
Supporting Text

A. Stability Analysis of System 2

In this Appendix, we study the stability of the equilibria of system 2. If we redefine the

system as (0,0)T when V+ = V- = 0, then there are at most three equilibria:

)0,0(0 =E , EF  = (κF β-,0),

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+
+

= −− σγ
τσσβ

σγ
σκ

σγ
τσσβ

σγ
γκ FFE ,* ,

where *E  exists if σ >0. To determine the properties of these three equilibria and the

topological structures, set ++− =+= VyVVx , . Recall −+ −+−= ββγτσ , we have
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Notice that )0,0(0 =E , EF  = (κF β-,0) are still equilibria of system A1, and the third

equilibrium *E becomes
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We first discuss the stability of EF and *E .

Proposition A1. The semitrivial equilibrium EF  = (κF β-,0) is stable if σ <0 and unstable

if σ >0.



Proof. The variational matrix of system A1 at EF takes the form
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The eigenvalues are 01 <−= −βλ  and σλ =2 . Thus, EF is stable if σ <0 and unstable if

σ >0.

Proposition A2. The positive equilibrium ),(
*

yxE =  is locally asymptotically stable if

0>σ .

Proof. The variational matrix of system A1 at 
*

E  takes the form
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We then have
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Therefore, 
*

E  is locally asymptotically stable.

)0,0(0 =E  is a degenerate equilibrium of system A1. To determine its property, rescale

the age variable by xdtda = , system A1 becomes
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where ),(2 yxX  and ),(2 yxY are homogeneous polynomials in x and y of degree 2,

),( yxφ  and ),( yxψ  are polynomials in x and y of higher degrees.

Let .2/0,sin,cos πθθθ ≤≤== ryrx  Define
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The characteristic equation is as follows:
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We can see that either 0)( =θG  has a finite number of real roots ),...,2,1( nkk =θ  or

.0)( ≡θG  By the results in Zhang et al. (1), no orbit of system A2 can tend to (0,0)

spirally. If 0)( ≡θG , then it is singular. If )(θG is not identically zero, there are at most

2(2 + 1) = 5 directions iθθ =  along which an orbit of system A2 may approach the

origin; these directions iθθ =  are given by solutions of the characteristic Eq. A3. If the

orbit of system A1 tends to the origin as a sequence, { }nt  tends to ∞+  or ∞−  along a

direction iθθ = , then the direction is called a characteristic direction. The orbits of

system A2, which approach the origin along characteristic directions, divide a

neighborhood of the origin into a finite number of open regions, called sectors. For an

analytic system, there are three types of sectors: hyperbolic, parabolic, and elliptic [see

Perko (2)].



Solving for θ  in Eq. A3 for 2/0 πθ ≤≤ , we obtain three simple roots:

.arctan,2/,0 321 σγ
ββσ

θπθθ
+

−+
=== −+

Proposition A3. There exist 01 >ε  and 01 >r  such that there is a unique orbit of system

A2 in { }131 ||0,0:),( εθθθ <−≤<< rrr  that tends to the trivial equilibrium )0,0(0 =E

along 3θθ =  as −∞→t .

Proof. Making the Briot-Bouquet transformation

,,, xdtdszxyxx ===

we transform system A2 into the following system:
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The Briot-Bouquet transformation maps the first, second, third, and fourth quadrants in

the (x, y) plane into the first, third, second, and fourth quadrants in the (x, z) plane,

respectively. The inverse Briot-Bouquet transformation maps the z axis in the (x, z) plane

to the point (0,0) in the (x, y) plane, and maps the orbits in the left of the z axis in the (x,

z) plane to orbits in the left of the y axis in the (x, y) plane with reversed directions. Thus,

we consider only equilibria of system A4 in the z axis. There are two equilibria: (0,0) and

))./(,0( σγσ +  Linear analysis shows that (0,0) is an unstable node, and ))/(,0( σγσ +  is

an unstable saddle. Thus, there is a unique separatrix in the interior of the first quadrant

of system A4, which tends to ))/(,0( σγσ +  as −∞→t .



By the inverse Briot-Bouquet transformation, there exist 01 >ε  and 01 >r , such that

there is a unique orbit of system A2 in { }131 ||0,0:),( εθθθ <−≤<< rrr  that tends to

(0,0) along 3θθ =  as −∞→t .

Proposition A4. System A2 does not have limit cycles.

Proof. Denote the functions on the right-hand side in system A2 by f(x, y) and g(x, y).

Choose a Dulac function 
xy

yxD 1),( =  and notice that 0, >yx . We have
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This implies that system A2 does not have a limit cycle.

Combining Propositions A1-A4 and using Poincaré-Bendixson’s Theorem [see Perko

(2)], we have the following theorem about the dynamical behavior of solutions to systems

A1 and thus system 2.

Theorem A5. For the original system 2, the topological structure of the trivial

equilibrium 0E  in the interior of the first quadrant consists of a parabolic sector and a

hyperbolic sector; the semitrivial equilibrium EF is stable if σ <0 and unstable if σ >0;

the positive equilibrium *E  is a global attractor if σ >0.

B. Steady States for System 3

To find the steady states of system 3, consider
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From the first equation in B1, we have

S = λ
ν + ηΦ 

, Φ = ΦVF
(i N ) + Φ

V − (i R ) + Φ
V + (i R )[ ]. [B2]

From the second and third equations in B1, we have
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and

i R (0) = η V + (a) i R (0)
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From B2, we have Φ = (λ −ν S ) /(η S ). B3 and B4 imply that .)0()0( Sii RN Φ=+ η  We

then have the following claim:
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We now prove the second claim.
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and
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Claim B3. A necessary condition for 0)0( >Ni  and 0)0( >Ri  is λ > ν/(ηTF).

For the existence of steady states, we have three cases.

(a) If R0 = (λη/ν) max(TF, TV+) < 1, then .0)0( =Ni  B3 thus implies .0)0( =Ri  The

equilibrium is given by

.0,0,/ === RN IIS µλ

(b) If R0 = (λη/ν) max(TF, TV+) = (λη/ν)TF >1, then 0)0( >Ni  and .0)0( =Ri  B3 and B4

give the steady-state values
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(c) If (R0 = (λη/ν) max(TF, TV+) = (λη/ν)TV+ >1, then 0)0( >Ni  and .0)0( >Ri  B5, B7,

and B8 yield the following steady-state values:
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