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SUMMARY

1. A series of pulse procedures was used to distinguish experimentally between a
'capacitative' (Schneider & Chandler, 1973) and a 'resistive' (Matthias, Levis &
Eisenberg, 1980) model of 'charge movements' in skeletal muscle.

2. A general condition describing the conservation of charge in a non-linear
capacitor that was used as the basis for the experiments is derived in the Appendix.

3. It was shown that earlier criteria concerning equality of 'on' and 'off' charge
in response to large steps are insufficient to exclude resistive models.

4. However, the capacitative, but not the resistive model successfully explained
results bearing on charge conservation assessed through pulse procedures involving:
(i) small, 10 mV voltage steps from a series of prepulse voltages, (ii) voltage steps to
a fixed potential from a series of hyperpolarized voltages, (iii) pulse sequences
incorporating a 'staircase' of voltage steps.

5. It is concluded that the earlier use of 'on' and 'off' equality in response to large
voltage steps is insufficient to exclude a resistive basis for the non-linear transient.
However pulse procedures explicitly designed to distinguish the two models give
results consistent with a capacitative model for the non-linear charge and at variance
with a resistive one.

INTRODUCTION

The non-linear transients measured as 'charge movements' in response to applied
voltage-clamp steps in skeletal muscle have usually been assumed to result from
movement of voltage-dependent capacitative charge within a membrane rather than
from ionic currents. Thus they persist in bathing solutions that would minimize ionic
currents; furthermore non-linear charge (as computed by integrating the current
transient I(t)-I(o) to large voltage steps of sufficient duration to allow their full
relaxation) was equal for the 'on' and 'off' parts of the imposed potential change
(Schneider & Chandler, 1973). Similar arguments have been applied to related
phenomena in nerve (e.g. Armstrong & Bezanilla, 1973). Furthermore, subsequent
work on the charge movement in muscle (Chandler, Rakowski & Schneider, 1976)
went on to consider a wide variety of alternative equivalent circuits in detail, and
concluded that mechanisms other than those invoking non-linear capacitance were
unlikely to explain the observation made of the non-linear charge, in particular the



preservation of equal 'on' and 'off' charge to large voltage steps. However, more
recently, Matthias, Levis & Eisenberg (1980, 1981) considered a different class of
models of varying complexity, based on an equivalent circuit including a non-linear
time- and voltage-dependent resistor Rx in series with a parallel resistance-capacitance
(R-C) element in which the capacitor, C, was voltage-independent. They showed that
selecting the appropriate time and voltage dependences in Rx would give the required
'on' and 'off> equality in the non-linear transient in response to large equal and
opposite voltage steps of long duration. This result would seem to suggest that this
usual test of 'on' and 'off' equality in the integral Q of the transient part of I(t) is
insufficient to establish its physical mechanism, and that further procedures would
be necessary to resolve the two major possibilities (Gilly, 1981): (a) Q is capacitative
as originally suggested by Schneider & Chandler (1973), with possibly some component
relating to contractile activation (Huang, 1981 a, 1982; Horowicz & Schneider, 1981)
or (b) Q is the result of a time-dependent ionic current through access pathway Rx
into sarcoplasmic reticulum (Matthias et al. 1980); this process may relate to
contractile activation of muscle through the change which alterations in Rx would
produce in the membrane potential of the terminal cisternae.

This paper uses a generalized condition of conservation of charge in a

capacitor as the basis for pulse procedures used to compare the predictions of
hypotheses (a) and (b) with experimental results. It derives the independence of the
displaced capacitative charge JdQ dr of the path r(t) between given initial and final
steady conditions in the voltage-temperature (V-T) plane. This condition is
independent of the number of charge components involved or of any non-linearities
present in the kinetics of the response of the system to imposed voltage change. The
formalism employed also predicts the remaining major experimental observations
concerning the charge movement. Thus voltage dependence, and saturation at large
absolute values of applied potential, in addition to the generalized conservation of
charge, follow analytically from the same equation. The capacitative model is thus
the simplest available description of the observed steady-state phenomena, and is also
readily testable using this preservation of charge. Nevertheless, the structural
complexity of muscle continues to make the alternative resistive model a physical
possibility. One possible insight into this model, which led to the approach used here
in testing the alternatives, considers an over-simplified circuit consisting of resistor
R1 in series with elements R2C2 in parallel. For such a circuit, the integral of the
transient non-linear response to an applied voltage step from V. to V can be written
as a superposition integral:

