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SUMMARY

1. Equations are derived for potassium (K+) dynamics in simplified models of brain
tissue. These describe K+ movement in extracellular space, transfer of K+ associated
with current flow through cells (the so-called spatial buffer mechanism) and equi-
libration between extracellular space and cytoplasm.

2. Numerical calculations show that the principal data on K+ dynamics from
various laboratories can be accounted for with simple assumptions about spatial
buffer action and uptake. Much of the data is inconsistent with extracellular diffusion
being the main mechanism for K+ flux through brain tissue, including some that has
earlier been cited in support of this hypothesis.

3. The buffering actions of spatial buffer transfer Qf K+ and of cytoplasmic
equilibration, in which these mechanisms reduce rises of [K+]. that would otherwise
occur, are analysed quantitatively for specific K+ source distributions and for spatial
and temporal frequency components of general disturbances.

4. Spatial buffer action has most effect in reducing [K+]o rises with net release over
extensive zones of tissue (greater than ca. 200 ,um in diameter) for periods of the order
of minutes. Reductions greater than 75% may be achieved. With localized but
prolonged release, the maximum [K+]0 rise is little affected but the volume of tissue
affected by more moderate rises is substantially reduced.

5. Cytoplasmic K+ uptake also has most effect with widespread release, but its
effect diminishes with prolonged periods of release.

6. The effects of the buffering mechanisms and of K+ re-uptake into active
neurones in determining the decline of [K+]o after a period of stimulation are
considered. Re-uptake is unlikely to be the major factor responsible for [K+]. decline
when this has a time course of only a few seconds.

7. The properties necessary for the cells mediating the spatial buffer mechanisms,
possibly glial cells, are assessed.

INTRODUCTION

The aim of this paper is to relate the data on potassium movement through brain
tissue to the predictions of some simple models of the tissue. This provides a
framework for the quantitative interpretation of data obtained in the preceding two
papers (Gardner-Medwin, 1983; Gardner-Medwin & Nicholson, 1983). Using numerical
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methods, with a single fairly simple model, it is possible to predict the size and the
time course of three different types of data obtained in these papers: measurements
of the potassium flux across the tissue surface associated with current flow (Gardner-
Medwin, 1983), measurements of the extracellular concentration changes associated
with current flow (Gardner-Medwin & Nicholson, 1983) and measurements of the
extracellular voltage changes associated with K+ flux (Gardner-Medwin, 1983).
The substantial agreement between the data and these calculations suggests that the
various phenomena may result from the same mechanism and that it is not necessary
to postulate additional processes to account for the results. This strengthens the
conclusions that have already been drawn from simpler arguments within these two
papers. These conclusions are that the principal means by which potassium (K+) moves
through vertebrate brain tissue from one region of extracellular space to another is
through cells rather than through the extracellular space directly. This applies both
to movement in a K+ concentration gradient and to movement in a voltage gradient,
when these gradients extend for distances of several hundred microns.
These conclusions go against the interpretations suggested for other data, particu-

larly the suggestions made by Fisher, Pedley & Prince (1976) and Lux & Neher
(1973) for their experiments. The theoretical analysis in this paper can be used to
examine these other experiments and to consider the extent to which the different
data really entail different conclusions. This discussion highlights some of the
questions that remain to be answered about K+ dynamics in brain tissue.
The importance of K+ dynamics in neural tissue is described in the Introduction

to an accompanying paper (Gardner-Medwin, 1983) and, for example, by Varon &
Somjen (1979). One of the major questions is whether there are mechanisms within
the brain that specifically limit the build-up of K+ around active neurones. The
analysis in this present paper indicates to what extent and under what conditions
the postulated mechanisms would limit the increases ofextracellularK+ concentration
with different patterns of release. There are at present no straightforward ways of
turning on and off the mechanisms for K+ uptake into cells and K+ dispersal in an
experiment, to determine their effect, but once we can estimate their parameters we
can calculate what the effect of such hypothetical experiments would be.
Some of the conclusions from this analysis have been published in preliminary form

(Gardner-Medwin, 1980, 1981 b).

Principal simplifying assumptions
Vertebrate brain tissue contains many types of cells with differing morphology and

physiology. Each cell type may affect the extracellular K+ concentration ([K+]0) and
the K+ flux through the tissue in one or more ways. The approach here is to make
simplifying assumptions for a model of the tissue, to calculate the expected results
with these assumptions, and to see whether there are aspects of the experimental
results that cannot be explained on the basis of these assumptions. A reasonable
agreement between the experimental results and calculations does not, of course,
demonstrate the validity of the assumptions. It does, however, show that further
experiments, probably of a different design, would be required to establish if the
simplified model is seriously misleading in predicting the tissue behaviour. The
assumptions in the model are presented here.
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(i) The nature of the extracellular space. The extracellular space in all regions of the
tissue has, in the model, the same physical parameters, including the extracellular
volume fraction (a) and tortuosity factor (A), defined on p. 402. The tortuosity factor
(A) is assumed to be the same in all directions: i.e. the tissue is isotropic. The mobilities
of the principal conducting ions (Na+, K+ and Cl-) and their concentrations under
base-line conditions are the same as in cerebrospinal fluid, with K+ having a base-line
transport number (nB) of 0-012 (Gardner-Medwin, 1983). The movement of ions in
the extracellular space under the influence of concentration and electrical gradients
obeys the Nernst-Planck equation (eqn (17)), as in a simple aqueous solution. For
this and other electrochemical theory the reader should refer to a standard text (e.g.
Bockris & Reddy, 1970).

(ii) The relation between extracellular K+ concentration and tissue K content. It is
known that a rise in [K+]O results in net uptake ofK+ into cytoplasm in at least some
tissues (Boyle & Conway, 1941; Lund-Andersen & Hertz, 1970). The time course for
equilibration ofsuch uptake into cells in brain tissue is uncertain but is probably rapid
(a few seconds) because of the high surface to volume ratio of neurites and glia
(Gardner-Medwin, 1980). Most ofthe important results in the present analysis involve
effects with time courses of tens or hundreds of seconds. For these results it is assumed
that the local tissue is always fully equilibrated. In experiments with ionophoretic
K+ injection (Lux & Neher, 1973; Nicholson, Phillips & Gardner-Medwin, 1979) the
observed changes of [K+]0 are faster. For such experiments a simple linear differential
equation for uptake is included (p. 405).
When [K+]O is raised in the tissue for long enough for the local cytoplasmic K+

concentration to reach a new steady level, the local K+ content of the tissue is raised
by more than just the amount present in the extracellular space. This can be
expressed in terms of an effective K+ distribution space f, which is the ratio of the
change in tissue K+ content (m-mole per litre of tissue) to the change in [K+]O (mM).
If equilibration took place only in extracellular space, 6 would be ca. 0-2, i.e. the
fraction of the tissue volume that is extracellular space. For mammalian brain slices
the data of Lund-Andersen & Hertz (1970, Fig. 3) gives 6 in the range 1-0-1 4, while
the classic work of Boyle & Conway (1941) on frog muscle gives 6 ca. 0-8. In frog
muscle the K+ uptake was shown by Boyle & Conway to be the same whether it was
produced by K/Na substitution in extracellular space (when there was cell swelling)
or by KCl addition (when cell volume remained approximately constant and
cytoplasmic K+ concentration was raised). A constant value = 1 0 is assumed here
for brain tissue.

(iii) The cells that aid K+ transfer between regions of extracellular space. These cells
embody the simplest properties required for the transfer of extracellular K+ by the
spatial buffer mechanism (Orkand, Nicholls & Kuffler, 1966). The simplifying
assumption is made that all the cells that contribute to such transfer have the same
electrical parameters and purely K+-selective membranes. They are referred to here
as transfer cells. Their properties make them resemble glial cells rather more than
neurones. In total they need only occupy a small fraction ofthe tissue volume: enough
for their cytoplasm to carry about 6% of an electric current through the tissue. In
line with the assumption that all the K+ transfer cells can be lumped together, the
fraction of tissue current through other cell types is assumed negligible (Fig. 1). This
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Fig. 1. Schematic diagrams of the tissue. A, the network of transfer cell processes assumed
to be electrically coupled throughout the tissue and terminated at the surface. Most of
the tissue volume is occupied by other cells, of which only a few are indicated. B, the
principal variables. C, the pattern of currents and K+ fluxes associated with the spatial
buffer mechanism in the transfer cells when there is a gradient of extracellular K+
concentration. D, the currents and K+ efflux from transfer cells when a current is passed
outward across the tissue surface.

is consistent with the other cell types (presumably mainly neurones) occupying a

majority of the tissue volume if these cells have tortuous or short processes compared
with their electrical space constants.

Since the transfer cell membranes are K+-selective, they have no significant passive
or active Na+ fluxes (see discussion by Gardner-Medwin, 1981 a, in relation to glial
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cells). Their resting potentials are equal to the Nernst equilibrium potential for K+.
The membrane K+ flux for these cells is related to the membrane potential and to
the internal and external K+ concentrations by the constant field equations (Goldman,
1943). This is an essentially arbitrary choice, in the absence of specific information
about the [K+]. dependence of membrane conductance for central neurones and glia.
The cytoplasm of adjacent transfer cells is assumed to be coupled in a syncytial

manner, allowing passage of current (Fig. 1 A). The total current flowing through the
Trtoplasm of transfer cells per unit area of tissue is related to the average gradient

of intracellular voltage along the direction of current by a simple resistivity
parameter (ri). This parameter is made up of components due to (a) the resistivity
and tortuosity of the cytoplasm and (b) the resistance of junctions between the cells,
as discussed by Somjen (1973). The postulate that the transfer cells form a syncytium
is not strictly necessary. Independent transfer cells with processes that overlap with
their neighbours by distances much greater than their electrical space constants
would behave in essentially the same way. Any component of current passing long
distances through a succession of such cells, through cytoplasm and across membranes
in the overlapping zones, would encounter the largest electrical resistance in the
cytoplasm and would have no net effect on the ionic composition of the extracellular
space within each overlap zone. A syncytium is assumed (Fig. 1 A), simply because
it is easier to envisage and discuss.
The K+ concentration within the transfer cells is assumed to be constant. Changes

of the total K+ content of the transfer cells cannot occur since their membranes do
not pass other ions to maintain electroneutrality. Thus it is other cell types in the
tissue that contribute the substantial cytoplasmic component of the total K+
distribution space ((ii), above). Current flow across the transfer cell membranes will
not cause intracellular build-up or depletion of K+ if both the membrane current and
the cytoplasmic current are carried entirely by K+ ions. This assumption is probably
approximately correct for vertebrate glial cells (Somjen, 1975, 1979) and represents
the simplest form of spatial buffer action that can be included in a model. Spatial
buffering may also occur in situations where significant intracellular concentration
changes occur in the transfer cells, where these do not have high internal [K+]
(Gardner-Medwin, Coles & Tsacopoulos, 1981).

