Bogani et al. 10.1073/pnas.0500584102.

Supporting Information

Files in this Data Supplement:

Supporting Text
Supporting Table 3
Supporting Table 4
Supporting Figure 4
Supporting Figure 5




Fig. 4. Human and mouse synteny. Ideograms of proximal Mmu 13 and the short arm of human 6 with the extent of Del(13)Svea36H indicated by the adjacent shaded region. The nonshaded box represents the region conserved between Mmu13 and 6p, but not deleted in the Del(13)Svea36H mouse. Note the rearrangement of the genetic material such that on Mmu13 the 6p25, -24, and -23 analogous segment lies distal to material that corresponds to 6p22. Additionally, the 6p22 material is inverted on the mouse chromosome (represented by the direction of the dark shading).





Fig. 5. A genetic screen at Del(13)Svea36H on mouse chromosome 13. The breeding protocol for the genetic screen is shown, with the f symbol used to indicate hemizygosity at the particular locus due to the presence of the Del(13)Svea36H chromosome.





Table 3. Polymorphic markers across Del(13)Svea36H

Marker

Position, Mb

C3H

101

BL/6

B/c

Left primer

Right primer

PCR program

D13Mit115

19.86

 

 

 

 

TGGTGAAGTGTTTGGAAAAGG

TTTAACCCATTGATCTACTTCAAGG

1

D13Mit17

20.67

 

 

 

 

CACCCCCAAGTTCTCTTGAA

CCCACATACACATGTGCACA

2

A34_298f22SNP2

§

20.94

 

 

 

 

ACGTTGGATGACTGGGCTGGTGTTAGATTG

ACGTTGGATGTGCTTCTTCCAGAAGACAGC

5

A34_298f22SNP1

§

20.94

 

 

 

 

ACGTTGGATGAACCTCTAAGGGTGACACAG

ACGTTGGATGTGATCAAATGCTACTCAGGC

5

DNR059

21.16

 

 

 

 

GTTCTCACGGCCATTTCAG

CCATGATGTGAGCAAGAAACC

3

13.019.659*

21.78

 

 

 

 

TCTTCTCTCTGAGTCATGCC

TGTCATGTGGGCACAGAAAG

5

13.020.129*

22.25

 

 

 

 

GTTGGATGAAATCAGTTTCACAGTCTGC

GTTGGATGGGGCACAAAACCTCTTTCTC

5

WI_WGS_13_22488197

22.47

 

 

 

 

ACGTTGGATGGTAATGTCTGGATCTGTGGG

ACGTTGGATGTCCTCCGACACTGTAAAAAC

5

rs3679575

23.08

 

 

 

 

ACGTTGGATGAGGGCAGCAAACCCCAATTC

ACGTTGGATGTGAAACTCACTTCCTCCCTG

5

H46_480b19SNP

§

23.10

 

 

 

 

ACGTTGGATGTCAGAAAAAGCCATGGGCTC

ACGTTGGATGTGCAGATGGAGCAAGAAGTG

5

WI_WGS_13_23196359

23.16

 

 

 

 

ACGTTGGATGTCCAACCTTCAGACACCAAC

ACGTTGGATGTGGTTTCTCACCTGGTGAGG

5

WI_WGS_13_23196389

23.17

 

 

 

 

ACGTTGGATGTTAGCCTCACCAGGTGAGAA

ACGTTGGATGTCCTTTACCATGCCTAGGAG

5

WI_WGS_13_23196397

23.17

 

 

 

 

ACGTTGGATGTCCTTTACCATGCCTAGGAG

ACGTTGGATGTCACCAGGTGAGAAACCAAC

5

WI_WGS_13_23199897

23.17

 

 

 

 

ACGTTGGATGTTGAGATAGTGTTTGGGTAG

ACGTTGGATGGCTGACATTGATCATGGAGC

5

WI_WGS_13_23254757

23.23

 

 

 

 

ACGTTGGATGAGTAGAGCTATTGAGGTGGG

ACGTTGGATGGCAATTTCACACTGATGGCG

5

WI_WGS_13_23254874

23.23

 

 

 

 

ACGTTGGATGTCAGCATGAAGCCTCAAAGC

ACGTTGGATGACACACGCAACTGGGAAAAC

5

WI_WGS_13_23254887

23.23

 

 

 

 

ACGTTGGATGGAAGCCTCAAAGCATCTTCC

ACGTTGGATGACACGCACACACGCAACTGG

5

WI_WGS_13_23255016

23.23

 

 

 

 

