6 M, also had a pro-
portionally more pronounced facilitatory effect on long-depolarization-induced
p.s.c.s of higher amplitude produced by greater release of ACh (Figs. 5 and 6). To
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Fig. 4. A, effect of tubocurarine pressure-injected into a presynaptic neurone of the buccal
ganglion, on the amplitude of the p.s.c. induced by a presynaptic depolarization to 0 mV
membrane potential. 0: mean amplitude of the long-depolarization-induced p.s.c.
expressed as percentage of the control response. 0: calculated conductance of the m.p.s.c.
The increase of the m.p.s.c. after tubocurarine injection was due to a dependence ofthe size
of the calculated m.p.s.c. on the amplitude of the long-depolarization-induced p.s.c., i.e.
the presynaptic depolarization as shown in B for another untreated preparation. As
previously shown (Simonneau, Tauc & Baux, 1980), the size of the calculated m.p.s.c. was
higher for low presynaptic depolarizations. No satisfactory explanation was found for this
phenomenon.

analyse further the site of action of atropine we have injected the drug into the
presynaptic neurone.

Action of intracellularly injected atropine
The long-depolarization-induced p.s.c. technique was used to analyse the effects

of atropine injected into the presynaptic neurone. lonophoretic injection of atropine
for 15 min or more (50 nA constant current) decreased both the long-depolarization-
induced p.s.c. and the calculated m.p.s.c. (Fig. 7 A). By reducing the time of injection
to 10 or 5 min, thereby reducing the quantity of atropine injected, it was possible
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Fig. 5. Effect of bath-applied atropine on the m.p.s.c. and on the quantal content of the
post-synaptic response measured in the same preparation. A, the m.p.s.c. was slightly and
progressively decreased as the concentration of atropine in the bath was raised from
10-6 M to 10-4 M. 0: control; *: 10-6 M-atropine; *: 10-5 M-atropine; A: 10-4 M-
atropine. B, the quantal content of the long-depolarization-induced p.s.c. was increased
by atropine at concentrations 10-6 and 10- M, but a recovery towards the control value
began with 10-4 M concentration (dashed line). The increase in quantal content was
proportionally greater for higher presynaptic depolarizations: at + 5 mV, from 13 125 to
15184 (increase by 16%); at +20mV, from 17264 to 28080 (increase by 62%), when
atropine (10- M) was bath-applied.

to induce an increase of the quantal content of the responses (Figs. 7B and 8) as
reflected by the simultaneous enhancement of the long-depolarization-induced p.s.c.
and the slight reduction of the m.p.s.c. (Fig. 8).
The effects of atropine were reversible, no matter what quantity was injected

(Fig. 7 A). This suggests that the intracellular concentration ofthe drug decreased with
time. A plausible mechanism is that atropine leaks across the cytoplasmic membrane,
which would explain the decrease of the m.p.s.c. as resulting from an accumulation
of atropine in the synaptic cleft. The cellular configuration of this preparation
allowed us to examine whether such a leak occurs, as detailed below.

Intracellularly injected atropine affects the neighbouring neurone
The buccal ganglion contains, in addition to the presynaptic neuorone used in our

experiments, a second 'equivalent' large cholinergic cell. The two neurones have their
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Fig. 6. Effect of bath-applied atropine on the amplitude of the long-depolarization-
induced p.s.c.s which were induced by depolarizations of the presynaptic neurone to 0 mV
(A) or + 20 mV (B). Upper traces: d.c. recordings; lower traces: a.c. recordings. In both
cases, atropine enhanced the long-depolarization-induced p.s.c., proportionately more in
B when a greater quantity of ACh was released into the synaptic cleft by the presynaptic
neurone than in A. As the bath concentration of atropine was increased, the quantal
content increased in A from 2990 to 3500 (increase by 170%) and to 4830 (increase by
61 %), and in B from 14280 to 24480 (increase by 60 %) and to 34500 (increase by 141 %).
5 nA represent 130 nS.

cell bodies side by side and make afferent contacts on the same post-synaptic cells
(Fig. 9). The nerve endings of these two neurones are most probably intermingled
and it is possible that a substance leaking from one of these neurones would contact
the synaptic sites of its neighbour.
To test this possibility the two presynaptic neurones, as well as the common

post-synaptic nerve cell, were penetrated by two micro-electrodes each and the
directly evoked p.s.c.s were monitored in the voltage-clamped post-synaptic cell.
The response to one of the presynaptic neurones was considered as the control; the
other presynaptic neurone was injected with atropine. It is clear from Fig. 9 that
following the injection of atropine the decrease of the post-synaptic current is not
limited to the response initiated by the injected neurone; the response to activation
of the control neurone is equally depressed. This depression most probably results
from the leakage of atropine from the injected neurone (as suggested by the above
recovery of the long-depolarization-induced p.s.c. response) and its penetration into
the synaptic regions of the neighbouring neurone.

