
Supporting Text

Selective Breeding Strategy

It was not immediately obvious what the best breeding strategy would be, particularly

when we knew that multiple loci were contributing to the phenotype. Backcrossing

iteratively against the low-responder parent would be the fastest way to “purge” the

genome of unlinked elements of BALB/c origin but would risk the loss of susceptibility

loci during the segregation, especially recessive loci or those with only minor phenotypic

impact. Conversely, a succession of intercrosses would be safer but slower in enriching

for susceptibility loci. To compare the various possibilities, we performed in silico

simulations of such breedings. Computer code was written that simulated successive

generations of mice, calculated virtual phenotypes based on different genetic models

(modeling up to four loci with different relative weights), and selected the higher

responder for breeding of the next generation. A number of breeding variables could be

tested with this software (see below and Fig. 6). Considering the results from these

simulations, we opted for a mixed backcross/intercross scheme, aiming for three

productive breeding cages constituted from the strongest responders at each generation

after the F2, phenotyping by serum transfer five to seven offspring from each breeding

pair and following this scheme for six generations.

The breedings were performed largely according to plan (Fig. 7a), and the evolution of

the phenotypes at each generation matched expectations: high responses in the H3

resulting from intercross of F2 parents, with a drop in the H4 due to the influx of SJL

alleles. However, the reality schematized in Fig. 7a did not always live up to the idealized

computer simulations (Fig. 6). Some breeders proved nonperformant, so that we had to

rely more heavily than planned on a particular breeding cage at certain generations,

significantly increasing the risk of allele loss. For the most part, animals in the pedigree

did not display the fast onset of arthritis characteristic of the BALB/c parent, as shown on

the biparametric plots of Fig. 2b. The scores of the association testing (see text) were not

nearly as strong as could have been hoped for from the simulations. These observations

suggested that the full phenotype requires the contribution of a larger number of genes

than could be obtained in any one mouse, and that some loci contributing to high

responsiveness were lost during the selection.

Statistical genetic analysis of the pedigree

The markers used were a combination of microsatellites and SNPs (105 markers

altogether, with an average spacing of 18.3 Mb, listed in the Table 1). Because

microsatellite length is dichotomous in any inbred pair, with negligible variation over the

duration of the experiment (two instances of mutations resulting in a novel microsatellite

length were observed in the pedigree), it was possible to combine the information from

both types of markers. Two different analytical strategies were used:

The first test was designed to match the particular aspects of the pedigree, deriving

combinatorial information from different generations in the cohort. Significance was

estimated by comparison with a large number of randomly generated virtual pedigrees of

identical structure, asking how frequent the phenotypic correlations and segregation

patterns of markers in the true dataset would prove to be when a large number of neutral

loci were simulated to segregate down an identical pedigree. This approach avoids any

assumption on the distribution of the data or biases introduced by the particular pedigree

structure. Several independent metrics of association were combined: (i) a measure of

correlation between marker distribution and phenotype for the 32 mice of the founder F2

cohort (the Pearson correlation coefficient between the Severity Index and the genotype

at each marker; (ii) a measure of the persistence of BALB/c alleles at the H6 generation,

reflecting the persistence of high-responsiveness alleles that were positively selected

during the crosses and the loss of BALB/c alleles at loci with no phenotypic impact; and

(iii) a measure of phenotype/genotype correlation (Spearman) in the selected animals of

the H5 cohort. For the simulated pedigree, the exact family structure of the true pedigree

was simulated (code in Supporting Text), with 10,000 unselected markers segregating

neutrally with simple Mendelian transmission (all virtual markers were unlinked). These

virtual animals were attributed the same arthritis phenotypes as the real counterparts, the

same association measures were calculated, and the probability was estimated as a

combination of the same three measures. The results are illustrated in Fig. 3a; full

numeric data are presented in Table 2. Although no metric conferred significance by

itself, significant association (P < 0.001) could be discerned from the combined

information, on chromosomes 2 (50-160 Mb) and 6 (50-90 Mb), with lower signals on

chromosomes 1, 7, 9, 10, 11, 12, 13, and 19. Interestingly, the analysis also highlighted

loci where the BALB/c allele was negatively correlated with arthritis severity (not

shown). This was the case on chr5 and on chr1, quite close to a region that is positively

associated with severity.

The second analysis used a more conventional family-based tests, treating the entire

pedigree as a group of families, and searching for linkage using QTDT software {4846},

which allows association mapping for quantitative traits using nuclear families of any

size with or without parental information, and is particularly robust when each sib set is

large. Several authors have suggested that, for collagen-induced arthritis (CIA) and

proteoglycan-induced arthritis (PGIA), different loci may affect the speed of onset and

the maximum severity {4860, 4862}. Thus, onset and ankle thickening metrics were used

in this analysis, as well as the combined Severity Index. The entire pedigree was divided

into 16 nuclear families, and simple linear association was tested with Abecasis’

orthogonal model {4846}. Fig. 3b presents the regions with logarithm of odds scores >2

found on Chrs 1, -2, -6, and -7, with a particularly robust association on Chr2.