(iv) Water movements between compartments of the tissue. The fluxes of ions between
different compartments of the tissue can result in water movements. This, in turn,
may affect ion concentrations through changes ofthe compartment volumes (Gardner-
Medwin, 1980). Potassium represents only ca. 1 % of the osmotic constituents of
extracellular fluid however, so disturbances affecting [K+]. directly are associated
with proportionately much smaller changes of osmolarity. Such effects are ignored
in this simplified analysis, though it must be recognized that in some extreme
conditions the concentrations of all extracellular ions may be significantly affected
by water movements (Dietzel, Heinemann, Hofmeier & Lux, 1980). The lack of
significant extracellular volume changes during current passage experiments is borne
out by the failure to observe significant changes of [Ca2+]0 (Gardner-Medwin &
Nicholson, 1983).

(v) Exchange of K+ with the blood. In vertebrate brain the ionic permeability of
cerebral capillaries is extremely low and consequently it is unlikely that significant
effects on concentration within brain tissue due to capillary exchange can be seen
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in times less than many tens of minutes (Gardner-Medwin, 1980). Such effects are
neglected except in considering the data ofFisher et al. (1976), which involves changes
of [K+]o maintained for several hours (pp. 411-412).

(vi) The surface of the brain. The extracellular space is assumed to open straight
into the fluid at the pia-arachnoid or ependymal surface of the brain without any
form of barrier. The processes of the transfer cells terminate in closed ends at the
surface (fig. 2A), but are otherwise uniform throughout the entire tissue up to the
surface.
Bennett (1969) used an electrical technique to show that careful dissection in the

cat could leave a fragile barrier intact at the pia-arachnoid cortical surface (presumably
the arachnoid membrane) that had a resistance of 200-400 (1 cm2, equivalent to that
of 5-10 mm thickness of brain tissue. (Note that figures of50-100 Q cm2 in the paper
are calculated erroneouslyfrom the data: M. V. L. Bennett, personal communication.)
This membrane could be a substantial barrier for K+ diffusion. It was absent in the
experiments of Gardner-Medwin (1983) and Gardner-Medwin & Nicholson (1983)
since voltage profiles during current passage would have revealed an appreciable jump
in voltage across the surface with less than a tenth of this resistance. Fisher et al.
(1976) have suggested that there was a barrier for K+ diffusion into cat cortex in their
experiments. Again, the arachnoid membrane is unlikely to have been intact in these
experiments since the suggested barrier is not discretely localized at the surface: an
explanation of the apparent barrier as due simply to operation of the spatial buffer
mechanism is more likely (pp. 411-412). The assumption that there is no significant
extracellular barrier at the pial or ependymal surfaces is consistent with the data of
Levin, Fenstermacher & Patlak (1970) for diffusion of extracellular markers from the
cerebrospinal fluid into brain tissue.

(vii) Geometrical simplifications. The experimental data with current flow across the
brain surface and with changes of fluid composition at the brain surface are both
compared to one-dimensional solutions of the equations derived below. This com-
parison would be wholly valid if the cortical surface were entirely flat and uniformly
affected by the experimental procedures. In fact it is convex within the area of the
experimental cups and will be somewhat differently affected towards the edge of a
cup. Errors due to this one-dimensional assumption should be small so long as the
results refer only to depths that are much less than the cup diameter (5 mm for the
rat neorcortex, 3 mm for the cerebellum). This is normally the case.
Data from experiments with ionophoretic release of K+ are compared with

three-dimensional spherically symmetrical solutions of the equations (p. 404). In
order to simplify the nomenclature, the equations are derived for one-dimensional
situations (pp. 400-403) and the modifications for radial analysis are described on

MATHEMATICAL DESCRIPTION

Some readers may wish to omit the mathematical analysis (pp. 400-404) and proceed to the
Results (p. 406), which should be comprehensible with occasional reference to the Definitions below
and the section on the meaning of some of the derived parameters (p. 405).
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Definition
Asterisks (*) indicate tissue parameters that are variables: i.e. that vary with time and/or

position in the tissue; the chief variables are shown in Fig. 1 B. Other parameters are constants
in the analysis. Abbreviations are used for partial derivatives with respect to time (t) and distance
along the x axis: ay ay a_ y

at'
,

ax'
,

aX2'
The symbol A before a variable indicates a deviation from its resting level.

Fundamental constants
R Gas constant: 8-32 J K-1 mole-'
T Absolute temperature: 310 K at 37 0C
F Charge per mole of univalent ions: 96-5 kC/mole
v RT/F: 27 mV at 37 C
Daq Aqueous diffusion coefficient forK+ ions: ca. 2-5 x 10-5 cm2 sec' at 37 TC, 1.9 x 10-5 cm2 sec1

at 200 calculated from mobilities given by Conway (1952)

General tissue parameters
a Fraction of total tissue volume occupied by extracellular space
A Extracellular tortuosity factor (p. 402)
*c Extracellular K+ concentration ([K+]O)
CB Base-line (i.e. normal resting) value of c
nB Base-line transport number for K+ in extracellular space: called tK in Gardner-Medwin (1983)
D Diffusion coefficient for K+ ions in the extracellular space (p. 402)
9 Distribution space for K+ (pp. 395, 405)
req Time constant for equilibration of tissue cytoplasm with altered levels of c (p. 405)
* VO Electrical potential in extracellular space with respect to remote tissue
*Io Extracellular current flowing through a tissue plane perpendicular to the x direction, per unit

area of tissue
ro Extracellular tissue resistance (0 m), equal to VO'/1IO (p. 400)
*I Total tissue current in the x direction, per unit area of tissue
*JK Extracellular K flux in the x direction, per unit area of tissue
*Q Rate of release of K+ into extracellular space, per unit volume of tissue (p. 402)
*IR Total tissue current through a spherical surface in radial solutions (p. 404)

Parameters of the transfer cells
* Vi Electrical potential in the cytoplasm of transfer cells
* Vm Membrane potential of transfer cells: Vi-VO
Vr Vm under resting (or base-line) conditions
*im Net inward ionic current per unit area of transfer cell membrane (p. 400)
Rm Resistance of unit area of transfer cell membrane (-aym/aim) under resting conditions
Cm Capacitance of unit area of transfer cell membrane
T Time constant of transfer cell membrane under resting conditions (RMCM)
a Area of transfer cell membranes per unit volume of tissue
P Permeability of transfer cell membranes to K+ (p. 401)
*Ii Current in transfer cell cytoplasm through a plane perpendicular to x, per unit area of tissue
ri Resistance of the cytoplasm of the transfer cells (0 m), equal to Vi'/II (p. 400)
c1 K+ concentration within the transfer cells (p. 397)

Combined parameters
A [Rm a-'(ri + ro)-]i: the electrical space constant of the transfer cells within the tissue under

resting conditions (p. 405)
T fA2A2a-cD-1: a characteristic time within the tissue (p. 405)
ft (nB.- 1) ro(ri + ro)1': a measure of the relative magnitude of K+ flux through the transfer

cells and by extracellular diffusion (pp. 405-406).
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Cable equation8 for the transfer cell
Both the membrane potential (Vm) and the ionic current(im) across the membranes of the transfer

cells may vary throughout the tissue. If there are variations of [K+]0 (designated by c), then Vm
might be expected to follow these variations according to the Nernst equation for K+, since the
membranes are solely permeable to K+. But this is not precisely correct, since gradients of Vm must
be associated with currents flowing through extra- and intracellular space and across the membranes,
and these act so that Vm is affected not only by the local extracellular K+ concentration, but also
by the regions within a distance of several space constants (A). The membrane currents that flow
in such a situation act to move K+ into or out of the extracellular space (Fig. 1 C) in a pattern
that serves to shift K+ from regions where [K+]O is high to regions where it is low. This is known
as the spatial buffer mechanism for dispersal of K+ (Orkand et al. 1966). Calculation of the current
and voltage distribution associated with a particular distribution of [K+]o follows approximately
the principles of conventional cable analysis (see e.g. Jack, Noble & Tsien, 1975). In many situations
the spatial buffer mechanism operates with zero net current through the tissue (I = 0), since
extracellular currents in one direction are balanced by intracellular currents in the other direction.
The equations are derived for situations in which I is not necessarily zero, since this more general
analysis is appropriate for some of the experiments, as well as for certain assymetrical cases of
spatial buffering where one region of tissue may drive net current through another region.
A current density I through the tissue in the x direction is the sumof the extra- and intracellular

current densities, each expressed per unit area of tissue:

I=Io+II (1)

If the current is parallel to x without diverging, we have:
Iu'+Ii' =0. (2)

The extracellular component IO is carried by all the extracellular ions, i.e. largely Na+ and C1-.
The intracellular componentIi is a K+ current flowing entirely within the transfer cells (p. 397).
The definitions of the extracellular and intracellular resistance parameters (ro, ri) are expressed in
the following two equations. Note that these parameters are the resistances of the extra- and
intracellular compartments between the faces of a unit cube of tissue. They therefore depend on
the geometry of the compartments as well as on the specific resistance of the respective fluids and
on the properties of intercellular junctions.

Vi -riIi, (3)

VO =-ro Io (4)
Gradients of ion concentrations in extracellular space can themselves cause voltage gradients (i.e.
diffusion potentials) with no net current, through the unequal mobilities of the diffusing ions. These
effects are ignored except for Fig. 4C, where they are separately estimated for comparison with
results from the model. The area of transfer cell membrane in unit volume of tissue is (a) and its
specific membrane capacitance is Cm. In regions with an inward current density im across the
transfer cell membranes (representing a pure K+ flux) the equation for charging of the membrane
capacitance is: aCml'm = IO +aim. (5)

Using the conventional manipulations of cable theory to operate on eqns. (1)-(5), we derive
eqns. (6)-(8):

m= r m m+A2 Vm], (6)

Vol=-r0+ [mI +ril, (7)
r1

VOW =-r r m (8)ri+ ro
where r, A are the time constant and the electrical space constant for the network ofcoupled transfer
cells under resting conditions (pp. 399, 405). Equation (6) is the conventional cable equation, while
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eqns (7)-(8) are subsidiary equations required in later analysis. Provided that Cm, a, r1 and r. do
not vary, these equations are valid even for different K+ concentrations, in which the membrane
resistance will vary. Note that Rm, T A are not variables: they are the values that the corresponding
variables have under resting conditions (p. 399).
The membrane current (im) depends on the K+ concentrations and on Vm in a manner determined

by the membrane characteristics. With constant field assumptions (p. 397) and a constant K+
permeability (P), im is given by eqn (9) (see e.g. Jack et al. 1975):

FP Vm [ci exp (Vm/TP)-cl
T exp (Vm/T)-1 (9)

The internal K+ concentration of the transfer cells (ci) is assumed not to vary significantly from
its resting level (p. 397). Since the membranes are solely permeable to K+, c1 is related to the base-line
[K+]o (= CB) and to the resting potential (1Vr) by the Nernst equation:

Ci = CBexp( Vr/T). (10)
This expression is later substituted into eqn (9). It is also convenient to substitute an expression
for the membrane permeability (P) as a function of the resting specific membrane resistance (Rm),
which is the parameter used in the definitions of r and A. To obtain the resting conductance we
can differentiate eqn. (9) with respect to Vm and substitute the resting conditions (Vm = V1; C = CB):

-am -R 1=FP T'.CB
avV m =-T2 exp (V/T)-1I'll

Rearranging eqn. ( 11) gives:
P2

Rm FVCB [exp(f./')-l]. (12)
Substituting eqns. (10) and (12) into eqn. (9) gives:

= PVm[exp (IVr/P)-] [C exp ((Vm I-Vr/)]. (13)