dQ= (RR 02 . dv.
The resistive model asserts thatJdQ is voltage-dependent through a non-linearity in
R1 rather than in the capacitative element,C2, of the circuit. However, at the end
of the step, the 'off' charge equalling the 'on' charge requires R1 also to be
time-dependent, R1(V, t), and to possess time constants whose voltage dependence
ensures the condition R1 ( VO, t) - R1 (V, ac) until the 'off' transient,l(t'), has almost
fully relaxed. Introducing these non-linearities mean that JdQ has to be evaluated
numerically. Furthermore, the smooth voltage dependences employed in the model
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to describe the coupled first-order processes defining R1 (or g9) as a function of time
require the imposed voltage to be explicitly specified as a function of time, V(t). This
is in addition to the values of the initial and final steady state which is all that is
required for the capacitative model. Thus the resistive model does not possess an
explicit analytic condition defining charge as a function of steady-state voltage. It
should therefore be possible to find driving voltages V(t) of different form in which
the rather limited conservation of charge condition, produced by the particular
parameters employed for this model, breaks down. This is provided that the durations
of the pulse procedures employed are short relative to the time course of charge
immobilization through prolonged depolarization (Adrian & Almers, 1976). As all the
voltage steps employed only had durations of the order of milliseconds, such charge
inactivation was not observed in the present experiments. In contrast, under such
conditions, charge remains a unique function of any pair of initial and final voltages
through all paths under a capacitative model. This paper therefore uses voltage steps
to consider these conditions, and compares the experimental results with the
predictions from a capacitative, and from a resistive model.

METHODS
Experimental
The basic experimental layout has been described in greater detail elsewhere (Adrian & Rakowski,

1978) so only a brief account is given.
A three micro-electrode voltage clamp was imposed at the pelvic end of frog sartorius muscle

fibres. The micro-electrodes were inserted 500 ,zm (clamp electrode, voltage, V1), 1000 jsm (V2
electrode) and 1250 #sm (current injection electrode, Io) from the fibre end respectively. Transient
currents, im (transient) moved by potential steps were examined. These were obtained using pulse
procedures detailed in the Results. The currents were expressed as unit surface membrane area:

im(t) = 62R [V2(t)- V1(t)]-

The areas under the transient part of the current, or charge moved, were computed by applying
Simpson's Rule to the im(t) arrays; leak admittances, given by V,(t) scaled by i(oo)/ V,(oo), having
been corrected for. The cable constants A, r1 and rm were calculated from the steady values of the
voltages V1 and V2 and injected current Io at the end of a 10 mV step from the holding potential
of -90 mV. Calculating fibre diameter, d, and specific membrane constants, employed a value of
sarcoplasmic resistivity Ri of 391 facm in hypertonic solution at 2 0C, and a Q10 of 1-37 (Hodgkin
& Nakajima, 1972). Arrays representing V1(t), V2(t) -V1(t) and Io(t) were obtained by analog-to-digital
conversion, and sampled by an on-line PDP 11/1OE computer (Digital Equipment Corporation,
Maynard, MA, U.S.A.) at a sampling interval of 200 ,ssec/point. Signal averaging of up to 5-10
sweeps per average was employed, and every 2-3 averages at test potentials was followed by sweeps
at -90 mV; cable analysis of such successive control sweeps checked the condition and stability
of the fibre. Experiments were done at 3-6 TC in the following bathing solution: Rb2SO4, 5 mM;
tetraethylammonium (TEA)2504, 80 mM: (TEA)Cl, 15 mM; CaSO4, 8 mM; tetrodotoxin 2 x 10-7 M;
Tris buffer, 3 mM; sucrose, 350 mm. All fibres were studied within 1-11 hr of the bathing solution
being substituted for the isotonic Ringer in which they were dissected.

Solution of differential equations
The results obtained were compared with solutions of the equations of the resistive model in its

basic form, which was designed to produce charge conservation but not saturation. This is the model
described fully in the paper (Appendix) of Matthias et al. (1980). The parameters used and their
values and symbols are described in the Tables in their paper. Results ofcomputed non-linear charge
are normalized to the linear fibre capacitance in both experimental and theoretical results, as
obtained by the 10 mV voltage step at the control and reference voltage. The numerical approach
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parallels that given in Matthias et al. (1980), and so is given in outline only, except where further
optimizations are introduced and justified as follows:

(i) the driving function, Vw(t) was computed as an array in increments equal to the stepsize At
employed. The voltage step H(t) . AVw was computed using the form H(t) = lim7, (1 -e-t7) with
r successively decreased until computed solutions stayed constant.

(ii) Probability functions pz, px, given by the coupled first-order differential equations of the
form dp dp1X

XP =-aX( VW)(PX-P1Xz) Pt -a ( Vw) (plx-Nx( Vw)),dt ~~~~~~dt
were computed using a fourth-order Runge-Kutta method with successively decreased step size
until no change in numerical solution resulted. Use of a fourth-order method rather than the
first-order one originally used enhanced optimization with respect to step size.

(iii) The non-linear, differential, transcendental equation for the circuit,

F= (gx f(Vx) px(t, Vw)+go) ( Vx-Ex)-CTC dt + CTC d-t-9TC VW+gTC VX = 0,

was solved in d Vw/dt iteratively for each time, t, by using a value of Vw determined by the previous
value at t- At, and the iterated d Vw/dt, Vw- Vw(t -At) + At. d Vw/dt. The solution to F was
obtained using an algorithm directed at finding the real zero of any given function employing a
choice of bisection, inverse quadratic, or secant interpolation depending upon the optimization
required to achieve the maximum convergence of iterated solutions to give the function zero. The
result was to a tolerance set equal to that of the machine epsilon on single-precision floating-point
arithmetic (Brent, 1973). The advantage of this particular approach over the classical forward
difference appoach is that solutions ofF = 0 are determined for any time without their numerically
lagging the driving function.