Association signals were observed for both time of onset and degree of inflammation,

with no clear distinction between the two metrics.

Computer code for breeding simulations and pedigree analysis

In all instances, the S-Plus code runs on S-PLUS Ver. 2000 or 6.1 for Windows, following

the embedded documentation (“commented” following # symbols).

Breeding simulations

These scripts simulate a selective breeding experiment from two inbred lines with high

and low phenotypes, respectively. A variable number of breeding cages are set up at each

generation, and a chosen number of offspring are obtained, their phenotypes computed on

the basis of the genetic model and relative gene weights, and the next breeders chosen on

the basis of the deduced phenotypes.

In all cases, the low-responder parents are given allele 0, the high-responder parent allele

1 (genotypes coded as 0,1,2).

A. Data matrices specifying the GeneModels and Breeding Strategies

The Breed.genmodel matrix specifies the number and relative weights of individual loci

that determine the virtual phenotype. Each column represents a different genetic model

(up to five causal genes); the relative phenotypic weight is given as triplets of values

(rows 1 to 3, 4 to 6, etc.), where the first is the phenotypic value associated with the 0

genotype, the second the phenotypic value of the 1 genotype, and the third the phenotypic

value of the 2 genotype). Low-responder genotypes should be given a token phenotypic

weight >0, because zero values are used to indicate that the locus has no impact and will

be discounted from the calculation of “Controlling Loci.”

Values can be edited in the matrix before running the script. In the example here, model

#1 (column 1) is a two equal-gene model, both additive; model #5 has four additive

gees,one of which is , model #5 has four equal dominant genes, etc

3 2 1 2 1 1 2 2 2 2

17 11 8 6 5 25 2 2 20 20

32 22 16 12 10 25 25 10 25 20

3 2 1 2 1 1 2 2 2 2

17 11 8 6 5 25 2 2 20 20

32 22 16 12 10 25 25 30 25 20

0 2 1 2 1 1 2 2 2 2

0 11 8 6 5 25 2 10 20 20

0 22 16 12 10 25 25 10 25 20

0 0 1 2 1 1 2 2 0 2

0 0 8 6 15 25 2 30 0 20

0 0 16 12 30 25 25 30 0 20

0 0 0 2 0 0 0 0 0 0

0 0 0 6 0 0 0 0 0 0

0 0 0 12 0 0 0 0 0 0

2 3 4 5 4 4 4 4 3 4

The Breed.strategies character matrix specifies the breeding strategies in successive

generations (assumes breeding will originate from F2 to generate H3, etc.). Each row

corresponds to a strategy, with the format for each generation given in the successive

column (starting from F2>H3). The admissible values are “inter” (intercross), “bcklo”

(backcross to the low responder parent), or “bckhi” (backcross to the high-responder

parent).

Values can be edited in the matrix before running the script. In the example here and

which is used for the paper, strategy #1 (row 1) is a succession of backcross and

intercross steps, strategy #2 has only backcrosses to the low-responder (allele 0) parent,

strategy #3 is a succession of intercrosses, etc.).

bckl

o inter

bckl

o inter

bckl

o inter

bckl

o

bckl

o

bckl

o

bckl

o

bckl

o

bckl

o

inter inter inter inter inter inter

inter

bckl

o inter inter inter inter

inter inter

bckl

o inter inter inter

inter inter

bckl

o

bckl

o inter inter

inter inter

bckl

o

bckl

o

bckl

o inter

inter inter

bckl

o

bckl

o

bckl

o

bckl

o

B. Simulation and plotting scripts

The key setting are found on line 4 of the actual code, where the user sets the variables of

the “contmat” numeric matrix that guides the running of each successive generation.

Several strategies, genetic models, or breeding numbers can be specified; the program

will iterate through all permutations.

“dep” is the depth of the pedigree (the number of generations through which the breeding

runs).

“st” is the number of animals in the starting F2 generation.

“br” is the number of breeding cages set up at each generation.

“li” is the number of littermates obtained and tested at each generation.

“gmd” is the genetic model, indicates which column of the Breed.Genemodel matrix are

used, and thus how the phenotype will be calculated.

“sgy” indicates the breeding strategy which of the rows of the Breed.Strategy matrix are

used.

“iter”is the number of iterated repeats through which the code should run.

#For K.O.'s paper, adapted from the DUAL script for high
responder selection only,

#Designed to test best strategies and mouse numbers, as a
function of gene model,

#and compare to a similar number of straight F2 mice.

#For selections of high responders only.
#Uses the same basic control matrix, which sets parameters.
#But takes the Breed.strategies matrix for breeding schemes

(strategies in rows).
#Gene models in Breed.genemodels (models in columns, where

consecutive triplets
#give the weight of the 0,1,2 genotypes for each gene).
#Performs successive breedings according to contmat

settings
#(can go through different models, multiple iterations).
#Tracks five putatively controlling loci (as a function of

the GeneModels asked for)
#as well as 100 dummy loci that segregate randomly.