This expression for im is substituted in eqn (6) to give the full cable equation:

Cm = U V[exp(1V/v)_ l] [--exp((Vm- Vr)/P) + A2Vm]. (14)

A linear approximation to eqn. (14) can be derived that is adequate for many calculations involving
small displacements from resting conditions:

T

[I CB (m r) +A2Vm] (15)

This linearized form is independent of specific assumptions about the dependence of im on Vm or
[K+]0, provided the resting membrane is at K+ equilibrium. Equation (14) reduces to this form for
Vm - T'. -.0. With Vr/T = -3 (i.e. transfer cell resting potentials ca. -80 mV), the errors
introduced by the approximation, compared with eqn. (14), are less than 200% for depolarizations
less than 10 mV.
Equation (14) or (15) allows calculation of the rate of change of membrane potential of the

transfer cells at every point if the distributions of membrane potential and of [K+]o are known.
In practice the time constant of the membranes (T) is so short (a few msec at most) and in the
situations of interest the changes of c are so slow (1i1 < IhAC/T) that the membrane always reaches
a pseudo-stationary state indistinguishable from that for which rem = 0. The distributions of
currents and voltages are the same at every instant as they would be if the prevailing distribution
of c were in fact steady. In the numerical calculations the changes of c are obtained with equations
derived below and Vm is then calculated after each step by integration of eqn. (14) or (15) to a steady
state. An expression for im is required later, which follows from eqn. (6) by substituting T Pm = 0:

im=-R Vm (16)Rm
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Equations for extracellularpotassium flux through thetissue
The flux of K+ through an aqueous solution depends on the gradients of extracellular voltage

and of[K+ ] according to the Nernst-Planck equation (see e.g. Bockris & Reddy, 1970). The actual
size of the flux JK in extracellular space (defined as the amount of K+ moving through the
extracellular channels within unit area of tissue per sec) will be smaller than in free solution with
the same gradients because of (a) the limited extracellular space available, (b) the fact that not all
of this space is devoted to parallel sided channels going in the direction of the flux. It is convenient
to write the factor by which the flux is reduced as aA-2 where a is the extracellular space fraction
and A is conventionally known as the tortuosity factor, though it is strictly a geometrical factor
that differs from unity both on account of true tortuosity (twistiness) of the extracellular channels
and through extracellular varicosities or channels leading to blind ends. The Nernst-Planck
equation with these geometrical factors incorporated is as follows:

JK=- (C' +v ). (17)

If there is no voltage gradient(1V' = 0) this equation reduces to Fick's first law of diffusion, with
the effective diffusion coefficient multiplied by a factor (aA-2). The relation between Fick's first
and second laws for diffusion of extracellular substances in brain tissue is discussed more fully by
Gardner-Medwin (1980): in Fick's second law, D appears multiplied by a different factor (A-2). This
distinction forms the basis for a method of measuring a and A2 in mammalian brain, yielding values
ca. 0-2 and 2-5 respectively (Nicholson etal. 1979; Nicholson & Phillips, 1981).

In a situation with no gradient of [K+]0 (e.g. current passage under resting conditions) the K+
flux is equal to the base-line K+ transport number for the extracellular space (nB) multiplied by
I0/F. This flux is also given under these conditions by eqn. (17), with c' = 0. Combining the two
expressions, and using eqn. (4), we obtain a fixed relationship between the various parameters
employed: rOaDcB F

AsL DB Bn (18)

This relationship is used later to simplify other expressions.

Equations governing the rate of change of [K+]o
The K+ concentration in a particular region of extracellular space is influenced by the following

factors:
(i) Release of K+ into the extracellular space. Potassium is added to the extracellular space at a rate

Q moles per unit volume of tissue per sec, representing a disturbance of the tissue due to extrinsic
K+ sources (Lux & Neher, 1973) or neuronal activity. Processes of equilibration with cytoplasm
will lead to temporary uptake of some of this K+ into cells for as long as [K+]o is elevated (ii), below).
When release is due to neuronal activity there is in addition a component of uptake specifically
in the active cells that is stimulated by Na1 gain and Ki loss, due partly at least to active transport
(Cohen & de Weer, 1977). This 're-uptake' eventually restores all the lost K+ to the active cells
and will have the same spatial distribution as the initial release. The net effect on the rest of the
tissue is as for an extrinsic K+ load with Q positive and then negative with the same spatial
distribution (pp. 417-419).

(ii) Equilibration of extracellular K+ with the cytoplasm of adjacent cett8. The assumption is made
in many of the calculations (except where a non-zero valueofTeq is stated) that changes of [K+]o
are accompanied by full equilibration of extracellular K+ with a distribution space f times the tissue
volume (p. 395). This means that there is an increase of tissue K+ content (excluding the K+
depletion that there may be in active neurones: (i) above) equal to gAc. The differential equations
for slow equilibration are dealt with on p. 405.

(iii) Uptake or release of K+ associated with membrane current in the transfer cells. The rate of uptake
from extracellular space per unit volume of tissue is given by aim/F, with im calculated from
eqn. (16).

(iv) Flux of K+ between regions of extracellular space. This is given by eqn. (17).
(v) Changes of extracellular volume. These changes are neglected (p. 397).
Bringing together the factors (i)-(v) above, we obtain an equation for the rate of change of the

local K content of the tissue:

i6 F JK" (19)
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An expression for JK' is obtained by differentiation of eqn. (17) and im is substituted from
eqn. (16), giving: Q aD1 CVN c'V'\ aA2V.'

-+-ICo+ 0+ 10,+ 0
f fA2\ 'P ', fFR (20

Using expressions for VO' and V17 from eqns. (7) and (8) and simplifying the resultant with the
definitions of A, T and , (p. 399) and eqn. (18), we obtain:

C + +# m (21)

This is the partial differential equation giving explicitly the rate of change of extracellular K+
concentration for situations in which the distribution of extrinsic K+ sources (Q) and of membrane
potential of the transfer cells (Vm) are all known. As with the cable equation (eqn. (14)), it reduces
to a linear approximation when the deviations from resting conditions are small:

c +
A

[c" +cgB Vm`/v] (22)

Numerical 8olutionS
Equations (14) and (21) (or their linearized equivalents, eqns. (15) and (22)) were solved

simultaneously by Euler's method with the required initial and boundary conditions (see below).
The intervals for spatial and temporal integration were in most cases 0-2A, 0-01r and 0-01T or 0IA,
0-002r and 0-0005T. Equation (14), governing the membrane potentials, was integrated to a
steady-state solution between each of the steps used for eqn. (21), governing the changes of
concentration. Relatively short time intervals (At/i, At/T < (Ax/A)2) were required in eqn. (14)
for convergence and in eqn. (21) for accuracy. Finite step size introduces errors that do not diminish
with Euler's method unless integration is pursued to an intrinsically stable solution (as was the
case for eqn. (14)). Checks were therefore made with critical results to see that halving the temporal
and spatial intervals did not visibly alter the theoretical curves on scales appropriate for comparison
with experimental data. Curves with ft = 0 (simple diffusion: p. 405) were also compared with
standard solutions. The curves are plotted through points centred on the spatial segments used
in the calculations.
Some generality of the solutions was obtained by expressing the equations in terms of time in

units ofTand distance in units of A, and subsequently scaling the results. With the linear equations
(15) and (22) the perturbations are all linear functions of the disturbing influence and scaling of
the amplitude of the solutions was also possible. The generalized linear equations reduce to the
following relatively simple form, with perturbations of Vm denoted by w (in units of 'P:
w = (Vm - Vr)T-1), the fractional increase of [K+]o denoted by g (= (C-CB)CB-1) and the K+ source
distribution denoted by q (= QT(gCB)-' from eqn. (22)):

rtb= g-w+w, (23)

0 = go +,w +q(x, ). (24)
There is only one tissue parameter (/1) in these equations that affects the qualitative form of the
solutions, apart from scaling, for any given source distribution or boundary condition. This
parameter (fI) is a measure of the flux carried by spatial buffer currents for long maintained
gradients in the tissue, relative to that carried by extracellular diffusion. Only when /1 = 0 (no
spatial buffering) do there appear to be any useful analytical solutions of these equations, when
eqn. (24) reduces to the pure diffusion equation.
The linear equations (15) and (22) or their generalized forms (23) and (24) were employed for

all the solutions used in this paper to compare the dynamics of K+ with and without the effect
of the transfer cells. The more complex non-linear equations (14) and (21), requiring substantially
more computer time and specification of the amplitude of the disturbing influence and of Tr, were
used for calculations involving comparisons with experimental data in the two preceding papers.
In those papers the results for both the linear and non-linear calculations are illustrated, since this
shows how the characteristics of the expected results arise chiefly from the simplest aspects of the
model incorporated in the linear equations.
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Boundary conditions
The equations are solved for various situations corresponding to (i) different distributions of K+

sources and (ii) different boundary conditions. Source distributions (Q) are already incorporated
in eqns. (21) and (22). The boundary conditions determine the calculation of Im and c at both ends
of the calculation domain, which extends from the brain surface (or K+ source) to a depth (or radius)
of at least ten space constants (A) of the transfer cells.
The boundary condition remote from the surface or the K+ sources is set on the assumption that

the tissue itself is many space constants thick. Under these conditions the effects of all the
perturbations under consideration decline with distance (Ac, A Vm -.0 as x -* x) and are simply
set to zero at the end of the calculation domain. When the calculated perturbations become
significant within a few space constants of the far boundary (which sometimes occurred with
prolonged perturbations) the calculations were repeated with the domain extended to 30 space
constants.
The superficial segment of the calculation domain was subject to more complex boundary

conditions. The equation for calculation of Pm (eqn. (14) or (15)) was modified to take account of
the fact that the transfer cells terminate at this point in closed ends and the consequent constraint
that the extracellular current is here equal to the total current (I) across the tissue surface. Direct
accounting for all the currents in the superficial segment with the conventional methods of cable
analysis leads to alteration of the term A2Vm' in eqn. (6), and consequently in eqns. (14) and (15)
to A2( Vm'-r I) Ax-', where Ax is the width of the superficial segment (normally 0 2A).

In the calculation of c at the surface it was assumed that [K+]. in the superficial segment was
identical to that in a well stirred superfusion fluid with either constant or deliberately altered
composition. Calculations with conditions corresponding to a diffusion barrier at the surface were
made but are not presented in this paper since they did not give a better fit to any of the data
than was obtained without a diffusion barrier.
For comparison with results obtained by Gardner-Medwin (1983) it was necessary to calculate

the net flux exchanged between the tissue and surface fluid. The value ofc in the superficial segment,
determined by the boundary condition, was compared at each step with the value it would have
taken if there had been no surface flux since the previous step (eqn. (25), below). The difference
multiplied by {Ax/At gave the flux per unit area of tissue.
Symmetrical source distributions were treated by imposing a condition that there be zero flux

at the origin, corresponding to the centre of symmetry. The modified version of eqn. (21) for the
first segment under these conditions is:

c= Q+ A2 Cf+(cB cnB)(Vm'-Iro) _cdr0 (25)g TAx T(1-nB) TI

Modificationsfor radial 8Olutiofl
The one-dimensional analysis in the foregoing sections can be repeated with only slight

modifications for situations with radial symmetry, in which the variables in the tissue are the same
at all points equidistant from a centre of symmetry and in which the total current radiating from
the centre (and not the current density) is the same at all distances. The results of this modified
analysis are stated here without derivation.