(iv) The initial values used in the above solutions were the steady-state ones, corresponding to
the condition where derivatives of voltage are zero, given by the equation

(9X {(VX) PXY, Vw) +9XO) (VA-EX)-9TC VW +9TC VX = 0,
that can be solved as in (iii) above.

(v) Solutions for Vx then gave values of ix(t), the predicted charge movement. These were filed
as RK05 arrays possessing a sample interval comparable to those used experimentally, and the
same algorithm to determine charge (Huang, 1982) was used for experimental and model arrays.

RESULTS

The experiments used a variety of pulse procedures, but in all of them initial and
final steady-state voltages were the same even though the pulse patterns applied to
the voltage-clamped fibres varied. In determining charge, all the transients were
integrated beyond the point where the final steady current in the 'off' transient was
reached. The above approach therefore satisfies the testing condition derived in the
Appendix. Two questions were considered: (i) whether the usual criterion of 'on' and
'off' equality suggested on earlier occasions is sufficient to distinguish between
resistive and capacitative models, and (ii) whether more complicated pulse procedures
can make a clear distinction between these two possibilities. Experimental results
from each procedure were in turn compared with predictions from each possible
model, but attention was confined to the over-all conservation of charge condition
rather than to kinetic details or quantitative discrepancies. In particular, the
following differences between the resistive model and experimental results are not
considered further. (1) At voltages between -90 and - 180 mV the resistive model
predicted that there is no non-linear component in the steady-state charge. This is
at variance with the experimental findings showing a significant, 15% fall in
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capacitance per 100 mV hyperpolarization from -90 mV (Huang, 1981 b). (2) The
dependence of capacitance upon depolarizing voltage predicted by the resistive model
did not give the inflexions at particular voltages reported experimentally (Huang,
1981 a, 1982). (3) The resistive model was not consistent with the complex kinetics
of the non-linear charge at certain voltages (Adrian & Peres, 1979). However, it is
possible that adding further parameters to this model may cover these possibilities.
The approach described in the Methods successfully reproduced the kinetic and

steady-state findings illustrated by Matthias et al. (1980). The voltage dependence
of predicted non-linear charge to large voltage steps from -90 mV was obtained by
comparing the transients from a step to test voltage VT, with those obtained from
the voltage-scaled 10 mV reference steps at the holding potential (Adrian & Almers,
1976), and results were in agreement with predictions obtained from the 'equal and
opposite' pulse procedure. The results confirm that the resistive model reproduces
the approximate 'on' and 'off' equality for large pulses over a wide range of voltages,
as required by the experimental findings (Adrian & Almers, 1976). The model could
also predict an extra charge moved to a 10 mV step at test voltage VT as obtained
by the pulse procedure of Adrian & Peres (1979). However, as predicted in the
Introduction, the equality of 'on' and 'off' charge for the resistive model did not hold
for all pulse procedures, and broke down under the following circumstances.

(1) Application of 8hort pu18e8. If the imposed voltage step is sufficiently short, so
that it ends before full relaxation of the 'on' transient, then a resistive model predicts
deviation from 'on' and 'off' charge equality. Thus, the observed conservation of the
charge movement to short pulses has been considered to imply an underlying
capacitative mechanism (Armstrong & Bezanilla, 1973; Schneider & Chandler, 1973).
However, those pulses in which the resistive model did predict deviation from charge
conservation had very short durations at which experimental testing was difficult or
not possible. Thus Fig. 1 shows the ratio between 'on' and 'off' areas under the
transient when the pulse length was progressively shortened from the usual 105 msec
for large voltage steps (A), in the case illustrated from -90 to -45 mV, at which
the experimental non-linearity in the capacitance was large, and for small voltage
steps (B) from -45 mV to -35 mV. Although it was not possible to obtain the value
of I(oo) at the short pulse lengths, this could be evaluated by introducing bracketting
voltage steps using long pulses from which I(ao) could be obtained for modelled -or
for experimental results. Although the theoretical 'on'/'off' ratio was relatively
independent of voltage and close to I 0 at most pulse lengths, it fell markedly below
1 0 at short pulse lengths, whereas the experimental transients (Fig. 2) did not show
such a trend. However, at such pulse lengths, even with signal averaging of 5-10
sweeps/average, and close sampling frequencies of 200 ,ssec, the uncertainty in the
data became large. This was especially the case for the smaller signals that would
be obtained in finding the 'on'/'off' ratio for a small voltage step.

