Supporting Text

A. Stability Analysis of System 2

In this *Appendix*, we study the stability of the equilibria of system **2**. If we redefine the system as $(0,0)^T$ when $V^+ = V = 0$, then there are at most three equilibria:

$$
E_0 = (0,0), E_F = (\kappa_F \beta_{\cdot}, 0),
$$

$$
E^* = \left(\frac{\gamma \kappa_F}{\gamma + \sigma} \left(\beta_- + \sigma - \frac{\tau \sigma}{\gamma + \sigma}\right), \frac{\sigma \kappa_F}{\gamma + \sigma} \left(\beta_- + \sigma - \frac{\tau \sigma}{\gamma + \sigma}\right)\right),\,
$$

where E^* exists if $\sigma > 0$. To determine the properties of these three equilibria and the topological structures, set $x = V^- + V^+$, $y = V^+$. Recall $\sigma = \tau - \gamma + \beta_+ - \beta_-$, we have

$$
\begin{cases}\n\frac{dx}{dt} = \beta_{-}x + (\beta_{+} - \beta_{-})y - \frac{x^{2}}{\kappa_{F}},\\
\frac{dy}{dt} = \left(\beta_{+} + \sigma - \frac{xy}{x} - \frac{x}{\kappa_{F}}\right)y.\n\end{cases}
$$
\n[A1]

Notice that $E_0 = (0,0)$, $E_F = (\kappa_F \beta_0,0)$ are still equilibria of system **A1**, and the third equilibrium E^* becomes

$$
\overline{E}^* = (\overline{x}, \overline{y}) = \left(K_F\left(\beta_- + \sigma - \frac{\tau\sigma}{\gamma + \sigma}\right), \frac{\sigma\kappa_F}{\gamma + \sigma}\left(\beta_- + \sigma - \frac{\tau\sigma}{\gamma + \sigma}\right)\right).
$$

We first discuss the stability of E_F and E^* .

Proposition A1. The semitrivial equilibrium $E_F = (\kappa_F \beta_{\text{r}}, 0)$ is stable if $\sigma < 0$ and unstable if $\sigma > 0$.

Proof. The variational matrix of system $\mathbf{A1}$ at E_F takes the form

$$
\boldsymbol{J}_K = \begin{pmatrix} -\beta_- & \beta_+ - \beta_- \\ 0 & \sigma \end{pmatrix}.
$$

The eigenvalues are $\lambda_1 = -\beta_- < 0$ and $\lambda_2 = \sigma$. Thus, E_F is stable if $\sigma < 0$ and unstable if $\sigma > 0$.

Proposition A2. The positive equilibrium $\overline{E}^* = (\overline{x}, \overline{y})$ is locally asymptotically stable if $\sigma > 0$.

Proof. The variational matrix of system **A1** at \overline{E}^* takes the form

$$
\overline{J} = \begin{pmatrix} \beta_- - \frac{2x}{K_F} & \beta_+ - \beta_- \\ \frac{-2}{\sigma^2} & \frac{-2}{\sigma^2} & -\frac{2}{\sigma^2} \\ \frac{-2}{\sigma^2} & -\frac{2}{\sigma^2} & -\frac{2}{\sigma^2} \end{pmatrix}.
$$