If IR is the total radial current and x is the distance measured from the centre, Vm" in eqns. (14),
(15), (21) and (22) is replaced by (Vm+2x-'Vm'), co in eqns. (21) and (22) replaced by (c'+2x-c')
and I in eqn. (21) replaced by IR (4rX2)-1.
The boundary conditions for radial solutions are also modified in a similar manner to take account

of the special conditions at the centre ofsymmetry. The term A2 VmI in eqns. (14) and (I15) becomes,
for the central segment, A2(3 Vm'/Ax - 3rOIR/(4nrAx3)). There is no realistic situation corresponding
to a condition with fixed [K+lJ at the central point: either there is zero flux entering the central
point or a flux determined by the characteristics of a point source, such as an ionophoretic electrode
or a small region of active tissue. Equation (25) was modified to calculate the changes of c in the
central segment when there was zero flux by substitution of Ax/3 for Ax and (R1/427 (AX)2) for
I. Any flux at the central point is treated as a K+ source within the central segment.
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Modifications for slow equilibration of extracellular space and cytoplasm
Equations (19)-(25) were derived with the assumption that a change in [K+]0, Ac, is associated

at all times with a change fAc in the local K+ content of the tissue. Part of the distribution space
represents cytoplasmic K+ that may be expected to equilibrate at a finite rate with changes of [K+]o.

Several processes contribute to K+ uptake (Gardner-Medwin, 1980). It is assumed here that, once
a steady state is established, the increase of cell K+ content is proportional to Ac and that the
equilibration is governed by a single exponential time constant Teq. These are likely to be
approximations because of non-linearities in the dependence of Na-K pump rates and membrane
currents on extra- and intracellular K+ concentrations.
For slow equilibration we can replace the tissue distribution space for K+ (I) in eqn. (19) by the

extracellular component (a), adding at the same time a term for the rate of K+ uptake into the
cytoplasm (Z) per unit volume of tissue:

a6 = Q-aim/F-JK-Z. (26)

The cytoplasmic distribution space is (i-a), so if 8 is the effective concentration within that space
the uptake is given by: Z=(-a)8. (27)

The assumption of exponential equilibration is represented by the equation:
A = (C-8)/Teq. (28)

Substitution of eqn. (27) in eqn. (26) gives:
c = a-1(Q-aim/F-JK'-(-a) A). (29)

Equation (28) was solved simultaneously with eqn. (29), using the standard substitutions already
used to derive eqns. (21), (22) and (25) from eqn. (19).

Meaning of the compound parameters A, T and f
In the equations governing K+ dynamics in the model, the tissue parameters appear principally

in combinations defined as A, T and , (p. 399). These are the principal parameters that must be
assigned values for a comparison of calculated solutions with experimental data and it is therefore
important to consider their physical meaning.
A is a parameter that arises naturally in the cable analysis for the transfer cells (p. 400). It is

the space constant for the electrotonic decline with distance, through undisturbed tissue in the
steady state, of any small disturbance of the membrane potential (Vm) of the transfer cells. This
can be seen most simply from eqn; (15) putting TPm = 0 and c = CB. Note that this space constant
depends not only on the properties of the transfer cells, but also on the extracellular resistance (ro).
Ifthere were a diminution ofextracellular space fraction (a), r. would increase andA would decrease.
T is a characteristic time for the tissue that depends on the extent of cytoplasmic equilibration

(f) and on the extracellular diffusion parameters (D, a, A: p. 402). Its chief role is in equations giving
the rate of change of [K+]o, particularly eqn. (21). Ifwe omit from this equation the terms associated
with K+ sources and with spatial buffering by the transfer cells (putting Q = ft = 0), we obtain
the conventional diffusion equation with an effective diffusion constant equal to (A2 T'). Thus,
referring to Carslaw & Jaeger (1959: section 2-4), we can say that T is the time it would take for
the K+ concentration at a depth A beneath the tissue surface to become approximately 52%
equilibrated with an altered concentration at the surface if K+ flux were solely by extracellular
diffusion. In practice equilibration will be somewhat faster than this if spatial buffering makes a
significant contribution to the K+ transfer into the tissue (p. 409).

ft is a dimensionless parameter that is a measure of the relative importance of the transfer of
K+ through the transfer cells compared to extracellular diffusion. If ft = 0 there is no spatial
buffering (see below) and all the equations for K+ changes reduce to simple diffusion equations.
Ifwe describe the K+ flux through the tissue expected by extracellular diffusion alone as the expected
flux and the difference between this and the actual flux as the extra flux, then ft is in some simple
situations the quotient: extra flux/expected flux. This means that the factor by which the actual
flux is greater than the expected flux is (f + 1). The situations for which this is the case are described
on pp. 408, 419: in general they are ones in which the gradients of driving force for K+ flux (either
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a potential gradient or a concentration gradient in the extracellular space) are maintained through
the tissue over distances of several space constants (A) of the transfer cells.

Solutions of the equations above are presented in the Figures below in terms of units involving
A and T. Results calculated with and without transfer ofK+ by the spatial buffer mechanism must
be compared on the same absolute scales. To achieve this, ft is set to zero with no change of A or
T. From the definition on p. 399, ft =(nB-1 -1)ro/(r1 +ro). Sincero cannot be zero, ft = 0 implies that
ri =ox. There is therefore no current in the transfer cells (eqn. (3)) and no spatial buffer action.
Equation (19), governing the changes of [K+]o, retains only the K+ source and diffusion terms. The
diffusion term (A2c'/T) incorporates the transfer cell space constant A; but from the definition of
T on p. 399, A2/T is equal to the appropriate diffusion coefficient aDA-2f- . The parameters A
and T are used to normalize the equations (p. 403), so when f = 0 it is convenient to retain them
with the same values to obviate resealing, despite the fact that in this situation the transfer cells
have no effect on [K+]o. Physically, the situation in which ft -.0 while A is constant corresponds
to reducing the number of transfer cells to zero, while keeping their space constant unchanged. The
total cross-sectional area and membrane area (a) of the transfer cells tend to zero. Since the internal
resistance of the transfer cells(ri) varies inversely with their area (p. 400),ri-woo and A, T remain
constant ifRm is adjusted slightly to keep Rma-1(ri + r0)- constant (p. 399). Other limiting cases
with no spatial buffering (e.g. Rm, A-woo) would give similar results but would require resealing
of the Figures presented for changes in A, T.

RESULTS

The effects of current flow through the tissue
It is possible to envisage fairly simply in qualitative terms what happens when a

current is passed through a region of tissue and out across its surface. Close to the
surface the current is carried entirely in extracellular space, while deeper within
the tissue it flows partly through the cytoplasm of the syncytium of transfer cells
(Fig.1 D). Within a few space constants (A) of the surface, the current leaves the
transfer cells across their membranes. When the current is first turned on, this
membrane current and the associated disturbance of membrane potential (depolar-
ization, in the case of current flowing out across the tissue surface) fall off
exponentially with depth from the surface. This pattern of currents is shown
diagrammatically in Fig 1 D, with the calculated change of membrane potential
plotted in Fig. 2 A (continuous line: t 0). The current which leaves the syncytium
of cells near the surface must enter them elsewhere. The boundary conditions for the
calculations employed here (p. 404) amount to assuming that the tissue surface at
which the current enters is sufficiently remote (several space constants, A, away) that
the consequences at the two surfaces can be examined independently.

Since the total extracellular current at the tissue surface is greater than it is deep
within the tissue (Fig. 1 D), the gradient of extracellular voltage is not precisely
uniform. In order to account for the data from the rat brain (Gardner-Medwin, 1983)
only about 6% of the current need be assumed to flow within the transfer cells deep
in the tissue and the slight discrepancy of the graph of the extracellular voltage (VO)
against depth (Fig. 2B, continuous line) from the straight line expected with no
current through transfer cells (dashed line, Fig. 2 B) is too small to be straightforwardly
detectable. The significance of this small current flowing through transfer cells is
indicated, however, by the other types of data and effects to be described.

If the pattern of currents shown in Fig. 1 D is maintained for some time, the K+
efflux carried by the current across the transfer cells causes a cumulative build-up
of K+ in the extracellular space near the surface. The distribution of this build-up
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Fig. 2. Effects of current passage outward across the tissue surface, plotted against depth
(x) from the surface. Dashed lines: with no K+ flux through the transfer cells (ft = 0);
continuous lines: , = 5. A, depolarization of the transfer cells at stated times after current
onset (units: Aro I). Dashed line applies for all t > 0. B, extracellular potential relative
to the tissue surface (units: Aro I). Note that the curves for t = 0 to t = lOT, if
superimposed, would not be resolvably different. C, extracellular K+ concentration
changes at stated times (units: CB Ar0 IT' -1). Note that there are no concentration changes
for ft = 0. Calculations with linearized equations; depth intervals 0-2 A; lower boundary
condition at 30 A.

is initially an exponential function of depth, just as is the distribution of current that
causes it. The K+ does not simply go on accumulating where it enters the extracellular
space, however: it diffuses to regions where there is less concentration change,
towards the tissue surface (where it is assumed to be sufficiently rapidly diluted in
fluid at the surface that the concentration change is zero) and towards deeper regions
of the tissue. The consequent profiles of the [K+]o increase, plotted against depth,
are shown for various times after the onset of current in Fig. 2C (continuous lines).
As time progresses, the concentration change becomes greater, and also more spread
out in depth. This progressive change in K+ concentration profile is reflected also in
the distribution of membrane potential of the transfer cells (Fig. 2A) which become
depolarized as a result of the raised extracellular K+ concentration as well as the
current flow.
The continuous lines in Figs. 2-4 are calculated with the linear equations with

, = 5, which fits approximately the data ofGardner-Medwin (1983) for rat brain. The
dashed lines show calculations plotted on the same scales for 8= 0, i.e. with
extracellular diffusion alone (p. 405). Comparison of the two sets of curves shows the
effects of current-mediated K+ flux through the transfer cells. Note that even when
,f = 0 it is possible to plot the depolarization of the transfer cells (Fig. 2 A, dashed
line), though these cells can only exist either with extreme properties or in
insignificant numbers (p. 406).
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K+ flux within the tissue during current flow is due partly to the current and
voltage gradients themselves and partly to the extracellular concentration gradients,
which we have seen develop gradually and primarily close to the surface (Fig. 2C).
Deep within the tissue the concentration gradients are negligible. The fraction of the
total tissue current that passes through cytoplasm in the deep tissue is given by the

6 A C
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Fig. 3. Flux and concentration changes produced by current flow, plotted as functions
oftime after current onset. A, outward surface K+ flux produced by current outward across
the surface. Curves are plotted for current maintained to t = 10OT and for current switched
off at t = 4T. Continuous lines: fi = 5; Dashed lines: fi = 0; units: nB'IP1* B, total K+
passed across the tissue surface since current onset (i.e. integrals of curves in A). Units:
nBITF;1. C, extracellular K+ concentration changes produced at stated depths for current
passed from t 5 0 to t = 4T; vertical calibration: 0.5 cBAr0I/'V; /1 = 5. Calculations as
for Fig. 2.

resistance ratio r0/(r + r0) and in the model represents entirely K+ transfer (p. 397).
The extracellular current (a fraction rj/(rj + r0) of the whole) is only partly due to K+
flux (a fraction nB: the K+ transport number in extracellular fluid). Thus the total
K+ transfer deep within the tissue is equivalent to a fraction (nBr1+ r0)/(r + r0) of
the total tissue current. From the definition of fi) (p. 399) this can be shown by simple
algebraic manipulation to be equal to (fi+ 1)nB, or (fi)+1) times the expected fraction
of the current that would be accounted for by K+ flux if only extracellular space were
involved. This shows that measurement of the flux of K+ through the tissue could
be a straightforward way of measuring fi. It is not possible for technical reasons,
however, to measure the K+ flux deep within the tissue directly. The flux across the
surface can be measured (Gardner-Medwin, 1983) and with the numerical model the
expected surface flux can be calculated (Fig. 3A). Some of the K+ that is transferred
by cytoplasmic current from deep down in the tissue to be released into the
extracellular space near the surface (Fig. 1 D) diffuses backwards, however, and does
not cross the tissue surface. This explains why the initial surface K+ flux is less than
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(fi+ 1) times the flux for extracellular transport alone and only approaches this value
asymptotically if the current is maintained (Fig. 3A).