AllHiMice<-matrix(,0,109)
AllFitH<-matrix(,0,111)
LocCount<-matrix(,0,9)

USER: SET MAIN VARIABLES HERE
contmat<-

d.contmat(dep=8,st=32,br=3,li=6,gmd=1:4,sgy=1:3,iter=1)

#Set the way the genotype/phenotype linear regression
analysis will be performed.

#Can be cumulative (add the mice from each generation and
perform on all pooled data)

or stepwise (for each generation, the linear regression
analysis is done of the mice of the F2 + that generation)

analysis.mode_"cumulative."

#Set whether you should calculate a control where the same
incremental number of F2 mice are analyzed for
comparison.

#Syntax is "mockbreed_T" (yes) or "mockbreed_F" (no)
mockbreed_T

#and choose also whether you want the expanded F2 analysis
to be cumulative (all mice) or stepwise (starting F2 +
current generation)

mockfit.mode_"cumulative."

#####################################
if (analysis.mode!="stepwise"&analysis.mode!="cumulative")

stop("Need to specify a valid analysis mode")
for (k in 1:(nrow(contmat))) #Main loop that iterates

through each row of the control matrix
{ param<-c(contmat[k,1:6])

gen<-as.numeric(contmat[k,1])
stn<-as.numeric(contmat[k,2])
brd<-as.numeric(contmat[k,3])
lit<-as.numeric(contmat[k,4])
g<-Breed.genemodel[,contmat[k,6]]
g1<-g[1:3]; g2<-g[4:6]; g3<-g[7:9]; g4<-g[10:12]; g5<-
g[13:15]
cntloci<-
(1:5)[c(sum(g1)>0,sum(g2)>0,sum(g3)>0,sum(g4)>0,sum(g5)>0
)] #Control Loci (CL) which determine phenotype
TotCL<-length(cntloci)

if (gen==2) {
F2<-d.gencoh(st=stn)
F2<-d.calcphen(mat= F2,av=g)
HN<- F2 [order(-F2 [,"p1"]),]
#AllHiMice<-rbind(AllHiMice, HN[,1:109])

#Unblock if you want to save all mice (can get heavy
with large iterations)

AllCurrent<-HN #Resets the
current cohort when going back to starting population

HF<-d.lm.lod(mat= F2)
AllFitH_rbind(AllFitH,c(param,HF))
LostCL<-

sum(colSums(HN[,(cntloci+4)]==0)==nrow(HN))
CleanNonCL<-

sum(colSums(HN[,10:109]==0)==nrow(HN))

LocCount_rbind(LocCount,c(param,TotCL,LostCL,CleanNonC
L))

}

if (gen>2) { e<-contmat[k,5]
f<-(contmat[k,1]-2)
strat<-Breed.strategies[e,f]
H<-

d.breed(inpop=HN,st=strat,br=brd,li=lit,genevals=g)
HN<-H[[2]]
HN<-HN[order(-HN[,"p1"]),]
#AllHiMice<-rbind(AllHiMice, HN[,1:109])

#Unblock if want to save all mice (can get heavy with
large iterations)

AllCurrent<-rbind(AllCurrent, HN)
if (analysis.mode=="stepwise") HF<-

d.lm.lod(mat=rbind(HN, F2))
if (analysis.mode=="cumulative") HF<-

d.lm.lod(AllCurrent)
AllFitH_rbind(AllFitH,c(param,HF))
LostCL<-

sum(colSums(HN[,(cntloci+4)]==0)==nrow(HN))
CleanNonCL<-

sum(colSums(HN[,10:109]==0)==nrow(HN))

LocCount_rbind(LocCount,c(param,TotCL,LostCL,CleanNonC
L))

}

}

dimnames(LocCount)_list(NULL,c("Generation","stratn","brd
n","litn","strategy","genemodel","TotCL","LostCL","CleanN
onCL"))

#Set names for Gene models and strategies

ModNms_cbind(1:7,c("2Add","3Add","4Add","5Add","4Add1Maj"
,"4Rec","4Dom"))

StratNms_cbind(1:3,c("Altern","Bcklo","Inter"))
strats_unique(contmat[,5])
gmods_unique(contmat[,6])
iters_unique(contmat[,7])

###To simulate a mock breeding, only if gene models are
iterated (other parameters fixed)

#Calculate the values for a "strategy 0,"
#where the same number of F2 mice would have been analyzed

(for each gene model)
if (mockbreed==T){
x_unique(contmat[,1]) #generations

mockfit<-matrix(,0,108) #Gen, Strat=0, genemodel, g1:g5,
1:100)

if (mockfit.mode=="cumulative"){
CumNb_contmat[1:length(x),1:2] #cumulative nb of mice at

each generation
for (k in 2:nrow(CumNb)) CumNb[k,2]_CumNb[k-

1,2]+(contmat[k-1,3]*contmat[k-1,4])
for (i in gmods){g<-Breed.genemodel[,gmods[i]]

for (j in
1:nrow(CumNb)){mockparam_c(CumNb[j,1],0,gmods[i])

x_d.gencoh(CumNb[j,2])
y_ F2<-d.calcphen(mat=x,av=g)
z<-d.lm.lod(mat=y)

mockfit_rbind(mockfit,c(mockparam,z))}}}
if (mockfit.mode=="stepwise"){
CumNb_contmat[1:length(x),1:2] #cumulative nb of mice at

each generation
for (k in 2:nrow(CumNb))