(2) Small voltage 8tep8. Unlike the case of large voltage steps, the conservation of
charge resulting from small voltage steps, as in the procedure of Adrian & Peres
(1979), has yet to be tested experimentally. For a capacitative model, provided the
transient is allowed to relax fully from the 'off' part ofthe step, conservation ofcharge
should occur. However, for the resistive model, since (i) the starting values of
RX( VT, o) would now be affected by the prepulse voltage at which the small step was
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Fig. 1. The ratio of 'on' to 'off' extra charge at different pulse lengths, obtained from:
A, large 'equal and opposite' voltage steps of ± 45 mV from the -90 mV holding
potential, or B, small steps between -45 and -35 mV, employing a 10 mV step at
-90 mV as control. The resistive model (continuous line, *) predicts marked deviation
from a ratio of 1 0 at short (< 15 msec) pulse lengths in both cases, whereas the ratio should
remain close to 1 0 for a capacitative model (dashed lines). The scatter of actual
experimental data (open symbols) suggests that this usual method ofexcluding ionic-current
type mechanisms is inadequate. Cable constants: A: Ri = 342 (1. cm; A = 3-4 + 0-83 mm;
r, = 7047 + 310k1/cm; diam. = 112+34,um; rm = 1231 + 606k. cm;
Rm = 62 6+4418 kfl.cm2, Cm = 12 5+3 2 uF/cm2 (three fibres). B: Ri = 322 Q. cm,
A = 2-75+0i06 mm, ri = 7032+802 kil/cm; diam. = 77-3+3-61 him; rm =
550+72-2 k. cm; Rm = 12-99+ 1-125 kQ. cm2; Cm = 7-7+ 1-32 ,F/cm2 (three fibres).

being taken, and (ii) the 'off' transient current would now be subject to a varying
'off' voltage, which would affect both the (voltage-dependent) kinetic parameters of,
and driving force of the current through,Rx, this equality need not be the case. Thus
the numerical solutions predicted that the 'on' non-linear charge could be up to 20%
greater than the 'off' charge, as it was at voltages between -80 and -40 mV, near
the foot of the non-linear dependence of the charge upon the voltage. This was in
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Fig. 2. Left: Employing long pulses established that imposing a voltage step between -45
and -35 mV examines both qp and qy components of non-linear charge. Right: charge
movements in response to voltage steps between -45 and -35 mV of varying lengths.
In estimating the steady-state current I(oo), transients from a long pulse were used. The
integrated transients were approximately equal for 'on' and 'off' pulses even at the
shortest pulse lengths. Fibre in hypertonic solution; temperature 5'2 'C. Ri = 322 Q. cm;

A = 2-82 mm; r, = 8820 kf2/cm; diam. = 70,um; rm = 704 kQ cm; Rm = 15-1 k.cm2;

Cm =74 1tsF/cm2.

contrast to the values from experimental results (Table 1); these were more consistent
with a capacitative model predicting a voltage-independent ratio of 1'0. Thus the
variance of the data about the predictions of a resistive model was 50% greater than
had a capacitative model been assumed.

(3) Application of a superimposed hyperpolarization. More striking distinctions
between the results expected from capacitative and resistive models of charge
movements required introduction of more complex pulse procedures. The following

ts = 1 05 miec
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TABLE 1. Experimental and

Voltage
-65
-55
-50
-45
-40
-35
-25

predicted values of the ratio of 'on' to 'off' non-linear charge
at different voltages (seven fibres)

Experimental
1-049+0130
0 935+0-031
0885+0007
0 866±+0052
1-067 +0-020
1011+0-014
0-938+0'041

A

Predicted

Resistive Capacitative
model model
1-253
1-132
1-070
1-045
1*015
1-012
0.999

1.0
1.0
1.0
1.0
1*0
1*0
1.0

C

-35

VH

vpre

VT (mV) Ala

-40 N ',-

00 a
- 7

-45 ''-
(mV) B

Qa

nC/pF

-125 Ha_

100 msec

Fibre 606

Fig. 3. Effect of voltage-clamp steps to -35 mV from varying prepulse potentials, Vpre.
A, voltage traces of the actual clamp steps taken. Although the voltage-clamp steps were
not perfectly rectangular, the steady voltages to which the steps tended was the same,
and the size of the step could be measured directly from the traces. B, the running integral
of the transient current, obtained on-line, implies zero net charge moved at the end of
all the steps. C, investigating the extra charging current to small steps in the same fibres
at different voltages demonstrated that this procedure includes sufficient voltage range
to examine all three reported components (qp, qf and q?,) of non-linear charge (Huang,
1982). Temperature 3-1 'C; Ri = 344Q.cm; A = 3-2 mm; ri = 7074 kfl/cm;
diam. -79 hm; rm= 722 kil.cm; Rm = 17-9 kfI. cm2; Cm = 10 8 FF/cm'. Four
sweeps/average.