ACGTTGGATGCTGTTTCTGCTTCCTCAGTG

ACGTTGGATGCTTAAGAGCTCAGAACCCAC

5

D13Mit14

23.78

 

 

 

 

GGAACAGCAAGCTCTAAGGG

CTACCAGGCCTCCCAAGATA

3

D13Mit15

23.78

 

 

 

 

AGGAACAGCAAGCTCTAAGGG

GGCCTCCCAAGATATCATCA

3

WI_WGS_13_24350948

24.32

 

 

 

 

ACGTTGGATGAACCCCGCGGCGCAGCTAC

ACGTTGGATGAAGCTGTCCCCGCGGAGTAG

5

D13Mit84

25.00

 

 

 

 

TATGTATCCACAGCCCTTAAAATG

TGAGTTGCATCCTTGTAACCC

3

D13Mit133

25.61

 

 

 

 

TAGACACTTAATTCTGTGATGAAATGG

AGCAAAAGCCCCAGTTAGTG

3

DNR048

26.62

 

 

 

 

CCCTACACACAAGGTTCAGG

CATGCAGTCAAAACATGCTG

3

DNR076

27.67

 

 

 

 

ACAGGAGCAGCTTGTCATTG

CATTAAGCTCCACCCATTCC

3

DNR101

28.31

 

 

 

 

CATTAAGCTCCACCCATTCC

GCAATTAGCAGGAAGGTGATG

3

TETNR5

29.40

 

 

 

 

TCTCCTGCATGCTCTGTGTC

AACAGCCTGGTCTATAATGCAAG

3

13.027.892*

30.06

 

 

 

 

GTTGGATGTCCTTGTCTGTCCTTTGCTG

GTTGGATGGGAGAGCTTAAGAGGCATAC

5

TETNR10

30.28

 

 

 

 

GCTGATGCTAGGGCTTTCTC

CCCTAGGGCACATTTCACTG

3

13.028.317*

30.48

 

 

 

 

GTTGGATGGTGGCAGTAGTAGACTGAAG

GTTGGATGTATGGGCCATTTCTTGCCTG

5

rs3654710

30.80

 

 

 

 

ACGTTGGATGTATGCTTAGAGCATGGGCAG

ACGTTGGATGCCCACATGCATGTTTATCCC

5

13.028.654*

30.82

 

 

 

 

GTTGGATGCTACCAACTCCAGAGAGAAG

GTTGGATGGGCTCTTTATCCCTAGCTTC

5

satin

30.94

 

 

 

 

GAGATCAACGAGTACCTCATGGG

CGAAGGAGCTGGAGAACTTG

4

13.029.103*

31.27

 

 

 

 

GTTGGATGCCTGGTACTCATCAAAGGTC

GTTGGATGGGTGTTCATGGTACAGACAG

5

kkSNP04

§

31.43

 

 

 

 

ACGTTGGATGCAGACCAGATGCACAAAAAG

ACGTTGGATGCCTGCCTTTTAGTCCACAAC

5

13.029.431*

31.60

 

 

 

 

GTTGGATGAGATGGTCTAATATTAGCAC

GTTGGATGTGAGGCCAACACAAACAATG

5

rs3687359

31.79

 

 

 

 

ACGTTGGATGGTGGTGCTTTGCTAACTGTG

ACGTTGGATGGGACATGTTTGGTTTCCAAG

5

DNR024

31.94

 

 

 

 

AGCCCACTTCAACTCCTCAG

TTCTGCACCCATATTTTCATTG

3

13.029.993*

32.16

 

 

 

 

AGGACTCTGCAGTAAGAGAC

TGGCATTTGAGAGGGAAGAC

5

13.030.240*

32.41

 

 

 

 

GTTGGATGTGCCTTTGTGGATGAGTTGC

GTTGGATGAGCAGGACCATCAAGCTCAG

5

rs3023380

32.43

 

 

 

 

ACGTTGGATGCACTCCCTAATCTCTGGAAC

ACGTTGGATGCCTCAGCAAAATCTTGCAAAC

5

DNR03

32.76

 

 

 

 

GGAGAAAACAGACTTCATTCAGG

AAGTCAAACATGGCTAGTG

3

13.031.633*

32.93

 

 

 

 

GTTGGATGGTATATTGTTTGTGTGTGGG

GTTGGATGTACCTCTGAGAGCATCAAAC

5

DNR02

32.96

 

 

 

 

ATCAACCTGGGCAAAGACTG

TTCTGCACCCATATTTTCATTG

3

DNR016

33.33

 

 

 

 