CumNb[k,2]_CumNb[1,2]+(contmat[1,3]*contmat[1,4]) #all
equal

for (i in gmods){g<-Breed.genemodel[,gmods[i]]
for (j in

1:nrow(CumNb)){mockparam_c(CumNb[j,1],0,gmods[i])
x_d.gencoh(CumNb[j,2])
y_F2<-d.calcphen(mat=x,av=g)
z<-d.lm.lod(mat=y)

mockfit_rbind(mockfit,c(mockparam,z))}}}
} #end of mockbreed conditional

C. Functions used in the computation

Simple functions required for the main script to run; they need to be entered into the S-

Plus database by running the code once.

#D.CONTMAT Set up the overall matrix that allows
progression through different values of arguments

#Modified for the Mega set
d.contmat<-function(iter = 1,
dep = 6,
st = 32,
br = 3,
li = 6,

sgy=1,
gmd=3)
{gen<-2:dep
it<-1:iter
contmat <- matrix(,,7)
x<- list(gen,st, br, li, sgy, gmd,it)
for (k in 1:7) {y<-x[[k]]

contmat[,k]<-y[1]
if (length(y)>1) {cm<-contmat

for(i in 2:length(y)) {cm[,k]<-
y[i]; contmat<-rbind(contmat,cm)}}}

hd <-
c("Generation","startn","brdn","litn","strategy","genemod
el","iteration")

dimnames(contmat)<-list(NULL,hd)
return(contmat)}

#D.CALCPHEN Can be used to calculate the phenotypes in any
matrix of the kilobreed format

#where "p1" is the phenotypic index
#g1 to g5 are the five gene control loci, whose
d.calcphen<-function (

mat=famille,noisevar=10,av=c(2,10,20,2,10,20,2,10,20,2,10
,20,0,0,0))

{g1<-av[1:3]; g2<-av[4:6]; g3<-av[7:9]; g4<-av[10:12]; g5<-
av[13:15]

for (k in 1:nrow(mat)) {mat[k,"p1"]<- g1[(mat[k,"g1"]+1)]
+g2[(mat[k,"g2"]+1)] +g3[(mat[k,"g3"]+1)]
+g4[(mat[k,"g4"]+1)]+g5[(mat[k,"g5"]+1)]+noisevar*rnorm(1
)}

mat[,"p1"]_ceiling(mat[,"p1"])
#mat<-mat[order(mat[,"p1"]),] #### output not ordered in

this version
return(mat)}

#D.GENCOH Generates input matrix with F2 distribution, up
to 5 contloci, 100 blanks

d.gencoh<-function (st=32)
{cohin_matrix(,st,109)
hds<-

c("p1","Gen","pID","Sex","g1","g2","g3","g4","g5",1:100)
dimnames(cohin)_list(NULL, hds)
cohin[,"Gen"]_2
cohin[,"pID"]_1

cohin[,"Sex"]_round(runif(st,min=0,max=1),digits=0)
a_st*105
cohin[,5:109]_round(runif(a,min=0,max=2),digits=0)
return(cohin)}

#D.KW.FIT Calculates the fit of each locus (contloci as
well as blanks) in the LN cohort, +/- other mice

#Uses the Kruskal test, outputs -log(10) of P value
(straight P values in B summary)

#Input is a genotype matrix, same columns as fastbreed
matrix, phenotype in 1, genotypes in 5:109.

d.kw<-function(mat=LN)
{ MM<-mat

t<-matrix(,0,105) ; AA<-c()
for (j in 5:109) { M<-MM[is.number(MM[,j]),]

fit<-kruskal.test(M[,1],M[,j])
AA<-c(AA,fit$p.value)}

A<-replace(AA,is.na(AA),1)
L<- -(log(A,10))
L<-round(L,digits=2)

return(L)
}

#D.LM.LOD Another calculation of correlation between
individual genotypes and the phenotype

#Calculates the linear regression fit of each locus
(contloci as well as blanks) in the input cohort

#Additive model, heteros and homos are split
#Input is a matrix of the breed format, phenotype in 1,

genotypes in 5:109
#Returns the vector of -log10 of the pvalues for the linear

regression
d.lm.lod<-function(mat=LN)
{x_nrow(mat)

L_c()
mat1_mat2_mat
for (j in 1:x)
{for(k in 5:109) { if(mat[j,k]>0) mat1[j,k]<-1 else
mat1[j,k]<-0

if (mat[j,k]==2) mat2[j,k]<-1 else
mat2[j,k]<-0 }}
for (i in 5:109)
{fit_lm(mat1[,1]~mat1[,i]+mat2[,i],singular.ok=T)

t_summary(fit)$fstatistic
t_1-pf(t[1],t[2],t[3])

t_round(-log10(t),digits=2)
L_c(L,t)}

names(L)<-c("g1","g2","g3","g4","g5",1:100)
return(L)}

#D.SUMMARY: Returns the fit values for all markers, after
elimination of those whose