pulse programme, shown in Fig. 4 (inset), exploited the voltage dependence of the
driving force on the non-linear current expected had this an ionic basis. (i) The
membrane was stepped from a -90 mV holding potential to a series of prepulse
voltages for 500 msec, which was of ample duration to allow full relaxation of the
transient. Where the prepulse voltage was hyperpolarized to the holding potential,
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this transient should consist exclusively of linear charge, since the non-linear Rx was
inactive at such voltages. (ii) The prepulse was then followed by the 'on' voltage step
to a fixed membrane potential of -35 mV. Its duration of 105 msec was also sufficient
to allow full relaxation of both linear and non-linear parts of the transient. (iii) The
clamped potential was next stepped back to the prepulse voltage for 105 msec in the
'off' step, before returning to the holding potential of -90 mV. Five such sweeps
were recorded for averaging into each experimental trace. (iv) The amount of

* Model
* 600

601
A 603

1.4 -35mV o 606

'On'/'off' -90 mV
ratio 12 Vpre

1.0 O O go0 0 ^ ii
0A0

0.6 _

160 -1 20 -80 -40

Pre- and post-pulse potential (Vpr|; mV)
Fig. 4. Dependence of the ratio between 'on' and 'off' non-linear charge (ordinate) upon
the pre- and post-pulse potential, Vpre (abscissa) superimposed upon a voltage step to
-35 mV. The resistive model (continuous line, *) predicts a marked dependence of this
ratio upon the voltage. This is not reflected in the experimental ratios (remaining symbols),
whose values are relatively independent of voltage and close to 1-0. Four fibres.
Ri= 342 fl.cm; A = 2-42±0-27 mm; ri = 7367+520 kfl/cm; diam. = 76+7-6#Em;
rm = 466 ± 91 k.cm; Rm = 10-9 ± 2-24k . cm2; Cm= 9-5± 1-27 #F/cm2.

'non-linear' transient charge that had moved through the 'on' and 'off' steps
respectively were determined for both experimental and predicted traces from the
resistive model. This procedure employed a linear, reference charge corresponding to
the integral of the transient resulting from a 10 mV step at - 180 mV. In finding the
amount of non-linear charge, this value was scaled to the actual potential excursions
entailed by the applied voltage steps. The reference voltage was thus consistent and
independent of any residual non-linear capacitance that might exist in the
experimental traces between -90 and -180 mV. The voltage steps could be
computed directly from actual-and experimental voltage traces (Fig. 3A) obtained
by multiplexing sampling of the current and voltage channels. As the voltage
perturbations were not perfect steps, and involved large potential excursions, the leak
admittance correction applied was obtained from the voltage trace V(t) scaled by
I(oo)/ V(oo).

In the above procedure, the initial and final steady values of the applied potential
were identical. Hence, a capacitative model would predict equal 'on' and 'off'
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integrals of the non-linear part of the transient current. However, this was not the
prediction from the resistive model since the postulated non-linear charge carrier is
an ionic current. The absolute driving force for the 'off' current across Rx is then
a function of the difference between the post-pulse voltage and its effective postulated
reversal potential, E1 of -90 mV. Hence, although the kinetic parameters for Rx
possessed a dependence upon voltage causing an asymmetrical time course of R, that
resulted in equality of charge when voltage steps were applied from one particular
potential, this need not be the case at other potentials. For example, a returning 'off'
step to a potential hyperpolarized to E1 would increase the net driving force of current
through the series resistance, and increase the 'returning' current even when the 'on'
transient was being determined largely by the test voltage at -35 mV. This would
result in an 'off' being greater than the 'on' non-linear charge at hyperpolarized
prepulses. The converse could apply if the prepulses were at potentials depolarized
to EX, even when the absolute potential of the 'on' step was kept constant.

These expectations for the resistive model were confirmed by numerical solution.
The predictions were at variance with the experimental results which were consistent
with a voltage-independent 'on'/'off' ratio for non-linear charge close to 1-0. Thus
Fig. 3 shows: A, traces of the clamp voltage, V1, in a muscle fibre employing steps
to a fixed voltage of -35 mV from successively hyperpolarized prepulses, and B,
running integrals I dQ of the transient part of the total current computed on-line,
demonstrating zero net charge at the end of the off step. This is in contrast to the
predicted 'on'/'off' ratio of non-linear charge (Fig. 4) for the resistive model, for
which the numerical solutions implied the following. (i) The 'on '/' off' ratio is heavily
dependent upon voltage; (ii) the only prepulse voltages at which the 'on'/' off' ratio
is close to 1 are where the pulses are taken from potentials close to between -90 and
- 100 mV, which however, corresponds to the same condition under which the
parameters of the model were derived, and the limiting case where the prepulse
approximates the test voltage; (iii) at voltages hyperpolarized to around -90 mV,
the area under the 'off' transient is appreciably greater than that under the 'on'
transient. This is a large effect; the 'on'/' off' ratio fell to below 0 5 at large
hyperpolarizations close to - 180 mV; (iv) at voltages between -90 mV and the test
voltage, the 'on' charge exceeded the 'off', and the 'on'/'off' ratio rose to around
1t3 at prepulse potentials of -70 mV. The predictions of the resistive model were thus
at variance with the experimental data, whose ratios of 'on' to 'off' non-linear charge
remained close to 1O0, and were not significantly dependent upon prepulse potential.
Thus they gave a regression line of slope 0f00107 + 0-00004/mV. Furthermore, the
variance of the experimental points about the possible predictions was 17 times
greater by assuming the resistive, as compared to the capacitative, model.