GGAGAATTGTGAGGGAATGC

CAGCCATCACATACCACACC

3

D13Mit136

33.33

 

 

 

 

TTTTATCTATTGAGTAGATTCATGGTG

TATGCCTGGAGGAAAACAGG

1

13.032.078*

33.38

 

 

 

 

CAATGGCTTGCCAGATACAG

ATCCTCTCCATTTCTGTCCC

5

D13Mit275

36.76

 

 

 

 

TTAGCAAGGGAACAGAGAGAGG

CAATCAAGGTATCCCTGTCTCC

2

1. PCR conditions: 95°C for 15 min, followed by 94°C for 1 min, 55°C for 30 s, 72°C for 45 s for 35 cycles; and then 72°C for 5 min.

2. PCR conditions: 95°C for 15 min, followed by 94°C for 1 min, 56°C for 30 s, 72°C for 45 s for 35 cycles; and then 72°C for 5 min.

3. PCR conditions: 95°C for 15 min, followed by 94°C for 1 min, 64.5°C for 30 s, 72°C for 45 s for 14 cycles; and then 95°C for 45 s, 57° C for 30 s, 72°C for 30 s for 30 cycles, 72°C for 5 min.

4. PCR conditions: 95°C for 15 min, followed by 94°C for 30 s, 55°C for 35 s, 72°C for 30 s for 35 cycles and then 72°C for 5 min, in the presence of 5 M Betaine.

5. PCR conditions: 95°C for 1 min, followed by 94°C for 20 s, 56°C for 30 s, 72°C for 60 s for 45 cycles; and then 72°C for 3 min.

* Pletcher M. T., McClurg P., Batalov S., Su A. I., Barnes S. W., Lagler E., Korstanje R., Wang X., Nusskern D., Bogue M. A., et al. (2004). PLoS Biol 2, e393.

Petkov P. M., Ding Y., Cassell M. A., Zhang W., Wagner G., Sargent E. E., Asquith S., Crew V., Johnson K. A., Robinson P., et al. (2004) Genome Res 14, 1806

http://www.ncbi.nlm.nih.gov/projects/SNP/

§

SNPs were discovered with Homogenous Mass Cleave SNP discovery technique [Stanssens, P., Zabeau, M., Meersseman, G., Remes, G.,Gansemans, Y., Storm, N., Hartmer, R., Honisch, C., Rodi, C. P., Bocker, S. et al. (2004) Genome Res 14, 126-133.] All SNPs assays were performed by using MassARRAY [Bonora, E., Beyer, K. S., Lamb, J. A., Parr, J. R., Klauck, S. M., Benner, A., Paolucci, M., Abbott, A., Ragoussis, I., Poustka, A., et al. (2003) Mol. Psychiatry 8, 885-892.]

SSLP markers detected by fluorescent capillary electrophoresis using either the MegaBACE system (Amersham Biosciences) or the AB3100 Prism system.