Dif value is below a given quantile, combining both high
and low selection

#RES is the listing for each generation, giving fit values
for the control loci (g1 to g5)

#the number of contloci, how many of those lost, how many
dummy loci retained/lost and min/max

d.summary_function(Thrhld=0.5)
{
N_nrow(AllFitH)
atn_matrix(,0,105)
RES_matrix(,0,17)
L_list()
for (i in 1:N) {g<-Breed.genemodel[,AllFit[i,6]]

g1<-g[1:3]; g2<-g[4:6]; g3<-g[7:9]; g4<-g[10:12]; g5<-
g[13:15]
cntloci<-
sum(sum(g1)>0,sum(g2)>0,sum(g3)>0,sum(g4)>0,sum(g5)>0)
if (AllFit[i,1]==2) at_AllFit[i,7:111]
if (AllFit[i,1]>2) {
u_AllDifH[i,7:111]
v_AllDifL[i,7:111]
w_AllFit[i,7:111]
u_u>quantile(u,Thrhld)
v_v>quantile(v,Thrhld)
at_u*v*w}
L[[length(L)+1]]_at
lcl_cntloci-sum(at[1:cntloci]>0)
nrlv_at[(cntloci+1):105]
outDL_sum(nrlv==0)
nrlvl_nrlv[nrlv>0]
inDL_length(nrlvl)
minDL_min(nrlvl)
maxDL_max(nrlvl)

res_c(AllFit[i,1:6],at[1:5],cntloci,lcl,inDL,outDL,min
DL,maxDL)
RES_rbind(RES,res)}
hd_c("Generation","startn","brdn","litn","strategy","gene

model","g1","g2","g3","g4","g5","contloci","lostCL","inDL
","outDL","minDL","maxDL")
dimnames(RES)_list(NULL,hd)
RL_list(RES,L)
return(RL)

}

#D.BREED Breed routine for D.breed, converts an ordered
inpop to cohout (not ordered)

#returns list of cohout and delta.p matrices
#genotypes in inpop must be in cols 5:9
d.breed<-function (inpop = F2, st = "bckhi" , br = 3 , li =

6, genevals=g)
{inmat<-inpop
VH<-

sum(genevals[3],genevals[6],genevals[9],genevals[12],gene
vals[15])

VL<-
sum(genevals[1],genevals[4],genevals[7],genevals[10],gene
vals[13])

famille<-matrix(,li+1,109)
delta<-matrix(,li,109)
t<-matrix(,br+1,109)
hds<-

c("p1","Gen","pID","Sex","g1","g2","g3","g4","g5",1:100)
dimnames(famille)<-list(NULL, hds)
dimnames(delta)<-list(NULL, hds)
cohout<-matrix(,0,109)
dimnames(cohout)<-list(NULL, hds)
ldp<-list()
length(ldp)<-105
breeders_cohout
cohlo<-matrix(,br,109)
cohhi<-matrix(,br,109)
cohlo[,5:109]<-0 #All alleles from strain a are "0"
cohhi[,5:109]<-2 #All alleles from strain b are "2"
#select breeders for intercross
if (st=="inter") {coh0<-inmat[inmat[,4]==0,]; coh1<-

inmat[inmat[,4]==1,]}
if (st=="bcklo") {coh0<-inmat[1:br,1:109]; coh1<-cohlo}
if (st=="bckhi") {coh0<-inmat[1:br,1:109]; coh1<-cohhi}
j<-li+3
#start breeding
for (h in 1:br){famille<-rbind(coh0[h,],coh1[h,],famille)

for (i in 5:109) {famille[3,i]<-
famille[1,i]*famille[2,i]+famille[1,i]+famille[2,i]

if (famille[3,i]==0)
famille[4:j,i]<-0

if (famille[3,i]==1)
famille[4:j,i]<-round(runif(li,min=0,max=1),digits=0)

if (famille[3,i]==2)
famille[4:j,i]<-1

if (famille[3,i]==3)
famille[4:j,i]<-round(runif(li,min=0,max=2),digits=0)

if (famille[3,i]==5)
famille[4:j,i]<-round(runif(li,min=1,max=2),digits=0)

if (famille[3,i]==8)
famille[4:j,i]<-2

}
a_famille[1:3,]
b_famille[4:j,]
b_d.calcphen(mat=b,av=genevals)
b[,2]<- (a[1,2]+1)
b[,3]<-h
b[,4]<-round(runif(li,min=0,max=1),digits=0)
cohout<-rbind(cohout,b)
breeders<-rbind(breeders,a)
if (st=="bckhi") {v<-matrix(rep(a[1,],li),li,byrow=T)