(4) ' Staircase' pulse sequences. The previous pulse procedure was essentially a test
for the conservation of charge conditions through a series of transients beginning and
ending in a given steady-state voltage. On the same principle, it should be possible
to design a pulse cycle incorporating a series of steady states but ending at the initial
voltage. To this end, the following simple pulse cycle was considered.

(A) For the resistive model (i) the transient part of the non-linear current was

integrated for a large 'on' voltage step from the -90 mV holding potential to a test
voltage of -40 (or - 30) mV to give a 'forward' non-linear charge; (ii) the voltage
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interval between -90 and -40 mV was divided into a series of 10 mV 'off' steps,
through which the fibre was returned to the holding potential of -90 mV. Each small
step was of sufficient duration (105 msec) to allow full relaxation of the current
transient in each stage; (iii) the area under the transient for each 'off' step was
measured and given a negative sign (since it was a 'return' charge) and used in
plotting the net steady non-linear charge moved through the pulse cycle. Fig. 5
displays the charge predicted from the resistive model in response to large steps

-30 mV
20

-9OmV j

16

X8 /, o Large steps 143n/u
C.) /J, Small steps

4
f

/ d0)

i8.o5LLarge steps 14dnC/etF
(arro ) through a 'staircase' of long 10m alstepsl

Voltage (mV)

Fig. 5. Large voltage steps applied to the resistive model produces net 'forward '
movement of non-linear charge (open symbols). As the potential is returned from -40 mV
(arrowed) through a 'staircase' of long 10 mV steps (inset) the net non-linear charge
declines (filled symbols). The values of this net non-linear charge at each steady state in
the 'staircase' do not superimpose upon the 'forward' Q-V curve. Furthermore there
remains net charge moved at the end of the pulse cycle, even though this is at the initial
potential.

(dotted lines), and the non-linear steady charge as the voltage returns in a 'staircase'
of 10 mV stages to the initial potential of -90 mV from -30 mV or -40 mV. A form
of 'hysteresis' appears to occur in the charge-voltage relationship in that the net
charge moved on the returning limb of the curve (continuous lines) does not
superimpose upon the dependence of non-linear charge on potential when employing
large voltage steps; this is so even though the reference charge from which the total
charge is subtracted was the same 10 mV step from -100 mV in both cases. Such
a prediction of a net charge not being a single-valued function of potential is not
consistent with a capacitative model (see Appendix). Furthermore, Fig. 5 also shows
that moving the resistive model through a pulse cycle even of this simple type results
in a net movement of 4-5 nC/flF of non-linear charge on returning to the initial value
of the potential, out of the forward 14-3 nC/,uF resulting charge from the forward
step to -40 mV. Effects of this kind were most clearly demonstrable at the foot of
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the Q-V relationship, where 30% or more ofthe non-linear charge did not return when
the voltage was re-set in a series of steps. Plots of this type showed in large voltage
steps to -30, -40, -50, -60 and -70 mV that 26, 32, 35, 39 and 61 % respectively
of the non-linear charge moved forwards would not return on repolarizing the fibre
back to -90 mV holding potential in small 10 mV steps. These rather complex
predictions differ from the capacitative case, where the net charge measured at the
end of the pulse cycle should be zero whatever the path.

(B) The two contrasting predictions were tested experimentally as follows: (i) The
voltage-clamped muscle fibre was subjected to a single large depolarizing voltage step
from its -90 mV holding potential; five such identical sweeps were taken for

A B

b

C
8 a ~~~~~~~~~~~~~d

nC/IAF |e -

50 msec

Fig. 6. A, running integral of the transient part of the non-linear current obtained from
a large voltage step from -90 to -40 mV. The trace rises in two stages (a and b) to a
steady final value. B, successive running integrals reconstructing progressive declines (c-g)
in net charge as the potential is returned through a 'staircase' of 10 mV steps to its initial
value. There is close to zero net charge at the end of the pulse cycle. Fibre cable constants:
Ri = 341 Q. cm; A = 3-5 mm; ri = 5269 kG/cm; diam. = 91 um; rm = 647 kfl. cm;
Rm = 18-4 kQ. cm2; Cm = 9 7 #sF/cm2.