Fig. 3B shows the cumulative flux across the surface in these calculations,
analogous to the results obtained with collection of K+ in a well stirred surface cup
(Gardner-Medwin, 1983). In each case, graphs are shown for currents terminated at
an arbitrary time (4T after onset) as well as for maintained currents. This shows how
some efflux from the brain persists after the end of the current period, while the K+
that has built up within the tissue continues to diffuse across the surface and into
the deeper tissue. Fig. 3C shows the build-up and decline of [K+]. with such a
protocol, calculated at various depths within the tissue. These graphs are analogous
to the observations made with K+ sensitive micro-electrodes by Gardner-Medwin &
Nicholson (1983) and show anumber ofqualitative features present in the experimental
records. The initial rate of rise of the K+ concentration is highest near the surface,
but in this region shows marked saturation as the current is maintained. Deeper in
the tissue, the slower initial rates of rise are maintained for longer. At the deepest
levels the K+ concentration even continues to rise for a period after the termination
ofthe current. The depth dependence ofthe initial rate of rise ofthe K+ concentration
changes allows an estimate of the space constant (A) of the transfer cells to be made,
which in the rat cerebellum is ca. 0-2 mm (Gardner-Medwin & Nicholson, 1983).

Effects of superfusion of the surface with altered K+ concentration
Superfusion is a simple way of altering [K+]O in the tissue. Transfer of K+ to or

from the extracellular space occurs both by diffusion and by operation of the spatial
buffer mechanism through the transfer cells (Fig. 1 C). The resulting profiles of [K+]O
as a function of depth are plotted in Fig. 4A for various times after the onset of a
change, with fi = 5 (continuous lines) and with fi = 0 (dashed lines). The results for
f = 0 are simply solutions of the diffusion equations, for diffusion in extracellular
space with reversible uptake into cytoplasm, and are of the form given in Carslaw &
Jaeger (1959, p. 60):

x

Ac = AC0 erfc [ (30)
2(t/T)iJ(0

With spatial buffering (continuous lines, Fig. 4A) the changes of [K+]. deep in the
tissue occur faster because the flux to these regions is greater. Near the surface the
K+ concentration is less than with pure diffusion. This is because K+ transport into
these regions occurs only across the surface by diffusion while the flux away from
them to deeper tissue is augmented by the spatial buffer mechanism (Fig. 1 C). The
flux across the surface (Fig. 4B) is proportional to the gradient of K+ concentration
near the surface, and is greater with spatial buffering than without.
The currents associated with the spatial buffer process generate voltage gradients

in the extracellular space (Fig. 1 C). The extracellular voltage relative to deep tissue
is shown as a function of time in Fig. 4C, for various depths (continuous lines, with
ft = 5). If the spatial buffer mechanism makes no contribution to flux (ft = 0), then
only small diffusion potentials occur, as a result of the unequal aqueous mobilities
of the ions with extracellular concentration gradients. The hatched area in Fig. 4C
shows the range of diffusion potentials between the surface and deep tissue if the
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Fig. 4. Changes following alteration ofK+ concentration at the tissue surface. Continuous
lines: f = 5; dashed lines: fi = 0. A, concentration changes as a function of depth at
various stated times. Units: fraction of surface change (Aco). B, inward flux across the
tissue surface as afunction oftime. Units: aDA -2 A-1 Aco. C, extracellular potential change
relative to deep tissue for tissue segments centred at the stated depths (x). Units:
,Bn (-n1-B)1'AcO/cB. Hatched area gives the range of surface potential changes
expected for diffusion potentials alone (fi = 0). Calculations as for Fig. 2.

alterations of K+ concentration are by K/Na substitution alone (upper limit) or by
changes of KCl concentration (lower limit). These are calculated from the Planck-
Henderson equation (Bockris & Reddy, 1970, p. 481) and they represent the full
potential difference between the surface and deep tissue, comparable with the
potentials calculated with spatial buffering for the superficial segment (0 1 A).
Measurements of the time course of the surface potential change have been made in
various tissues (Gardner-Medwin, Gibson & Willshaw, 1979; Gardner-Medwin, 1983).
It develops gradually, as in Fig. 4C. The final level gives a measure off since with
small concentration changes (Ac/c 4 1) it is equal to flnB(' -nB)-"PAc/c. The time
course of the voltage change depends on T, with approximately 64% of the final
change occurring at t = T. The gradual development of the voltage gradient is due
to the fact that the spatial buffer mechanism cannot act straight away when there
is a change in concentration at the surface. Initially K+ can only diffuse into the
superficial tissue. It is only when [K+]O is raised over a depth range of more than one
space constant (A) that the superficial depolarization of the transfer cells approaches
its full value and provides the full driving force for the spatial buffer mechanism and
for the extracellular voltage gradients.
These results (Figs. 2-4) are all calculated on the assumption that there is no
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significant barrier to diffusion ofK+ localized at the tissue surface. Fisher et al. (1976)
interpreted the results in superfusion experiments to indicate that there is such a
barrier. Their data were obtained with ion-selective micro-electrodes at various
depths beneath the surface of the cat cortex after superfusion with saline containing
12 mM-K+. Fig. 5 (large circles) shows the average data (from their Fig. 7a)
reproduced as a function of depth beneath the cortex, for measurements made at an

1~~~~~~~- Da"
I\\ " 0~~*4Dsq

\ S~~~u= u0072
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u 0-43 ~

8~~~~~~. .
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Fig. 5. Extracellular concentration changes as a function ofdepth during superfusion with
altered [K+]. Circles: data from Fisher et al. (1976), Fig. 5, at an average time 3-7 hr after
the start of superfusion with [K+] = 12 mm: neocortex of cat anaesthetized with
pentobarbitone; cup diameter 7 mm; replotted as (c-CB) CB-' where CB is taken as the
observed average base line [K+]O (3-15 mm). Equal dashes: Erfc curves expected at 3-7 hr
for simple diffusion with effective diffusion coefficients (i.e. af- I A -2 D) equal to 0-4, 0 07,
0-01 times Daq. The upper curve is that expected for an extracellular marker (a = f;
A-2 = 0-4). Dots: curve expected with diffusion (a - 'A-2D = 0- 11 Daq) with a surface
barrier (h = 0-8 mm-'), as fitted by Fisher et al. (I1976). Unequal dashes: exponential curves
expected in a steady state if K+ transfer occurs by extracellular diffusion (a = 0-2;
A2= 2 5) and there is loss of K+ to the blood at a rate u. AiC where u = 0-72, 0-43 hr-1.
Continuous line: steady state calculated with u = 1-3 hr-I and with flux through the tissue
occurring by spatial buffer transfer (fl = 5, A = 0-2 mm) as well as extracellular diffusion.

average time of 3-7 h after the change of surface concentration. Fisher et al. pointed
out that the data cannot be fitted with erfc solutions for simple diffusion with any
choice of diffusion coefficient (single dashed lines, Fig. 5). Four factors might
contribute to this discrepancy from simple diffusion: (i) equilibration of extracellular
K+ with cytoplasm, (ii) a surface diffusion barrier, (iii) clearance of K+ into the blood
and (iv) transfer of K+ by the spatial buffer mechanism. Cytoplasmic equilibration
(pp.- 395, 421-422) increases the distribution volume for K+ in the tissue and lowers the
effective diffusion coefficient, but does not alter the form ofthe expected concentration
profiles. Diffusion combined with a postulated surface barrier can improve the fit of
the data in deep tissue though not over the whole range (dotted line, using parameters
for the best fit of this kind proposed by Fisher et al. (1976)). Clearance from tissue
into blood would lead eventually to a steady concentration profile, associated with
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a balance between clearance and flux into the tissue (Fenstermacher, Patlak &
Blasberg, 1974). Fig. 7 b of Fisher et al. (1976) suggests that at least at some depths
a practically steady concentration would have been reached at the time (3 7 hr
superfusion) when the concentration profile was obtained. Fig. 5 compares the data
with a steady-state profile (continuous line) calculated by assuming that clearance
occurs at a rate proportional to the excess of [K+]. over its base-line value
(Q = -u. Ac) and that K+ flux occurs by both diffusion and the spatial buffer
mechanism, with the parameters derived for rat brain (/J = 5; A = 0-2 mm). A
reasonable fit is obtained with u = 1-3 hr-1 (Fig. 5), which would imply a K+ clearance
into the blood of 4 0 m-mole hr-1 per kg tissue per 3 mm change of [K+]0. This is a
plausible figure since it is of the same order of magnitude as the normal exchange
of K+ across the blood-brain barrier (29-3-6 m-mole kg-' hr-1) measured with
radioactive techniques under base-line conditions ([K+]. ca. 3 mm) in the rat
(Katzman & Leiderman, 1953). Inclusion of the spatial buffer contribution to K+ flux
is an essential element in obtaining the satisfactory fit shown by the full line in Fig. 5,
since a steady state with clearance and diffusion alone (yielding the equation
Dc" = uAc) would theoretically correspond to one of a family of exponential profiles
(double-dashed lines, Fig. 5) that fail to show the marked increase in the gradient
of [K+]o exhibited by the data close to the surface. The model represented by the
continuous line in Fig. 5 is not the only one that might fit these data: see
Gardner-Medwin (1981 b) for an alternative involving an extreme choice of intrinsic
tissue parameters without clearance of K+ into the blood. The fact that a fit can be
obtained with established mechanisms and plausible parameters suggests that there
is no reason to invoke a surface barrier in attempting to explain these data.

lonophoretic point source release of potassium
Following Lux & Neher (1973) there have been several studies ofextracellular space

using ionophoretic release ofmarker ions and detection oftheir concentration build-up
a short distance away (Nicholson et al. 1979; Dietzel et al. 1980; Nicholson & Phillips,
1981). The behaviour of potassium has been found to be anomalous (Nicholson et al.
1979), suggesting that it does not remain even for short times principally in
extracellular space. This anomaly was overlooked by Lux & Neher (1973) because
they were not using truly extracellular ions for comparison with K+. The data ofLux
& Neher (1973) is re-examined here in relation to the present model for K+ dynamics.