Because of the existence of an electrotonic coupling between the two presynaptic
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Fig. 7. Effects of intracellular injection of atropine into the presynaptic neurone.
Long-depolarization-induced p.s.c.s were induced by depolarizations of the presynaptic
neurone to + 10 mV (A and B). Upper traces: d.c. recordings; lower traces: a.c. recordings.
In A, large injections of atropine by ionophoresis using a constant current apparatus led
to a decrease in the size of the long-depolarization-induced p.s.c., which recovered after
45 min. In B, in another preparation, when less atropine was introduced into the
presynaptic neurone, the size of the long-depolarization-induced p.s.c. increased.

neurones we cannot exclude the possibility that the injected atropine penetrated
directly into the other interneurone. Nevertheless, this is unlikely because the
electrotonic coupling is small (coupling ratio 005) and we never observed such
molecular interchange for molecules of an equivalent molecular weight, like curare
(in this paper), ACh (Poulain, Baux & Tauc, 1986) or Ruthenium Red (Baux et al.
1979).
By comparing the degree of depression of the p.s.c.s in the experiments illustrated

in Fig. 7A and Fig. 9 with that obtained when atropine was applied extracellularly
(Fig. 5), it can be estimated that the concentration of atropine in the synaptic cleft
reached a final value near 10-4 M as a result of leakage from the injected neurone.
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Fig. 8. Effects, in the same preparation as in Fig. 7, of ionophoretic injection of atropine
into the presynaptic neurone of the buccal ganglion on the size of the m.p.s.c. (A) and
the quantal content of long-depolarization-induced p.s.c. (B) for different presynaptic
depolarizations. 0: control; *: after 5 min injection with 50 nA current. *: after
additional 5 min injection.
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Fig. 9. Effect of ionophoretic injections of atropine into one of the two presynaptic
cholinergic neurones of the buccal ganglion, on the post-synaptic response evoked by a
spike. The post-synaptic cell was voltage clamped at -80 mV and the two presynaptic
neurones left at their membrane resting potential (near -50 mV) were stimulated to
produce a spike, which is not shown in the Figure. With increasing durations of
ionophoretic injection (arrows) the post-synaptic responses were progressively depressed,
even that evoked by a spike in the untreated presynaptic neurone.
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Shorter intracellular injections loaded the neurone with less atropine (Fig. 7 B);
consequently less atropine leaked and accumulated in the synaptic cleft and the size
of the calculated m.p.s.c.s was only slightly affected. Comparison of this result with
the action on m.p.s.c. of atropine applied extracellularly showed that the atropine
concentration in the cleft due to the leak was approximately 10-5 M. It is highly
significant that the quantal content of the post-synaptic response was equally
increased whether atropine was administrated extra- or intracellularly.

DISCUSSION

The results presented here show that tubocurarine and atropine have opposite
effects on the release of ACh at a neuro-neuronal synapse: tubocurarine decreases
while atropine increases the number of quanta liberated. Our experiments give
further indications concerning the mechanisms which may be involved in this control
of transmitter release.

Presynaptic action of extracellularly applied tubocurarine
Hubbard, Schmidt & Yokota (1965) tentatively explained the presynaptic action

of tubocurarine at the neuromuscular junction by a fall of presynaptic conductance
and subsequent decrease in the amplitude of the spike. However, the long-
depolarization-induced p.s.c. method gave us the possibility of calculating simul-
taneously the sizes of the evoked response and m.p.s.c., and the presynaptic voltage
clamp allowed us to eliminate the possible action of tubocurarine on the presynaptic
action potential.

It also seems unlikely that tubocurarine acted presynaptically by altering the Ca2+
influx, since tubocurarine applied extracellularly or intracellularly did not change the
voltage-dependent Ca2+ current in Aplysia cells displaying Ca2+ spikes.

Other hypotheses have been proposed to explain the presynaptic action of
tubocurarine, some ofwhich supposed an intervention in ACh metabolism. Bhatnagar
& MacIntosh (1967) working on mouse brain, found that the ACh synthesis was
limited by tubocurarine, and Martin (1968) showed that the choline uptake by human
erythrocytes is inhibited. However, in our preparation we have not observed any
relation between the tubocurarine-induced change in the quantal content of the
responses and previous neuronal activity: the effect of tubocurarine on the quantal
content of the responses was observed even if the preparation was not previously
stimulated in the presence of the drug. One would expect the contrary if choline
uptake was involved.