Table 4. Mutation detection screening

Fragment

Ensembl position

Region covered

Forward primer

Reverse primer

Detection method

PCR program

Sox4 1

28332869

5’UTR/ Exon 1

GAGCACTTCAGCGGTGA

GGAGATCTCGGCGTTGT

Sequencing

12

Sox4 2

28332462

Exon 1

GCAAGATCATGGAGCAGTC

GAGAACGATGCAGCCG

Sequencing

12

Sox4 3

28332151

Exon 1

GCCCAAGAAGAGCTGTG

GCGTAGGCTGGCGTA

Sequencing

13

Sox4 4

28331823

Exon 1

GTTGTACGAAGATGGAGGC

GAATTCGAAGTGGGAGCCTG

Sequencing

14

Sox4 5

28331604

Exon 1/ 3’UTR

GACGACGAGTTCGAAGACGAC

CTCCTCTCCTGCCTCTTG

Sequencing

15

Foxq1

1

30937553

5’UTR/ Exon 1

CAACCAGTCCCTCGGCCTAAG

TTCAGCCTCGAGAGCCCATAG

Sequencing and DHPLC

10

Foxq1

2

30938104

Exon 1

GGGCTCTCGAGGCTGAAGAC

GACAGTGGAGATGGCACGTC

Sequencing and DHPLC

10

Foxq1

3

30938594

Exon 1

CCGGCATGAAATTGGAGGTG

AGGTTGTGGCGCACGGAGTT

Sequencing and DHPLC

10

Foxq1

4

30939047

Exon 1

CCTTTTTCCGGGGCAGCTAC

CGGGAAGGAGCGCGGGATAG

Sequencing and DHPLC

10

Foxq1

5

30939455

Exon 1

CGGCTCTGGGGGTGCAGCTA

GAGCCCACATTCCAACCTCCTC

Sequencing and DHPLC

10

Foxq1

6

30939773

Exon 1/ 3’ UTR

CCTACCCGGTGGAGACTCTG

ACACGCAGCAGTCACTCCTG

Sequencing and DHPLC

10

Foxf2

1

31005686

5’UTR/ Exon 1

CTCGCCCGATTTGTGCAC

AGCGCGATGTACGAGTAAGG

Sequencing

18

Foxf2

2

31005762

Exon 1

AGTGGAGGCACCAAGAAGG

GGAACGAACCCTCCTCAAAC

Sequencing

17

Foxf2

3

31006988

Exon 1

TTCCCCTTTTTCCGTGGCGC

TGGCCATATAGGTGGAGCCC

Sequencing

16

Foxf2

4

31010164

Exon1/ Intron 1

TCAAGGCGGTTATGGTGGCC

AGAGGCTCTCAGAGGCTCCG

Sequencing

17

Foxf2

5

31010328

Intron 1/ Exon 2/ 3’ UTR

AGCTGCCTTTACACCCTCAG

ACAGTGTGAGTCCGTTGCAG

Sequencing

17

Foxc1

1

31186196

5’UTR/ Exon 1

CAGCCGAGTTCCTGAAGGACAG

CCTCGCAGCCCACTCAGTTC

Sequencing

6

Foxc1

2

31186620

Exon 1

GCGTCCTGGTCTGGCCCTCTC

GGCGGCTTCACCATGTCCTTG

Sequencing and DHPLC

7

Foxc1

3

31187025

Exon 1

GTGTACTCGCACCCTGCTCAC

TCCGTCTTGATGTCCTGGATG

Sequencing and DHPLC

8

Foxc1

4

31187450

Exon 1

CCGGCTGCACCTCCAAGAACC

GAACTGCCCGCACTGGAGCTCT

Sequencing and DHPLC

8

Foxc1

5

31187943

Exon 1

GCCTACTCTCCGGGCCAGAG

ATTCACCGGGGAGTTGTTCAAG

Sequencing and DHPLC

9

Foxc1

6

31188411

Exon 1

CGGGAAATGTTCGAGTCTCA

CGAGTCTCTGAACGCAAGAA

Sequencing and DHPLC

10

Foxc1

7

31188825

Exon 1

TCATGGTTTATTAAAGGACA

GACAGAGACTAGGGAACTC

Sequencing and DHPLC

11

Foxc1

8

31189229

Exon 1

TAATAAATTGCCATTCAGTTTGA

TCCTTCTGTGTAATGCATAAAGA

Sequencing and DHPLC

11

Foxc1

9

31189641

Exon 1

AACAGATGGAGATCAGCCTA

GGCAGATCACCCTAAGATAAT

Sequencing and DHPLC

10

Foxc1

10

31189988

Exon 1/ 3’ UTR

AGTCTGGGGTGGTTTC

GAATCAGAGGCCACGTAAGG

DHPLC

10

Foxq1

1

30937553

5’UTR/ Exon 1

CAACCAGTCCCTCGGCCTAAG

TTCAGCCTCGAGAGCCCATAG

Sequencing and DHPLC

10

Foxq1

2

30938104

Exon 1

GGGCTCTCGAGGCTGAAGAC

GACAGTGGAGATGGCACGTC

Sequencing and DHPLC

10

Foxq1

3

30938594

Exon 1

CCGGCATGAAATTGGAGGTG

AGGTTGTGGCGCACGGAGTT

Sequencing and DHPLC

10

Foxq1

4

30939047

Exon 1

CCTTTTTCCGGGGCAGCTAC

CGGGAAGGAGCGCGGGATAG

Sequencing and DHPLC

10

Foxq1

5

30939455

Exon 1

CGGCTCTGGGGGTGCAGCTA

GAGCCCACATTCCAACCTCCTC

Sequencing and DHPLC

10

Foxq1

6

30939773

Exon 1/ 3’ UTR

CCTACCCGGTGGAGACTCTG

ACACGCAGCAGTCACTCCTG

Sequencing and DHPLC

10

6. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 68.5°C* for 30 s, 72°C for 30 s for 14 cycles; then 95°C for 30 s, 61°C for 30 s, 72°C for 30 s for 25 cycles, 72°C for 5 min. (Using Qiagen reagents, gel excised PCR product and sub cloned with TOPO cloning kit).