Fig. 6 shows data replotted from Fig. 2a of Lux & Neher (1973). Measurements
of K+ concentration rises were made approximately 40 ,sm from a micro-electrode
tip through which a current was passed to release K+, both in saline (open circles)
and in the cat neocortex (filled circles). Different current strengths (320 nA, 80 nA)
were used in saline and in the tissue: the concentration increases are plotted here per
100 nA of current. A complementary error function curve (dotted line) was fitted to
the measurements in saline and the corresponding curves (dashed lines) are calculated
for the results expected in the brain tissue on various hypotheses. The upper curve
is a complementary error function with time course 2-5 times longer and amplitude
12-5 times greater than the saline results; this is the curve expected for an
extracellular marker in the tissue with a = 0-2, A2 = 2-5, agreeing with the data
obtained in similar experiments with tetraethyl- and tetramethylammonium ions
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(Nicholson et al. 1979; Nicholson & Phillips, 1981). The lowest curve is calculated with
the assumption that these extracellular parameters still apply, but that in addition
there is K+ transfer by the spatial buffer mechanism (A = 01 mm, , = 5) and
reversible cellular uptake (f = 1, req = 7 sec: p. 405). This combination provides a

6 -
6~ ~ E.c.

/// ~~~~~Upt.
4 _ / __

E // --e- -0

0 20 40
Time (sec)

Fig. 6. [K+]. changes near an ionophoretic point source of K+. Circles: data from Lux &
Neher (1973, Fig. 2a) showing measurements in the neocortex of a cat anaesthetized with
pentobarbitone (@) and in saline (O), replotted as [K+]. increases per 100 nA ionophoretic
current; actual currents: 80 nA (tissue) and 320 nA (saline); nominal electrode separation
40 ,um. Dotted line: diffusion solution (erfc) fitting the saline data, derived forD = 1-85 cm2
sec-1 (see Lux & Neher (1973): as for saline at 20°C); r = 50 ,um; transport number for
ionophoretic K+ release = 0-6. Other curves are [K+]o changes expected in brain tissue with
various assumptions in the present model. E.c.: assuming dispersal by extracellular
diffusion alone, with a = 0-2, A2 = 2-5 (Nicholson et al. 1979). Upt.: dispersal by extra-
cellular diffusion with reversible K+ uptake (f = 1-0; req = 7 sec). S.b.: dispersal by
extracellular diffusion and spatial buffer transfer (ft = 5; A = 0-1 mm) with no cellular
uptake. Upt. + s.b.: with the preceding mechanisms combined. Linear calculations; 0-1 A
radial steps; boundary conditions at 15 A radius.

reasonable fit to the data. The other curves show that neither the inclusion of the
spatial buffer mechanism alone nor of reversible uptake alone can account for the
data. The first lowers the expected final amplitude of the concentration changes as
required, but fails to reduce them earlier, before K+ has diffused far enough for the
spatial buffer mechanism to become effective (cf. p. 410). The uptake hypothesis on
its own reduces the initial but not the final amplitude. Additional complications may
arise from disturbances of K+ dynamics due to cellular damage in the small but
critical region around the electrodes. The space constant for the spatial buffer
mechanism required to fit the data (A = 01 mm) is smaller than that derived from
other observations (Gardner-Medwin & Nicholson, 1983: A = 0-2 mm). Thus the full
range of factors that may be involved in accounting for these experimental results
would require further study for its elucidation; but those considered in the present
model are at least qualitatively of the type that would account for the different
behaviour of K+ and extracellular markers.
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Distributed, steady K+ sources
Release of K+ into extracellular space throughout an extensive region may occur

during neuronal activity and in pathological situations associated, for example, with
spreading depression, ischaemia and trauma. The circumstances in which dispersal
and uptake mechanisms play significant roles in affecting [K+]o with such distributed
sources are identified here. Only simple geometrical situations are treated: spherical
zones of release in the midst of a large (effectively infinite) volume of tissue with
uniform properties. In this section continuous steady sources starting at time zero
are considered; in the following section (p. 415) brief periods of release and release
followed by re-uptake are considered.
The changes of [K+]0 are calculated, for comparison, with up to four different sets

of assumptions. These represent (i) the behaviour expected for an ion remaining in
extracellular space (ft = 0; {/a = 1; a = 0-2; A2 = 2-5), (ii) extracellular diffusion
augmented by the spatial buffer mechanism (ft = 5; A = 02 mm), (iii) extracellular
diffusion combined with reversible cytoplasmic uptake (I = 1; Teq = 22 see) and (iv)
with all mechanisms combined. In the Figures the curves for these various assumptions
are labelled respectively e.c., s.b., upt. and s.b. + upt. The parameters for extracellular
space are from Nicholson & Phillips (1981); those for the spatial buffer mechanism
and for 6 are those that fit the data in the accompanying papers (see Discussion).
The time constant for cytoplasmic equilibration (req) has been set to roughly the
correct order of magnitude (p. 422), which is small enough that smaller or moderately
larger values would make practically no difference to the results presented in the
present section.

Fig. 7 shows results calculated for a steadily maintained source ofdiameter 0-8 mm.
The graphs show the concentration rise (Ac) at the centre as a function of time after
the start of release, in units of mm for a total release of 1 p-mole sec1. Comparing
the upper curve (extracellular diffusion alone) with the continuous line (s.b. + upt.),
a reduction of Ac by a factor of about 4 due to the combined buffering action is
evident at all times from a few seconds to 1000 sec. The curves for the two buffering
mechanisms separately show that the overall reduction is due principally to spatial
buffer action for times greater than 75 sec and principally to uptake for the shorter
times. At t = 75 sec the reduction achieved by each mechanism on its own is 61 %
and in combination 76%.
The percentage reduction of Ac achieved through buffering action at the centre

of a release zone is much diminished if the zone is small. With a diameter of 0-08 mm
instead of 0-8 mm the reduction at 75 sec is only 19% due to s.b. action, 8% due to
uptake and 21 % with both mechanisms in combination. In this situation the central
rise is largely determined by the characteristics of diffusion. Nevertheless, the
buffering mechanisms act to restrict the volume of tissue outside the release zone that
is affected by the disturbance. Fig. 8 shows the volume of tissue affected by different
levels of concentration rise with and without buffering action, for a range of times
after the onset of release and for two different source diameters (0-8 and 0-08 mm).
For clarity, only results for the combined buffering action are illustrated. The
reductions at the shortest illustrated time (22 sec) are due principally to uptake and
at the two longer times to spatial buffering. At the centre of the 0-08 mm diameter
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release zone (circles: Fig. 8B) the calculated rise of [K+]o without buffering is
16-18 mm, while with buffering it is 13-15 mm (after release at 1 p-mole sec for
22-2200 sec). The volume of tissue affected by a rise of 1 mm or more is reduced
substantially, however: by 91 % at 220 sec (from 0-094 mm3 to 00084 mm3). The
reduction of the number of cells affected by a localized source may be an important
beneficial consequence of buffering.

1-5Ex105 E.c.
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Fig. 7. [K+]o changes with a distributed source. Ac is calculated with various assumptions,
for the centre of a spherical region 0(8 mm in diameter in which there is a steady uniform
release of K+ starting at time zero. E.c.: K+ dispersal by extracellular diffusion (a = 0-2,
A-2 = 0 4), with no cellular K+ uptake. Upt.: assuming cytoplasmic K+ uptake (c/a = 5;
req = 22 sec), with dispersal by extracellular diffusion alone. S.b.: assuming no uptake,
but dispersal by extracellular diffusion and spatial buffering (ft = 5, A = 0-2 mm,
T = 220 sec). Upt. + s.b.: with the preceding mechanisms combined. Linear calculations;
0-2 A radial steps; boundary conditions at 30 A radius. Units: mm for a total release rate
of 1 p-mole sec1l (Q = 3.7 molee 1.-i sec1-).

There is always a region of distant tissue in which the spatial buffer mechanism
acts to increase rather than to decrease Ac, where the K+ dispersed by spatial buffer
action is released into extracellular space. This occurs beyond the range of the results
shown in Fig. 8 and is generally in tissue where the increase of [K+]o is itself relatively
small.

Decline of [K+]o after release
The decline of [K+]. after the end of a period ofK+ release is influenced by all the

factors that affect K+ build-up during release. In addition it may be hastened
significantly by re-uptake of K+ into neurones from which the release occurred,
leading sometimes to an undershoot of [K+]o below base line. Decline is first
considered here without re-uptake.

Fig. 9A shows Ac after an instantaneous release of K+ into extracellular space
throughout a spherical zone with diameter 0-8 mm. Ac at the centre of the zone is
plotted as a fraction of its initial value, with parameters as in the last section. If the
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Fig. 8. Effect of buffering on the amount of tissue affected by concentration rises when
there is a maintained K+ source. Ac at radii up to 05 mm from the centre of a source
with diameter A, 0-8 mm and B, 008 mm is plotted against the volume of tissue enclosed
by a sphere at each radius (i.e. the volume affected by equal or larger concentrations rises).
Plots are given for three indicated times after the start of release and for two conditions:
dashed lines and 0, extracellular dispersal only; continuous lines and 0, spatial buffer
and cytoplasmic uptake mechanisms together, with parameters as for Fig. 7. Units: mm
for a total release rate of 1 p-mole sec'. (Note, 0 and M are on the axis).
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Fig. 9. Decline of [K+]O at the centre ofa release zone 08 mm in diameter after briefperiods
of release. A, Ac plotted against time after a sudden K+ release. Units: fraction of the
initial rise. B, half-time for decline ofAc as a function of the duration of a preceding period
with a steady release rate. Aq.: decline expected through diffusion in an unrestricted
aqueous medium with the same initial concentration distribution (D = 2-5 x 1O-5 cm
sec'). Labels and conditions otherwise as for Fig. 7.
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sole fate of K+ is dispersal by extracellular diffusion into the surrounding tissue (e.c.),
the decline at the centre over the first ten seconds is negligible (3 %). With the
combined buffering processes (s.b. + upt.) decline is rapid (tj = 3-4 sec). Each mech-
anism on its own (s.b. or upt.) hastens the decline considerably, with the predominant
.effect due to cytoplasmic uptake (upt.). It is perhaps remarkable that the spatial
buffer mechanism, a passive dispersal process, can be responsible on its own for an
initial drop in concentration that is orders of magnitude faster than with unrestricted
aqueous diffusion (aq.). This is because initially a diffusion flux occurs only at the
boundary of the release zone, while fluxes due to the electrically mediated spatial
buffer action occur everywhere within a few space constants of the boundary.
The relative contributions to the decline of [K+]. made by cytoplasmic uptake and

by spatial buffer action depend on the duration ofthe release period. This is illustrated
in Fig. 9B where the time for decline to half maximum of the concentration rise (tj)
is plotted as a function of the duration of a preceeding period of steady K+ release.
The values on the left-hand axis (for instantaneous release) correspond to the results
ofFig. 9A. There is only a small dependence of tj on source duration with extracellular
dispersal alone (e.c.) and with spatial buffer action (s.b.). With uptake, however, there
is a marked increased of t4 with increasing source duration up to 40 sec, by a factor
of 4-5 when spatial buffering and uptake are combined (s.b. + upt.). This is due to
the tendency of the cytoplasm (except that of the active neurones) to become fully
equilibrated with raised [K+]o during a period with prolonged K+ release. There is
little further capacity for uptake after the end of the disturbance and [K+]o decline
is prolonged by release of the cytoplasmic K+ load instead of being hastened by
uptake. This corresponds to an increase in the relative size of the slow tail of the
decline, evident even for instantaneous release in Fig. 9A (upt. and s.b. + upt.) and
illustrated further in Fig. 10A and B. The effect suggests a new explanation for the
prolongation of the decline of [K+]0 after prolonged stimulation observed by
Cordingley & Somjen (1978) in the cat spinal cord.
The time course of decline depends critically in many of these circumstances on