#diff from parent (bck)
delta<- b-v
for (i in 5:109) {
d1_cbind(delta[,1],delta[,2],delta[,i])
x_matrix(,,3)
if (a[1,i]==a[2,i]) d1[,3]<-NA
x_rbind(d1)
x_x[is.number(x[,3])==T,]
if (is.matrix(x)==T) {x[,2]<- (famille[1,2]+1)
ldp[[(i-4)]]<-rbind(ldp[[(i-4)]],x)}}}

if (st=="bcklo") {v<-matrix(rep(a[1,],li),li,byrow=T)
#diff from parent (bck)

delta<- b-v
for (i in 5:109) {
d1_cbind(delta[,1],delta[,2],delta[,i])
x_matrix(,,3)

if (a[1,i]==a[2,i]) d1[,3]<-NA
x_rbind(d1)
x_x[is.number(x[,3])==T,]
if (is.matrix(x)==T) {x[,2]<- (famille[1,2]+1)
ldp[[(i-4)]]<-rbind(ldp[[(i-4)]],x)}}}

if (st=="inter") {v<-matrix(rep(a[1,],li),li,byrow=T)
#diff from parent (inter)

w<-matrix(rep(a[2,],li),li,byrow=T)
delta1<- b-v
delta2<- b-w
for (i in 5:109) {
if (a[1,i]==0 | a[1,i]==2) {delta1[,i]<-NA}
if (a[2,i]==0 | a[2,i]==2) {delta2[,i]<-NA}
d1_cbind(delta1[,1],delta1[,2],delta1[,i])
d2_cbind(delta2[,1],delta2[,2],delta2[,i])
x_matrix(,,3)
x_rbind(d1,d2)
x_x[is.number(x[,3])==T,]
if (is.matrix(x)==T) {x[,2]<- (famille[1,2]+1)
ldp[[(i-4)]]<-rbind(ldp[[(i-4)]],x)}}}

famille<-matrix(NA,li+1,109)
}

#delta.p<-delta.p[order(delta.p[,"p1"]),]
L<-list(breeders,cohout,ldp)
return(L)}

Data Analysis

A. Generation of a simulated dataset reproducing the actual pedigree

The simulated pedigree reproduces the experimental pedigree structure (the number of

breeding cages set up at each generation, the breeding strategy, and the number of

offspring obtained are specified). The number of independent genetic markers

segregating in the crosses is also specified. The virtual animals generated are given the

same individual numbers as the actual ones (taken from the BxS.gen matrix). Outputs the

“BxS.SimGen” numeric matrix used in the significance computation below.

#Simulates the BalbxSJL selected breeding (F2 founder
generation and subsequent Hx generations).

#Generates a matrix with N genes segregating independently
and randomly

#The breeding numbers are entered in the first ###USER###
segment of the code,

#the breeding strategy in the second #### USER### part
#Output is the BxS.SimGen numeric matrix

USER
#Set N, the number of genes tracked

N_10000

#Set the number of mice in the starting F2 cohort
f2.sz_32

#Now set the descriptors of the cross. For each generation,
starting with F2,

#specify the number of cages bred from a generation
(hx.brd) and the number of offspring from each cage
(hx.product)

#Additional pairs of hx.brd and hx.product could be entered
if needed

f2.brd_3
f2.product_c(2,4,8)
h3.brd_3
h3.product_c(1,2,5)
h4.brd_4
h4.product_c(3,7,8,10)
h5.brd_2
h5.product_c(1,7)
h6.brd_3
h6.product_c(0,4,5)

Functions
#sim.offspring generates a set of offspring from two

parents
#Only genotypes are tracked, offspring have the same number

of genes as parent
#and are a random combination of genotypes.
#Returns a off.mat matrix of N rows, as many columns as

there are genes
sim.offspring<- function(p1,p2,n){
m_length(p1)
off1_matrix(rep(p1,n),n,m,byrow=T)
off2_matrix(rep(p2,n),n,m,byrow=T)
x_off1==1
off1[x]_round(runif(sum(x)),digits=0)
x_off1==2
off1[x]_1
x_off2==1
off2[x]_round(runif(sum(x)),digits=0)
x_off2==2
off2[x]_1
off.tot_off1+off2
return(off.tot)}

#make.gen functions

#Function that makes a generation from the previous one.
Arguments are the parent generation (matrix)

#, the number of breedings, and the number per family
(typically the nn.brd and nn.product parameters)

make.gen.inter<- function(par.mat, nb.brd, nb.product){
x_sample(1:nrow(par.mat),size=(2*nb.brd))
for (i in 1:nb.brd){k_x[(2*(i-1))+1]

l_x[(2*(i-1))+2]
k_par.mat[k,]
l_par.mat[l,]
m_nb.product[i]
off.mat_sim.offspring(k,l,m)
if (i==1) next.gen_off.mat
if (i>1) next.gen_rbind(next.gen,off.mat)}

return(next.gen)}
L_list(next.gen,par.mat[x,])
return(L)}
make.gen.bck<- function(par.mat,nb.brd,nb.product){

x_sample(1:nrow(par.mat),size=(nb.brd))
for (i in 1:nb.brd){

p1_par.mat[x[i],]
p2_sjl
off.mat_sim.offspring(p1,p2,n=nb.product[i])
if (i==1) next.gen_off.mat
if (i>1) next.gen_rbind(next.gen,off.mat)}

return(next.gen)}

##
runif(5) #reset random seed
sjl_rep(0,N)
#Set the F2 generation. Size of a is F2 size x N

a_sample(c(0,1,2),size=(f2.sz*N),prob=c(0.25,0.5,0.25),re
place=T)