7. PCR conditions: 95°C for 15 min, followed by 95°C for 30 s, 65°C for 30 s, 72°C for 30 sec for 30 cycles, 72°C for 5 min.

8. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 67.5°C* 30 s, 72°C for 30 sec for 14 cycles; then 95°C for 30 sec, 60°C for 30 s, 72°C for 30 sec for 25 cycles, 72°C for 5 min.

9. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 63.5°C* 30 s, 72°C for 30 sec for 14 cycles; then 95°C for 30 sec, 56°C for 30 s, 72°C for 30 sec for 25 cycles, 72°C for 5 min.

10. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 70°C* 30 s, 72°C for 30 sec for 14 cycles; then 95°C for 30 sec, 62.5°C for 30 s, 72°C for 30 sec for 25 cycles, 72°C for 5 min.

11. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 64.5°C* 30 s, 72°C for 30 sec for 14 cycles; then 95°C for 30 sec, 57°C for 30 s, 72°C for 30 sec for 25 cycles, 72°C for 5 min.

12. PCR conditions: 95°C for 10 min, followed by 95°C for 30 s, 59°C* 1 min, 72°C for 1 min for 14 cycles and then 95°C for 30 s, 52°C for 1 min, 72°C for 1 min for 32 cycles and then 72°C for 5 min in the presence of 10% DMSO and 1.5mM MgCl2.





Supporting Text

Mouse Strains and the Genetic Screen.

The satin (sa) mutant (1) was recovered from the Harwell embryo bank as a linkage stock also homozygous for the vestigial tail (vt) and muted (mu) alleles, maintained on a mixed C3H/HeH and 101/HeH background. The vt and mu alleles were segregated by crosses with the C3H/HeH strain and a closed colony of sa/sa mice segregating C3H/HeH and 101/HeH alleles was produced.

Within the genetic screen, a new mutation was defined as follows. Based on the frequency of transmission of the deleted chromosome (2), amongst 25 progeny, five with a satin coat and 20 with a wild-type (agouti) coat are expected. To screen for visible phenotypes, mice with the satin coat were assessed weekly (until weaning) for the presence of dysmorphologies. Pedigrees with £1/25 satin progeny were considered to harbor a recessive lethal mutation and breeding was continued in these pedigrees until 50 progeny had been obtained, and the data reassessed by using a limit of £3/50 satin progeny. Defining a lethal as £3/50 satin progeny means that only six false positives should be encountered among every 1,000 pedigrees and generates a probability that 5% of lethal mutations (not of total pedigrees) will be missed because 4/50 satin progeny have been produced through recombination. The efficiency of ENU means that more than one mutation may be present in a single pedigree. If we assume an average mutagenesis frequency (1 × 10-3) (3) and a Poisson distribution, the likelihood of the Del(13)Svea36H segment containing two mutations is extremely low (3.8 × 10-9).

Neurological and Behavioral Assays.

The tests performed on all mice were Open Field Activity, a modified SHIRPA test, measurement of Grip Strength, Spontaneous Alternation in a Y-maze, Acoustic Startle Response with Prepulse Inhibition (PPI) and assessment of Swimming Ability. Grip strength was measured with an automated apparatus (Bioseb) using all four limbs of the test animal, and data presented as an average of five peak measurements (in grams). For the PPI assay, the startle responses were recorded in arbitrary units using a 110 dB, 40 ms white noise sound pulse ± a preceding 80 dB, 10-ms white noise prepulse and PPI calculated by expressing the prepulse + pulse response as a percentage of the pulse only response. Parameters in the Open Field Activity tests were measured using a TruScan system over 30 min in 10 3-min bins. Centre time represents the amount of time (in seconds) an animal spends in the central zone of the arena (equivalent to 16% of the total area). For all tests, ANOVA was used for the comparison between wild-type and mutant animals across different lines according to their behavioural evaluations. The ANOVA was followed by the Newman-Keuls test for post hoc comparisons and a Repeated Measures Analysis was performed to investigate statistical significance in multiple time measurement parameters.
  1. Major, M. H. (1955) Mouse News Lett. 12, 47.
  2. Arkell, R. M., Cadman, M., Marsland, T., Southwell, A., Thaung, C., Davies, J. R., Clay, T., Beechey, C. V., Evans, E. P., Strivens, M. A., et al. (2001) Mamm. Genome 12, 687-694.
  3. Hitotsumachi, S., Carpenter, D. A. & Russell, W. L. (1985) Proc. Natl. Acad. Sci. USA 82, 6619-6621.