Teq' which is the time constant for equilibration of cytoplasmic [K+] after a sudden
change of [K+]o to a new fixed level. The value of 7eq in these calculations
(req = 0I1T = 22 sec) is only a rough estimate since clear-cut measurements are not
available. When the extracellular concentration is not fixed, and the extracellular
space is itself depleted of K+ by flux into the cytoplasm, a simple consideration of
the rates of change in the two compartments shows that the time constant for
equilibration is a/6 times as great, or 4-4 sec in these calculations. Indirect arguments
suggest that this is the correct order of magnitude (Gardner-Medwin, 1980). Direct
equilibration between extracellular space and cytoplasm is the dominant factor in K+
dynamics immediately after widespread and brief K+ release (Fig. 9A), when the
initial [K+]o decline reflects this time constant fairly directly. On this basis the data
of Vern, Schuette & Thibault (1977) and of Cordingley & Somjen (1978), giving
4 = 0-6- 1-5 sec after briefstimulation periods, suggest that a4- 1Teq may be somewhat
less than assumed here, ca. 1-2 sec. However, the brief time constant in these
experiments may be partly due, as suggested by the authors, to rapid K+ re-uptake
into the active neurons.
The preceding calculations have been made for K+ release without re-uptake. When
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release is due to neuronal activity it must be followed by re-uptake, though the time
course ofthis is uncertain (p. 421). For illustration here (Fig. 10) calculations are based
on an exponential model ofre-uptake with a time constant of 22 sec (0-1T). Re-uptake
is assumed to commence even before the end of a period of stimulation. On the
assumption that passive K+ efflux occurs at a constant rate by Na/K exchange during

0-15 - A 0-8 mm diameter D 0-8 mm diameter

"i ~~~~~~~~~0-06
E

0~~~~~~~~~~~~~~~~~~~~~~5
0 50 0

Time (sec) Time (sec)
1-5 -

8 0-08 mm diameter E 0-08 mm diameter

0-6

0 < En \ q _50
0 50 0
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C Fss tl1+ I

Fig. 10. Effects of K+ re-uptake on the time course of [K+]o changes during periods with
simulated neuronal activation. Time courses of Ac for periods of steady release: on the
left without re-uptake and on the right with re-uptake having an exponential time course
with a time constant of 22 sec (= 0 1 T). A and D are calculated for the centre of a 0-8 mm
diameter release zone. B and E are for a site 0 1 mm from the centre of a 0-08 mm diameter
release zone. The time course ofnet release is shown in C and F. Conditions and parameters
(see Fig. 7) are for spatial buffer and cytoplasmic uptake conditions together. Units: mm
for a total initial release rate of 1 p-mole sec'1.

stimulation and that re-uptake is proportional to Na+ gain within the active cells,
both the net efflux during stimulation and the net influx afterwards are exponentially
declining functions (Fig. 10 F). With these assumptions the time course ofAc is shown
in Fig. IOD for the centre of a 0-8 mm diameter zone with uniform activity and in
Fig. IOE for a site 100 ,sm from the centre of a 0-08 mm diameter source. The
calculations assume both uptake and spatial buffering processes with the usual
parameters. For comparison, Ac is shown in Fig. 10A and B without re-uptake under
the same conditions. The time course of Ac after the end of stimulation exhibits an
undershoot when there is re-uptake, as observed experimentally in many situations
and generally attributed to re-uptake (Somjen, 1979). [K+]o may in some conditions
decline during the period of stimulation itself when there is re-uptake. These features
in the calculated results are more prominent than in most experimental records of
[K+]o during stimulation (e.g. Krnjevic & Morris, 1972; Lux & Neher, 1973;
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Heinemann & Lux, 1975; Kriz, Sykova & Vyklicky, 1975). The recordings are
generally intermediate in shape between the right and the left sides of Fig. 10, which
are calculated with and without re-uptake at the specified rate. Thus the actual
re-uptake rate is probably slower than that assumed in these calculations, with a time
constant greater than 22 sec.

General K+ disturbances: spatial and temperal frequency components
The treatment of disturbances with a complex spatial and temporal pattern can

be simplified by treating them as a superposition ofcomponents with different spatial
and temporal frequencies. With small disturbances the equations governing the
evolution of [K+]. are linear differential equations (eqns. (15) and (22)) and
the solutions are the sum of the solutions that the equations would have for the
individual sinusoidal components. These sinusoidal solutions are themselves relatively
simple and can be derived without numerical computations.

If the disturbance of [K+]. from its resting level (CB) has a sinusoidal distribution
through the tissue with wavelength X, and there are no extrinsic K+ sources (Q), then
the solution to eqns. (15) and (22) corresponds to an exponential decline of the
amplitude of the sinusoidal disturbance with no change of shape, wave-length or
phase. Without spatial buffering (fi = 0) the time constant of decline is
gA2X2/(47T 2 zD) which, with the usual assumptions, is ca. 140 sec for a wave-length
of 1 mm and is proportional to the square of the wave-length. If the spatial buffer
mechanism is acting as well as diffusion (,f > 0) then the time constant for decline
is given by:A2X2 1+ 4ff2A2/X2

Tdechne = 42<XD K 1 ++4+ff 2A2/X2) (31)

With fi = 5 and a wave-length of 1 mm, this becomes 48 sec. The ratio of the time
constant with and without spatial buffering (i.e. the factor in brackets in eqn. (31))
approaches 1 for very short wave-lengths (X -+0) and approaches (1+,8)-1 for
disturbances of very long wave-lengths (X -. co). The effect of dispersal by the spatial
buffer mechanism is therefore negligible by comparison with diffusion for disturbances
of short wave-length and is equivalent to increasing the diffusion coefficient by a
factor of about 6 (= fl+ 1) for long wave-lengths. This same conclusion can be shown
if, instead of considering the exponential decline of concentration disturbances, one
considers the amplitude of a source distribution Q(x) that would be required to
maintain a steady sinusoidal concentration disturbance in the tissue: this is (1+ 1)
times greater for long wave-length disturbances and no different for short wave-
lengths. The wave-length for which the speed of decline or the required source
densities are doubled, with , = 5, is given by X = ifA: ca. 0-63 mm in the rat brain.

Fluctuating source distributions Q(x, t) can be analysed into components that are
sinusoidal in both space and time. These yield concentration disturbances that are
also sinusoidal, with phase shifts in time but not space. From eqns. (15), (28) and
(29) an expression can be derived for the peak amplitude of Ac for a specified
amplitude of Q, spatial frequency (k/2ff) and temporal frequency (w/2n):

ACmax - Qmax 1+(Wreq+ (32)
a k(U -W27-eq)2+W2(UTeq+6/z)]

where U = DA- 2k2(1 +f(1 + k2A2) - 1).
14-2
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TABLE 1. Concentration changes due to sinusoidal sources. Equation (32) was used to calculate
ACmax/Qmax for sinusoidal source distributions with wave-lengths 001-100 mm
(k = 630-01063 mn:-) and periods 1-10' see (w = 63-6-3 x 10-' sec-). Panel (a) shows ACmax/Qm.
on the assumption that there is only extracellular (e.c.) dispersal (f/a= 1; ,6 = 0; a = 02;
DA-" = 0-9 x 10-9 m' sec1-). Units are in mm for Qmaxc = 1 "mole 1.-i sec1-. Panels (b)-(d) show the
percentage by which ACmax/Qmax is less than the figures in (a) when buffering is assumed to occur
through: (b) cytoplasmic uptake (upt.); (c) spatial buffering (s.b.); (d) both mechanisms combined
(s.b. + upt.). Parameters assumed for the buffering mechanisms are: {/a = 5; fi = 5; req = 22 sec;
A = 0-2 mm. Dashes indicate reductions less than 0-5 %. Sectors of the Table where the reductions
are greater than 50% are marked off with lines
(a) ACmaj/Qmax (ec. dispersal) (b) % reduction (upt.)

Wave-length (mm) Wave-length (mm)

Period 0-01 0'1 1 10 100
(sec)

1 0 00001 0-0007 0-0008 0-0008 0-0008
10 0-00001 0-0014 0-008 0-008 0-008

100 01)0001 0-0014 0-07 01)8 0-08
103 0100001 0-0014 0-14 0-8 0-8
104 0100001 0-0014 0-14 7 8
10' 0100001 0-0014 0-14 13 79

(c) % reduction (s.b.)
Wave-length (mm)

001 0-1 1 10 100

1

5 7 6 6
- 3 66 67 67
- - 27 80 80

1 77 80
- - 24 80

(d) % reduction (s.b. + upt.)
Wave-length (mm)

Period 0-01 0-1 1 10 100 0-01 0-1 1 10 100
(sec)

1 1 - 2
10 3 1 8 10 6 6

100 - 3 41 6 73 67 67
103 3 66 3 68 80 80
104 3 66 67 - 3 66 81 80
105 3 66 83 5 - 3 66 83 80

Equation (32) has been evaluated (Table 1) for a range of frequencies with purely
extracellular dispersal (fi = 0, i/ac = 1) and with the usual parameters for uptake and
spatial buffering (p. 414). Panel (a) of Table 1 gives the figures for extracellular
dispersal and the remaining panels (b)-(d) give the percentages by which these figures
are reduced with the buffering actions. These percentage reductions show the
effectiveness of the buffer mechanisms in minimizing disturbances of [K+]0. The
benefits obtained with the two separate mechanisms (s.b. and upt.) occur largely in
complementary sectors of the frequency table and when combined (s.b. + upt.) they
account for more than a 50% reduction for all disturbances with a wave-length greater
than ca. 0-6 mm and a period greater than ca. 50 sec. Disturbances with a smaller
wave-length or a shorter period are relatively little affected by the buffering processes.
Panel (a) in the Table shows, however, that these are disturbances in which, for a
given maximal release rate Qmax, the concentration changes are in any case relatively
small.
The buffering contribution of cytoplasmic uptake (Table 1 (b)), is limited at high

temporal frequencies by the requirement that there be time for substantial cyto-
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plasmic equilibration. It is limited also at low frequencies because the build-up ofK+
is then so prolonged that its maximum level is set by the extracellular concentration
gradients that develop, driving a K+ flux through the tissue to balance the release.
Spatial buffer action (Table 1 (c)) is one of the mechanisms contributing to such flux.
Its full effect requires wave-lengths substantially greater than the space constant (A)
of the cells involved, but not so great that the concentration gradients become
negligible. The range of wave-lengths and periods that are effectively buffered by the
two mechanisms in combination is limited by A and by req. Smaller values of each
of these parameters would extend the range, requiring more ion channels (or pumps)
in the membranes involved than are assumed in these calculations. At present we
know too little about the amplitude, distribution and frequency of normal source
patterns in the nervous system or about the sensitivity of the nervous system to [K+]O
disturbances to say whether the actual frequency domains over which buffering is
effective correspond to those in which there is a need for buffering.