F2_matrix(a,f2.sz,N)
#Then run the subsequent generations

USER
#Specify the actual function used to generate each

generation from the previous one
#(as make.gen.inter for an intercross, or "make.gen.bck"

for a backcross)
#If a backcross, the parent will be assumed to be SJL,

genotype 0 at all loci

H3_make.gen.inter(F2,f2.brd,f2.product)
H4_make.gen.bck(H3,h3.brd,h3.product)

H5_make.gen.inter(H4,h4.brd,h4.product)
H6_make.gen.inter(H5,h5.brd,h5.product)
H7_make.gen.bck(H6,h6.brd,h6.product)
#########################

F2_cbind(rep(2,f2.sz), F2)
x_rep(3+((1:f2.brd)*0.1), f2.product)
H3_cbind(x,H3)
x_rep(4+((1:h3.brd)*0.1), h3.product)
H4_cbind(x,H4)
x_rep(5+((1:h4.brd)*0.1), h4.product)
H5_cbind(x,H5)
x_rep(6+((1:h5.brd)*0.1), h5.product)
H6_cbind(x,H6)
BxS.SimGen_rbind(F2,H3,H4,H5,H6)
#Add true individual nb
BxS.SimGen_cbind(BxS.gen[-1,1],BxS.SimGen)
#Add bogus marker Ids
BxS.SimGen_rbind(c(99,99,1:(ncol(BxS.SimGen)-

2)),BxS.SimGen)

B. Significance analysis of locus-wise phenotype correlation and selection

throughout the pedigree

Used to calculate the impact of individual markers on the phenotype during the pedigree.

The input data are in the formar of a BxS.gen, BxS.phen, and BxS.mrks matrices, as well

as the BxS.SimGen simulated data generated in section A.

The key output is the AllFitH vector, which gives the

-log10(pvalue) for the distribution (computed from a combination of genotype/phenotype

correlation in the F2 and H5 generations and the remaining count of Balb alleles in the

H6).

#BxS calculation
#Designed 11-03 for linkage analysis up to the H6

generation, rev 0204, 0604
#Input (either true or simulated)
BxS.gen matrix: Indivs in rows. First column has IndivNb,

second has generation ID
(if from the simulation, family indicator also)

then one column for each marker. First row has
marker Nb

BxS.phen matrix: Indivs in rows. First column has
IndivNb, second has phenotype. First row 0,0 to match
with gen

BxS.mrks matrix: First row has marker Nb (as per gen),
second chromosome, third Mb position

#Calculates: - The linear regression P value in all F2s,
phen vs each marker

- The Pearson correlation coefficient in all F2s,
phen vs each marker

- The Spearman correlation coefficient in H5
mice, phen vs each marker (OK for non-normal
distributions)

- The genotype delta between hi and low
responders at H5, phen vs each marker

USER
Choose the matrices to use
#mat.g is the genotype matrix. Choose the real data

(BxS.gen) or the simulated one (BxS.SimGen)
mat.sim_BxS.SimGen
mat.real_BxS.gen

#mat.p is the phenotype matrix. By default, should use
BxS.phen

mat.p_BxS.phen

#######################
if (nrow(mat.g)!=nrow(mat.p)) stop("Data doesn't

fit,different row numbers in genotype and phenotype
matrices")

for (k in 1:2){
if (k==1) mat.g_mat.real
if (k==2) mat.g_mat.sim

#Calculate Pearson cor coeff on F2
f2.pears_rep(0,ncol(mat.g)-2)
f2_mat.g[,2]>=2&mat.g[,2]<3 #To use the decimal generation

identifiers from BxS.SimGen
y_mat.p[f2,2]
for (i in 3:ncol(mat.g)){
x_mat.g[f2,i]
fit_cor.test(x,y)
f2.pears[i-2]_round(fit$estimate,digits=3)}

#Calculate Spearman correlation coeff on all
all.spear_rep(0,ncol(mat.g)-2)
y_mat.p[-1,2]
for (i in 3:ncol(mat.g)){
x_mat.g[-1,i]
fit_cor.test(x,y,method="spearman")
all.spear[i-2]_round(fit$estimate,digits=3)}

#Calculate Spearman cor coeff on H5
h5.spear_rep(0,ncol(mat.g)-2)
h5_mat.g[,2]>=5&mat.g[,2]<6
y_mat.p[h5,2]
for (i in 3:ncol(mat.g)){
x_mat.g[h5,i]
if (var(x,na.method="omit")==0) {h5.spear[i-2]_0

next}
fit_cor.test(x,y,method="spearman")
h5.spear[i-2]_round(fit$estimate,digits=3)}

#Calculate H5 skew: the allele imbalance in the H5
h5hi_mat.g[,2]>=5&mat.g[,2]<6&mat.p[,2]>30
h5lo_mat.g[,2]>=5&mat.g[,2]<6&mat.p[,2]<30
h5.skew_colSums(mat.g[h5hi,],na.rm=T)-

colSums(mat.g[h5lo,],na.rm=T) #To show skewing of the
distribution, simply subtract the sum of genotypes in hi-
lo responder

h5.skew_h5.skew[-(1:2)]