averaging into each record. Comparing the transient current so obtained with that
resulting from a control 10 mV step at -100 mV appropriately scaled by the ratio
of the size of the test and control voltage perturbations, gave the non-linear current
to the large test-voltage step. The total non-linear charge moved could then be
obtained through numerical integration. Fig. 6A shows one such running integration
of the 'on' part of this non-linear transient in response to a voltage step from -90
to -40 mV. The two components a and b in the rising part of the integration imply
the step was sufficiently large to involve both q,8 and q, components respectively in
the response. However, the trace plateaus to a steady value (in this case, 11-5 nC/,uF).
These values are plotted for the several individual fibres studied and are shown as
the points arrowed in Fig. 7. (ii) The same fibre was then subjected to a series of 10 mV
steps at varying voltages. Both 'on' and 'off' parts were of sufficient duration
(105 msec) to allow the resulting transients to relax fully. The voltages from which
these small steps were taken were in 10 mV increments spanning the values of the
holding potential and the voltage resulting from the initial large step. (iii) The
non-linear part of the 'off' transients were integrated to give the charge returning
to each 'off' step. Fig. 6B shows a series of the corresponding running integrals as
a progression c-g, of decrements in net charge from that resulting from the initial
forward step. This demonstrated that the non-linear charge progressively returned
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through the potential 'staircase' with a net non-linear charge moved close to zero.
(iv) The net charge at successive steps in the pulse series could therefore be plotted
(Fig. 7, points on continuous line) through the successive steady-state voltages. Such
a plot showed from several fibres that this procedure would result in no significant
net charge moved through this pulse cycle. Thus the value of this charge was
0.1 +0-46 nC//uF (S.E. of the mean), a value not significantly different (P > 5%) on
t-testing from the null hypothesis of zero net charge. This is consistent with the
conservation prediction of the capacitative model and not the resistive model.
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-2 o 0

-90 -80 -70 -60 -50 -40 -30 -20 -10
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Fig. 7. The 'staircase' pulse procedure reconstructed for experimental muscle fibres. 'On'
non-linear charge (arrowed points) was computed for large voltage steps from -90 mV.
The net charge through a succession of steady states produced by the 'staircase' of small
10 mV return steps to the holding potential is plotted as data points and their mean + S.E.
of the mean. On returning to the initial voltage, there is no significant net charge moved
as a result of the pulse cycle. This contradicts predictions ofthe resistive model. Five fibres.
Ri= 342(0.cm; A = 3-02+0-1 mm; ri = 3485+432 ku/cm; diam. = 114-5+6et1um;
rm =338+80k0.cm; Rm = 11-66+2-31 kW.cm2; Cm= 13±1+1#1iF/cm2.

DISCUSSION

The experiments described were explicitly directed at assessing the nature of the
transient part of the non-linear current in response to voltage steps, referred to as
charge movement. They employed a wider range of pulse criteria than in earlier work,
in which the major argument for invoking a capacitative mechanism was the equality
of 'on' and 'off' non-linear charge elicited by large voltage steps. This further
investigation was prompted by the models of Matthias et al. (1980) which employed
a linear capacitative element, yet in which some of the major equilibrium and
transient experimental findings of the non-linear charge were successfully reproduced
through suitable non-linearities in the resistive elements. In particular, the model
mimicked the 'on' and 'off' equality of the charge transient obtained from large
imposed voltage steps. This paper confirms this finding. It goes on, however, to show
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that the charge conservation so produced is not a general one. For example,
shortening the 'on' pulse durations did cause the equality to break down. Nevertheless,
this was at pulse durations that made experimental assessment difficult, and so the
resistive model of the charge movement is of value in pointing out that merely a single
instance of charge conservation is inadequate to establish the mechanism underlying
the observed currents. Thus it was shown that the resistive model remains fully
consistent with earlier data concerning the conservation of charge.

Designing a wider series of tests used as its basis the analysis of Duane & Huang
(1982) that expressed the steady-state charge uniquely in terms of its state variables
of voltage and temperature, independently of the detailed dynamics ofthe underlying
system. From this the Appendix derived the over-all properties of the charge
analytically in a general form: (i) the steady-state charge is a function of voltage;
(ii) the charge saturates, and (iii) charge is conserved through all paths r taken by the
state variables as a function of time. The issue at hand concerns the physical
interpretation of the integral of the transient current in response to a voltage step.
Hence testing condition (iii) involved the use of voltage steps, and within such
constraints the following pulse procedures were devised: (a) small steps of constant
size but from varying voltages, (b) superimposed hyperpolarization on voltage steps
to a constant test potential, and (c) pulse cycles involving several successive
steady-state voltages. All these protocols were made to satisfy the condition of
common initial and final state variables. Hence conditions (i)-(iii) above would
predict zero net charge moved ('on' and 'off' equality) at the end of each procedure,
for a capacitative charge. This was indeed the case experimentally and the findings
therefore remain fully consistent with a capacitative description of the charge
movement.
Such a generalized conservation condition, however, need not apply in the resistive

