Supporting Text
A. Stability Analysis of System 2

In this Appendix, we study the stability of the equilibria of system 2. If we redefine the
system as (0,0)" when V* = V" = 0, then there are at most three equilibria:
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where E” exists if o >0. To determine the properties of these three equilibria and the

topological structures, set x=V~ +V ", y=V".Recall c=7-y+ 3, — S, we have
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Notice that E, = (0,0), Er = (xr B.,0) are still equilibria of system Al, and the third

equilibrium E” becomes
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We first discuss the stability of Er and E”.

Proposition Al. The semitrivial equilibrium Er = (k¢ B-,0) is stable if o <0 and unstable

if o>0.



Proof. The variational matrix of system Al at Er takes the form
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The eigenvalues are 4, =—f <0 and 4, = o . Thus, Ef is stable if o <0 and unstable if

o >0.

Proposition A2. The positive equilibrium E = (x, y) is locally asymptotically stable if

c>0.

Proof. The variational matrix of system Al at E takes the form
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We then have
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Therefore, E is locally asymptotically stable.

E, =(0,0) is a degenerate equilibrium of system Al. To determine its property, rescale

the age variable by da = xdt, system Al becomes
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where X, (x,y) andY,(x, y) are homogeneous polynomials in x and y of degree 2,

#(x,y) and w(x,y) are polynomials in x and y of higher degrees.
Let x=rcosd,y =rsin0,0< 0 < /2. Define
G(8) =cosb-Y,(cosd,sind) —sin@ - X ,(cosb,sin6).

The characteristic equation is as follows:
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We can see that either G(€) = 0 has a finite number of real roots 6, (k =1,2,...,n) or
G(#) =0. By the results in Zhang et al. (1), no orbit of system A2 can tend to (0,0)
spirally. If G(€) =0, then it is singular. If G(&) is not identically zero, there are at most
2(2 + 1) = 5directions 8 = 6, along which an orbit of system A2 may approach the
origin; these directions @ = 6, are given by solutions of the characteristic Eq. A3. If the
orbit of system Al tends to the origin as a sequence, {tn} tends to +o or —oo along a
direction @ = @, then the direction is called a characteristic direction. The orbits of

system A2, which approach the origin along characteristic directions, divide a
neighborhood of the origin into a finite number of open regions, called sectors. For an
analytic system, there are three types of sectors: hyperbolic, parabolic, and elliptic [see
Perko (2)].



Solving for @ in Eq. A3 for 0< @ < x/2, we obtain three simple roots:
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6,=0,6,=x12,0, =arctan

Proposition A3. There exist &, >0 and r, > 0 such that there is a unique orbit of system
A2in {(r,0):0<r<r,0<6-6,|< s, that tends to the trivial equilibrium E, = (0,0)

along =6, as t —» —oo.

Proof. Making the Briot-Bouquet transformation
X=X,y = zX,ds = xdt,

we transform system A2 into the following system:
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E=G z2—(y+0)2°.
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The Briot-Bouquet transformation maps the first, second, third, and fourth quadrants in
the (X, y) plane into the first, third, second, and fourth quadrants in the (x, z) plane,
respectively. The inverse Briot-Bouquet transformation maps the z axis in the (x, z) plane
to the point (0,0) in the (x, y) plane, and maps the orbits in the left of the z axis in the (x,
z) plane to orbits in the left of the y axis in the (X, y) plane with reversed directions. Thus,
we consider only equilibria of system A4 in the z axis. There are two equilibria: (0,0) and

(0,0 /(y + 0)). Linear analysis shows that (0,0) is an unstable node, and (0, /(y + ©)) is

an unstable saddle. Thus, there is a unique separatrix in the interior of the first quadrant

of system A4, which tendsto (0,c/(y + o)) as t —» —o.



By the inverse Briot-Bouquet transformation, there exist ¢, >0 and r, > 0, such that
there is a unique orbit of system A2 in {(r,8):0<r <r,,0<|6 -6, |< &} that tends to

(0,0) along & =6, as t —» —o0.
Proposition A4. System A2 does not have limit cycles.

Proof. Denote the functions on the right-hand side in system A2 by f(x, y) and g(x, y).

Choose a Dulac function D(x,y) = S and notice that x,y > 0. We have
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This implies that system A2 does not have a limit cycle.
Combining Propositions A1-A4 and using Poincaré-Bendixson’s Theorem [see Perko
(2)], we have the following theorem about the dynamical behavior of solutions to systems

Al and thus system 2.

Theorem A5. For the original system 2, the topological structure of the trivial

equilibrium E, in the interior of the first quadrant consists of a parabolic sector and a
hyperbolic sector; the semitrivial equilibrium Eg is stable if o <0 and unstable if o >0;

the positive equilibrium E” is a global attractor if o >0.
B. Steady States for System 3

To find the steady states of system 3, consider
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From the first equation in B1, we have
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From the second and third equations in B1, we have
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Using the definitions of T, T _and T ., we have
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From B2, we have @ = (14— vS5)/(75). B3 and B4 imply that i, (0) + i (0) = 7®S. We

then have the following claim:



Claim B1. If i (0) +i,(0) # 0, then i, (0)+i,(0) = A — uS.

Now B4 implies that
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Substituting B5 into B3, we have i (0)= [. ()T +1, (O)va]/Tw, which implies that
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We now prove the second claim.
Claim B2. A necessary condition for E(O) >0isT,. >Te.

Because
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Claim B3. A necessary condition for E(O) >0 and E(O) >0 isA > vI(MTE).
For the existence of steady states, we have three cases.

(a) If Ry = (An/v) max(Tg, Tvs) < 1, then i, (0) = 0. B3 thus implies i, (0) = 0. The

equilibrium is given by

S=A/ul, =01, =0.

(b) If Ro = (An/v) max(Tg, Tv+) = (\n/v)Te >1, then i (0) > 0 and i, (0) = 0. B3 and B4

give the steady-state values

S=1/(nT.),T. :(2_77_;;] exp{— I L, (é)dé} I =0.

() If (Ro = (A\n/v) max(Tg, Tv+) = (An/v)Ty+ >1, then i, (0) > 0 and E(O) > 0. B5, B7,

and B8 yield the following steady-state values:
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