#Calculate H6 count: The frequency of "1" alleles remaining
at H6

h6_mat.g[,2]>=6&mat.g[,2]<7
h6.cnt_(colSums(mat.g[h6,-

(1:2)]==1,na.rm=T)+2*colSums(mat.g[h6,-
(1:2)]==2,na.rm=T))/(sum(h6)*2)

if (k==1){f2.pearsT_f2.pears
h5.spearT_h5.spear
h5.skewT_h5.skew
h6.cntT_h6.cnt
all.spearT_all.spear}

if (k==2){f2.pearsS_f2.pears
h5.spearS_h5.spear
h5.skewS_h5.skew
h6.cntS_h6.cnt
all.spearS_all.spear}

}

#Calculate probabilities:
#Calculate, in the simulated dataset, the proportion of

markers that show the combination
#of F2 Pearson correlation and H5 skew of the true results
pvals.2and5_rep(1,length(f2.pearsT))
N_length(f2.pearsS)
for (i in 1:length(f2.pearsT)){

x_f2.pearsS>=f2.pearsT[i]
y_h5.skewS>=h5.skewT[i]
z_x&y
pvals.2and5[i]_(-(log10((sum(z)+1)/N))) #add 1 to
avoid log0 and to give the limit, given the number of
iterations
pvals.2and5_round(pvals.2and5,digits=2)}

#Calculate the proportion of markers in the simulated
dataset that show the same Spearman correlation
coefficient over the whole mouse set

N_length(all.spearS)
n_length(all.spearT)
pvals.all_rep(1,n)
for (i in 1:n){

x_all.spearS>=all.spearT[i]
pvals.all[i]_(-(log10((sum(x)+1)/N))) #add 1 to avoid
log0 and to give the limit, given the number of
iterations
pvals.all_round(pvals.all,digits=2)}

#Calculate, in the simulated dataset, the proportion of
markers that show the combination

#of F2 Pearson correlation and H5 Spearman, and H6 allele
count of the true results

pos.pv.256_rep(1,length(f2.pearsT))
N_length(f2.pearsS)
for (i in 1:length(f2.pearsT)){

x_f2.pearsS>=f2.pearsT[i]
y_h5.skewS>=h5.skewT[i]
w_h6.cntS>=h6.cntT[i]
z_x&y&w
pos.pv.256[i]_(-(log10((sum(z)+1)/N))) #add 1 to
avoid log0 and to give the limit, given the number of
iterations
pos.pv.256_round(pos.pv.256,digits=2)}

#Calculate, in the simulated dataset, the proportion of
markers that show the combination

#of negative F2 Pearson correlation and H5 Spearman, and H6
allele count of the true results

neg.pv.256_rep(1,length(f2.pearsT))
N_length(f2.pearsS)
for (i in 1:length(f2.pearsT)){

x_f2.pearsS<=f2.pearsT[i]
y_h5.skewS<=h5.skewT[i]
w_h6.cntS<=h6.cntT[i]
z_x&y&w
neg.pv.256[i]_(-(log10((sum(z)+1)/N)))} #add 1 to
avoid log0 and to give the limit, given the number of
iterations

par(mfrow=c(2,2))
hist(f2.pearsS,nclass=15,xlim=c(-0.6,0.6))
hist(h5.spearS,nclass=15,xlim=c(-0.6,0.6))
hist(f2.pearsT,nclass=15,xlim=c(-0.6,0.6))
hist(h5.spearT,nclass=25,xlim=c(-0.6,0.6))
hist(all.spearT,nclass=15,xlim=c(-0.8,0.8))
hist(all.spearS,nclass=15,xlim=c(-0.8,0.8))
plot(f2.pearsT,h5.spearT,xlim=c(-0.8,0.8),ylim=c(-0.8,0.8))
plot(f2.pearsS,h5.spearS,xlim=c(-0.8,0.8),ylim=c(-0.8,0.8))
plot(f2.pearsT,h5.skewT,xlim=c(-0.6,0.6),ylim=c(-12,12))
plot(f2.pearsS,h5.skewS,xlim=c(-0.6,0.6),ylim=c(-12,12))
plot(f2.pearsT,h6.cntT,xlim=c(-0.6,0.6),ylim=c(-0.1,1))
plot(f2.pearsS,h6.cntS,xlim=c(-0.6,0.6),ylim=c(-0.1,1))
plot(1:length(f2.pearsT),pvals.2and5,xlab=paste("Marker

Nb"),ylab=paste("LOD score, F2 and H5"))
plot(1:length(f2.pearsT),pvals.all,xlab=paste("Marker

Nb"),ylab=paste("LOD score, all generations"))
plot(1:length(f2.pearsT),pos.pv.256,xlab=paste("Marker

Nb"),ylab=paste("Combined LOD, F2,H5,H6"))
plot(1:length(f2.pearsT),neg.pv.256,xlab=paste("Marker

Nb"),ylab=paste("Combined Low resp LOD, combined
F2,H5,H6"))