model. Admittedly, it was not possible to derive steady-state features or any
generalizations of the above kind analytically for models of this kind. This reflects
the complicated non-linearities involved in the resistive elements in producing both
dependence of charge upon voltage, and conservation of charge in the single type of
pulse procedure considered. Nevertheless, numerical solutions for such a circuit
showed that conservation of charge broke down in all the additional conditions tested
except where they corresponded to procedures precisely identical to those under
which the alternative model was originally constructed. Elsewhere, 'on'/' off' ratios
markedly deviated from 10 and became noticeably dependent upon potential. In
addition to these qualitative differences, one could go further to point out that
resistive models still do not consider complexities in the kinetics of the charge
movement, nor persistent non-linearities observed at hyperpolarized voltages. It is
conceivable that adding further parameters may generate altered predictions
consistent with all these findings. However, as it stands, the resistive model is already
substantially complex. For example the non-linearity in Rxonly produces the rather
limited conservation of charge discussed, and more complicated versions of the
resistive model invoke rectification in other resistive elements to result in an over-all
voltage dependence in I(oo) that saturates the non-linear charge at extreme
potentials. This entails additionally introducing complicated rectifications also in two
other resistive circuit elements. In contrast, the capacitative description derives all
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these findings from a single equation analytically and independent of kinetics. It
would appear reasonable, therefore, to justify further models of the resistive type first
through the demonstration ofspecific experimental instances in which the capacitative
description breaks down, employing a necessary condition ofwhich the one employed
in this paper is a simple example.

APPENDIX

Duane & Huang (1982) introduced a statistical mechanical description of the
steady-state properties of a non-linear capacitance, independent of its dynamics
beyond the assumption that transitions between the energy states, j, of microscopic
energies e, available to the system can occur, in order that equilibrium can be
achieved. They thus derived an analytic single-valued expression for the macroscopic
steady-state non-linear charge movement, JdQ, in a manner independent of any
non-equilibrium features, including non-linearities in the rate constants describing
transitions between permitted states and details of the transient responses in
the subsystems. From their analysis, this Appendix derives a general statement
concerning saturation and conservation of the non-linear charge in terms of its state
variables of voltage and temperature. The formalisms from that paper that will be
employed are as follows.

(i) The partition function of the system is:

Z = I e-cj(V)/kT (1)
J

where k is the Boltzmann constant, T the absolute temperature; the dependence of
the microsopic energy of each state available to the subsystem involved, e( V) can
be written as a smooth power series in voltage V.

(ii) Each element (subsystem) in the systems examined contributes a microscopic
steady-state charge movement given by

1CT a
<v>=

U
a (2)

(iii) The macroscopic charge movement for the ensemble of subsystems assuming
number density L, is

JQ = V LkT( V- a)) dV, (3)
where VO is a reference or control voltage.

(1) Saturation of charge implies zero partial derivative of the macroscopic charge
JdQ with respect to voltage at large absolute values of the applied voltage, Ill.
Equation (2) gives

<q> =
k

V hence <q2> = (kT)2 avZ from eqn. (1)

and so, from eqn. (3),

(aQ) = L[<q2>- <q>2]/kT.
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For large positive or negative voltages, V, the partition function Z is dominated by
that term with the largest qj V, say qN. Hence the expectancy PN for state N tends
to 10, and the other expectancies, P1, j * N, vanish. This gives

<q> =2qjPj-qN
<q2> = qj2P 2qN~

so <q2> - <q>2 tends to zero, or,

lim Q L
lim [(q2> - (q>2] = 0,

IVIQ(a+0 T kT lvlooTH

and the charge saturates at large absolute values of the voltage.
(2) The conservation of charge condition can be made to apply for any path R in

the voltage-temperature (V, T) plane from an initial steady state S to a final steady
state S'. If R is represented parametrically in time on the vector,

r(t) = iV(t)+jT(t),

then S corresponds to t = o-o, S' to t' = + oc, and (i, j) are the unit vectors for voltage
and temperature expressed as functions oftime. V(t), T(t) respectively. From eqn. (3),
it can be seen that the total differential coefficient dQ in any domain D in the
(V, T) plane is the line integral

CStFaQ\ dV aQ\ dl
dQ= i-dt.

JS Q JsL[aVT-+ VTJdt
The identity,

lim &Q =-a 8V+ Q8T )

gives the exact differential

S dQ Jt d . dt = Q[ V(t), T(t)] |

= Q(V1, T1)-Q(Vo, To)
where (V0, TO), (V1, T1) are the co-ordinates for the initial and final steady-state

variables. The term f dt. dt is the integral ofthe current of capacitative origin which

to a voltage step is given by J(I(t) - I(oo))dt. Hence for this current, the measured

charge moved through the path, R, f dQ dr, is independent of the path r(t) of V(t)
and T(t).
The above condition implies that for a simple closed path R, divided into arcs R',

Ra in domain D, the line integral

JQR = Q or dQ!(IRdQ) = 1.
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This includes the condition for 'on' and 'off' equality to a voltage step used in the
experiments described above. An alternative statement of this condition is that for
every simple closed path R in D, the contour integral of the net charge,

JdQ =O
and the field of force given by dQ is conservative. This is the condition used in the
last experiment described above.

The author thanks Professor R. H. Adrian and Dr S. Duane for helpful discussions, and Professor
W. K. Chandler for reading and commenting on the manuscript. Mr W. Smith provided skilled
assistance.
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