DISCUSSION

Potassium disturbances in neural tissue are affected by factors that are hard to
study experimentally in isolation. This work has attempted to identify with
theoretical analysis the circumstances in which different factors are dominant, how
their properties can be assessed, and the extent to which they are likely to influence
normal K+ disturbances.
The principal conclusions are that K+ transfer through cells and K+ equilibration

with the cytoplasm of cells other than active neurones are critical factors in many
experimental situations, both in the accompanying papers and in other work. These
processes act to buffer changes of [K+]0 under a variety of circumstances likely to
be of normal physiological importance. The ion movements involved in these
mechanisms may be largely or entirely passive. These factors have probably been
underestimated in recent work on K+ dynamics (see Somjen, 1979 for review).

Re-uptake of K+ into active neuroses
The rapid build-up of [K+]O to a plateau during stimulation ofcentral nervous tissue

and its decline afterwards with a time course of only a few seconds has been cited
as evidence in favour of rapid re-uptake of K+ by central neurones (Vern et al. 1977;
Cordingley & Somjen, 1978). It is shown here (pp. 415-419) that such results may
be due to the buffering processes discussed below rather than to re-uptake. Indeed
the relatively small size of undershoots of [K+]O normally observed experimentally
after the end of stimulation suggests a re-uptake time constant substantially greater
than 20 sec (p. 419). This would be more in line with the time course of metabolic
changes in intact brain after neuronal activity (Lewis & Schuette, 1975; Lothman,
LaManna, Cordingley, Rosenthal & Somjen, 1975).

Net uptake into cells other than active neuroses
A movement of K+ will occur into the cytoplasm of most cells that experience a

rise of[K+]O (p. 395). The experiments ofGardner-Medwin (1983) and Gardner-Medwin
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& Nicholson (1983) were designed to measure K+ transfer characteristics rather than
cytoplasmic uptake. Nevertheless, while the amplitude of measured fluxes,
concentration changes and voltage changes depend on the transfer parameters, the
time course of their development depends also, according to the calculations based
on the tissue model (Figs. 2-4), on the effective K+ distribution space 6 defined on
p. 395. A value 6 = 1 was found to give good agreement with the data, as illustrated
in the experimental papers. Without uptake (6 = a = 0-2: p. 395) the fluxes produced
by current and the voltage changes produced by superfusion (Figs. 4 and 6 in
Gardner-Medwin, 1983) should be expected to have developed 5 times faster than
observed and the [K+]. changes due to current flow, which at most depths did not
reach a steady state (Fig. 5 in Gardner-Medwin & Nicholson, 1983), should have been
up to 5 times larger than observed. It is concluded that either 6 is close to 1-0 under
the condition of these experiments or else the model that forms the basis for
interpretation must be seriously in error. Some inadequacy in relation to uptake must
indeed be anticipated since the model assumes a strictly linear relation between tissue
K+ content and [K+]O (i.e. 6 independent of Ac). This relation is supported for
increases of [K+]. by the data of Lund-Andersen & Hertz (1970), but with decreases
of [K+] it must break down eventually because of diminished Na-K pumping. An
extreme fall in [K+]. from 3 mm to zero would presumably stop pumping and cause
cell swelling and extreme sodium loading and a depletion of nearly all tissue
potassium, amounting to 70-100 m-mole/kg (6 = 23-33) before a steady state was
achieved. These non-linear consequences of [K+]. falls may explain the discrepancies
between observed and expected data with such falls (Gardner-Medwin, 1983: Figs. 3
and 6). They are sufficiently uncertain that no attempt has been made to model
them.

Since cytoplasmic equilibration lags somewhat behind changes of [K+]O, the time
course of equilibration is sometimes important. The time constant of the lag
(agz1 Teq: p. 417) is probably only a few seconds, for at least a substantial fraction of
the uptake (Gardner-Medwin, 1980). This lag would have a negligible effect on the
prolonged time course of data obtained in the transfer experiments. The lag is not
easily measured directly since sufficiently fast [K+] changes cannot be induced in
completely controlled circumstances. A lag of 1-2 see (corresponding to Teq =
5-10 see) could satisfactorily account for published data on the time course of [K+].
decline after stimulation (p. 417) and K+ build-up close to a point source (Fig. 6).
This would be consistent with other indirect data (Gardner-Medwin, 1980). Slower
equilibration (a641Teq = 4-4 see; Teq = 22 see) is assumed in most of the calculations
here, to give cautious estimates of the buffering effects of cytoplasmic uptake
(pp. 414-421).

Dispersal by diffusion and spatial buffer transfer
Spatial buffer transfer exceeds extracellular diffusion flux of K+ in widespread

disturbances of[K+]. (pp. 410,414,419). With local disturbances, diffusion is dominant.
The factor by which total dispersal flux is greater than diffusion flux (I+ 1 in the
limit of low spatial frequencies) is determined by the relative resistances and K+
transport numbers for current pathways through the transfer cells and the extra-
cellular space. This factor was estimated by Gardner-Medwin (1983), using measure-
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ments of flux across the brain surface, to be ca. 5'0 for the aggregate of transfer
through all types of cells within rat neocortex. Calculations based on the model
presented here (pp. 406-409) suggest that this estimate was low by about 15% and
that the data are best fitted with /1±1 = 6 (see also Discussion of Gardner-Medwin
(1983)).
The critical wave-length above which spatial buffer transfer is expected to

contribute a flux greater than that due to diffusion (ca. 0-63 mm for rat brain: p. 419)
depends also on the electrotonic space constant for the transfer cell network. The
lower the membrane resistance and the greater the membrane area per unit volume
of tissue the smaller is this critical wave-length. The space constant can be deduced
most directly from the distribution of [K+]0 changes during current flow (Gardner-
Medwin & Nicholson, 1983 and Fig. 2C) and is ca. 0-2 mm for rat cerebellar cortex.
This is consistent with the inference made by Somjen & Trachtenberg (1979) that
the space constant for the glial cell network must be substantially shorter than
ca. 1 mm to account for the similarity of distribution of extracellular negativity and
[K+]. changes over such distances.
The identity of the cells involved in K+ transfer is uncertain, though glial cells

probably play a major role (Gardner-Medwin & Nicholson, 1983). We can estimate
the resistance of the cytoplasmic network (ri) and the specific membrane resistance
(Rm) that would be required to give the observed transfer parameters. The expression
for , (p. 399) allows us to infer that ri/r0 - 15. Assuming that the tortuosity of the
network is the same as that of extracellular space it follows that the product
(volume x conductivity) is 15 times less for pathways through the transfer cell
cytoplasm and intercellular junctions than for extracellular space. We cannot infer
to what extent this is due to a restricted volume fraction (ai) or to a low internal
conductivity such as might result if there are high resistance intercellular junctions
(p. 397). If we assume a negligible coupling resistance and that the specific
conductance of the cytoplasm is not greater than that of extracellular fluid, we can
derive a minimum plausible value for the volume fraction of the transfer cells:
czi = a/15 - 0-013.
The expression for A given on p. 399 can be rearranged to calculate Rm:

A2 1\
Rm =-ar0I--1I. (33)

Putting r0 = 625 ni cm (Gardner-Medwin, 1980) and assuming a surface to volume
ratio for the transfer cells (a/ai) of 5 sm-1, equal to the average for cerebral cortex
as a whole (Horstmann & Meves, 1959), we obtain Rm = 0-21 ax MQ cm2. Using the
lower limit for aci derived above (0-013) we obtain Rm > 2-7 kQ cm2. Trachtenberg &
Pollen (1970) and Glotzner (1973) have measured the input time constant of
mammalian glial cell networks with current injection through an intraglial micro-
electrode and have attempted to infer Rm for glial membranes by assuming that the
input time constant is approximately equal to the membrane time constant (Tm). This
gives Rm = 0-2-0{6 ki cm2, less than the range deduced above for the transfer cells.
These figures must again be considered lower bound estimates, however, since the
input time constant of a three-dimensional network is in general less than Tm by a
factor that may be large if the macroscopic network space constant is much greater
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than the dimensions of an electrode or of individual network branches (Jack et al.
1975; chap. 5). A quantitative study of glial morphology would be required to
ascertain whether the electrical input parameters of glial cells are consistent with the
properties deduced for the transfer cells. If the internal network resistance is largely
determined by intercellular junctions the transfer cells must be presumed to occupy
more than 0-013 of the tissue and Rm might be much higher than the minimum figure
calculated above: for example Rm = 41 kQ cm2 with ai = 0-2.
The ratio of intracellular to extracellular potential shifts during widespread K+

build-up is dependent largely on the ratio ofintracellular and extracellular resistances,
as pointed out by R. Joyner & G. Somjen (Appendix to Somjen (1973)). From
eqns. (1), (3) and (4) in the present model AVi/AVO is equal to (-ri/r.), inferred
above to be -15 for rat cortex. Somjen (1975: Fig. 6) estimated this quotient for
cat cortex as -5, using extracellular data and indirect assumptions about the glial
membrane potential changes. In the light of more recent evidence that mammalian
glial cells probably show a full Nernst slope for the K+ dependence of Vm (Somjen,
1979) the estimate by this method needs to be revised to -9. This is still less than
the value (- 15) expected from the K+ transfer data in rat cortex. The discrepancy
may be due either to a difference between species or to factors not included in the
present model. Lothman & Somjen (1975) found an even smaller value of AVi/AVO
in cat spinal cord (ca. -2). This may indicate that the maximum ratio ofspatial buffer
transfer ofK+ to diffusion flux (fi) is substantially greater in spinal cord than in brain.
The fate of K+ released for long periods over a widespread zone is, according to

the calculations, eventually dominated by spatial buffer transfer (Fig. 7). Somjen &
Trachtenberg (1979) have estimated the extracellular and glial currents associated
with spatial buffer transfer in cat spinal cord, with K+ release over a zone ca. 1 mm
across. The original calculation omitted a factor of 103 and suggested a negligible K+
transfer; but after correction (Somjen, 1981) calculations for typical data show an
excess extracellular K+ load of 6-0-7-5 x 10-10 mole per mm3 of tissue to be associated
with current-mediated K+ transfer of the order of 10-1o mole sec- mm-2 across the
boundary of the affected zone. The published data are from single electrode tracks;
but assuming the affected zone to be roughly spherical with a diameter of 1 mm (cf.
Cordingley & Somjen, 1978: Fig. 4) this would correspond to an average half time
for clearance of extracellular K+ of ca. 1 sec, compared with typical experimental
values of 0-5-2-0 sec for the decline of [K+]O. Spatial buffer transfer may therefore
be a substantial factor in K+ clearance during widespread neuronal activation in
the spinal cord. This conclusion is similar to that reached for K+ clearance through
glial cells in the isolated cut retina of the honeybee drone (Gardner-Medwin et al.
1981).

I thank J. A. Coles, C. Nicholson and S. Poitry for comments on this manuscript and
R. K. Orkand, G. G. Somjen and C. M. Tang for helpful discussions. Much of the work was
carried out while I held a Nuffield Foundation Research Fellowship.
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