It is more likely that the presynaptic action of extracellularly applied tubocurarine
is mediated by nicotinic or nicotinic-like receptors present on the presynaptic
membrane. The activation of these receptors by released ACh would activate a
process which facilitates more or less directly the release of the neurotransmitter. By
blocking this positive feed-back, tubocurarine would reduce ACh release. The
existence of presynaptic nicotinic receptors has been advanced for cholinergic
transmission in the rat neuromuscular junction (Bowman et al. 1984), in synapto-
somes of the myenteric plexus of the guinea-pig (Briggs & Cooper, 1982) and in mouse
cerebral cortical synaptosomes (Rowell & Winkler, 1984).
Via presynaptic nicotinic receptors, ACh released by a terminal could affect the
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ionic conductances at that terminal and facilitate the release of ACh. However, this
possibility was not supported by our voltage-clamp experiments in which conduc-
tance changes of the presynaptic membrane did not alter ACh release (Poulain et al.
1986). Rather, presynaptic nicotinic receptors would appear to act via intracellular
second messengers.

Presynaptic action of intracellularly injected tubocurarine
Tubocurarine introduced into the presynaptic neurone depressed the quantal

content of the post-synaptic responses without affecting the size of the m.p.s.c. Thus
the injected tubocurarine did not leak from the terminal, and acted only pre-
synaptically.

Ca2+ channels were not affected by intracellular tubocurarine which can therefore
be reasonably assumed to act on the transmitter release process. One possibility would
be the interference with the uptake of ACh by synaptic vesicles or with their fusion
with the presynaptic membrane. On the other hand, considering the non-vesicular
hypothesis for ACh release, according to which the quantal release is performed by
the binding of ACh to specific intrasynaptic receptors which form a part of the
releasing structure or 'vesigate' (Tauc, 1982; Tauc & Baux, 1982), tubocurarine could
also bind to some ofthese receptors. Because only 'vesigates' which are fully occupied
with releasable transmitter can liberate ACh into the synaptic cleft, tubocurarine
would block the release of the whole of the quanta.
Combining the results obtained with extracellularly and intracellularly applied

tubocurarine, the possibility of an entry of the bath-applied tubocurarine into the
presynaptic terminal, thereby depressing the quantal release, cannot be excluded.
Such a possibility has already been suggested (Riker & Okamoto, 1969; Kuriyama,
Roberts & Vos, 1968).

Presynaptic action of atropine
Atropine is a highly potent muscarinic antagonist. It can also act, although far less

effectively, on nicotinic receptors; it is about 100 and 2000 times less effective on the
frog and rat motor end-plates respectively (Beranek & Vyskocil, 1967). In these
preparations it was shown that atropine shortens the mean open time of the
post-synaptic ionic channel (Katz & Miledi, 1973; Feltz et al. 1977). However, in our
preparation the concentrations of atropine used did not alter the decay of the evoked
p.s.c. (Fig. 9), a clear indication that the time constant of the m.p.s.c. (and thus the
channel open time) was not modified, a factor which has simplified our calculation
of the quantal content.
At low concentrations (10-6-10-5 M), atropine had a facilitatory action on ACh

release. This increase may be interpreted as resulting from an interference of
applied atropine with presynaptic muscarinic or muscarinic-like receptors implied in
a negative feed-back control of ACh release. This hypothesis is supported by the
results of Murray, Mpitsos, Siebenaller & Barker (1985) on Aplysia ganglia, where
quinuclidinyl benzilate binding sites suggest the presence of muscarinic receptors.
Increase in the amount of ACh liberated in the presence of atropine was described
in vertebrate brain (for a review see Chesselet, 1984). The observed enhancement
varied from 25 % (Hadhazy & Szerb, 1977) to 120% (Jones et al. 1973).

Atropine at a concentration of 10-4 M reduced the quantal content (Fig. 5) and
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acted like tubocurarine in this respect. If we accept the existence of presynaptic
nicotinic receptors, the above-mentioned result may be due to a tubocurarine-like
action of atropine at high concentration, as seen for post-synaptic receptors (Tauc
& Gerschenfeld, 1962).

Conclusion
In conclusion, we have shown that at a molluscan cholinergic synapse, atropine

and tubocurarine have opposing effects on the evoked quantal release of ACh. Unless
tubocurarine enters the terminal, our evidence suggests the presence on the
presynaptic terminal of two types of ACh receptors, one blocked by tubocurarine
(presumably a nicotinic or nicotinic-like receptor), the other blocked by atropine
(presumably a muscarinic or muscarinic-like receptor). Such an arrangement has
already been proposed by Briggs & Cooper (1982) working on the synaptosomes
prepared from myenteric plexus. Our study has the advantage that the observations
were made on an identifiable, physiologically active, central synapse, which is fully
accessible to several methods of investigation. Thus we hope to test our hypothesis
in the near future, analyse the mechanism by which these two presynaptic receptors
exert their opposite actions on transmitter release, and explore the implications of
such receptors in the physiology of this synapse.

We thank Drs J. Randle and P. Murali Mohan for helpful comments. The work was partly
supported by grants to L. T. (No. 856021 for INSERM and No. 85/1177 from DRET).
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