We then have

$$
\det(\overline{J}) = -\frac{\tau \overline{y}}{\overline{x}} \left(\beta_{-} - \frac{2\overline{x}}{K_{F}} \right) - (\beta_{+} - \beta_{-}) \left(\frac{\tau \overline{y}^{2}}{\overline{x}} - \frac{\overline{y}}{K_{F}} \right)
$$
\n
$$
= -\frac{\tau \beta_{-} y}{\overline{x}} + \frac{2\overline{y}}{K_{F}} - (\beta_{+} - \beta_{-}) \left(\frac{\tau \overline{y}^{2}}{\overline{x}} - \frac{\overline{y}}{K_{F}} \right)
$$
\n
$$
= -\frac{\tau \sigma \beta_{-}}{\gamma + \sigma} + \frac{2\tau \sigma}{\gamma + \sigma} \left(\beta_{-} + \sigma - \frac{\tau \sigma}{\gamma + \sigma} \right) - (\beta_{+} - \beta_{-}) \left[\frac{\tau \sigma^{2}}{(\gamma + \sigma)^{2}} - \frac{\sigma}{\gamma + \sigma} \left(\beta_{-} + \sigma - \frac{\tau \sigma}{\gamma + \sigma} \right) \right]
$$
\n
$$
= \frac{\tau \sigma}{\gamma + \sigma} \left(\beta_{-} + 2\sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right) + (\beta_{+} - \beta_{-}) \frac{\sigma}{\gamma + \sigma} \left(\beta_{-} + \sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right)
$$
\n
$$
= \frac{\tau \sigma}{\gamma + \sigma} \left(\beta_{-} + 2\sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right) + (\gamma + \sigma - \tau) \frac{\sigma}{\gamma + \sigma} \left(\beta_{-} + \sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right)
$$
\n
$$
= \frac{\tau \sigma}{\gamma + \sigma} \left(\beta_{-} + 2\sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right) + \sigma \left(\beta_{-} + \sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right) - \frac{\tau \sigma}{\gamma + \sigma} \left(\beta_{-} + \sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right)
$$
\n
$$
= \frac{\tau \sigma^{2}}{\gamma + \sigma} + \sigma \left(\beta_{-} + \sigma - \frac{2\tau \sigma}{\gamma + \sigma} \right)
$$
\n
$$
= \sigma \
$$

and

$$
tr(\overline{J}) = -\frac{\overline{\tau y}}{\overline{x}} - \frac{2\overline{x}}{K_F} + \beta_+ = -\frac{\tau\sigma}{\gamma + \sigma} - 2\left(\beta_- + \sigma - \frac{\tau\sigma}{\gamma + \sigma}\right) + \beta_-
$$

= $-\left(\beta_- + \sigma - \frac{\tau\sigma}{\gamma + \sigma}\right) - \sigma < 0.$

Therefore, \overline{E}^* is locally asymptotically stable.

 $E_0 = (0,0)$ is a degenerate equilibrium of system **A1**. To determine its property, rescale the age variable by $da = xdt$, system **A1** becomes

$$
\begin{cases}\n\frac{dx}{dt} = (\beta_+ - \beta_-)xy + \beta_- x^2 - \frac{x^3}{\kappa_F} = X_2(x, y) + \phi(x, y), \\
\frac{dy}{dt} = (\beta_+ + \sigma)xy - \tau y^2 - \frac{x^2 y}{\kappa_F} = Y_2(x, y) + \psi(x, y),\n\end{cases}
$$
\n[A2]

where $X_2(x, y)$ and $Y_2(x, y)$ are homogeneous polynomials in *x* and *y* of degree 2, $\phi(x, y)$ and $\psi(x, y)$ are polynomials in *x* and *y* of higher degrees.

Let $x = r \cos \theta$, $y = r \sin \theta$, $0 \le \theta \le \pi/2$. Define

$$
G(\theta) = \cos \theta \cdot Y_2(\cos \theta, \sin \theta) - \sin \theta \cdot X_2(\cos \theta, \sin \theta).
$$

The characteristic equation is as follows:

$$
G(\theta) = r^2 \cos \theta \sin \theta \left[(\sigma + \beta_+ - \beta_-) \cos \theta - \frac{\sigma + \beta_+ - \beta_-}{\gamma + \sigma} \sin \theta \right] = 0.
$$
 [A3]

We can see that either $G(\theta) = 0$ has a finite number of real roots θ_k ($k = 1, 2, ..., n$) or $G(\theta) \equiv 0$. By the results in Zhang *et al.* (1), no orbit of system **A2** can tend to (0,0) spirally. If $G(\theta) = 0$, then it is singular. If $G(\theta)$ is not identically zero, there are at most $2(2 + 1) = 5$ directions $\theta = \theta_i$ along which an orbit of system **A2** may approach the origin; these directions $\theta = \theta_i$ are given by solutions of the characteristic Eq. A3. If the orbit of system **A1** tends to the origin as a sequence, $\{t_n\}$ tends to + ∞ or - ∞ along a direction $\theta = \theta_i$, then the direction is called a *characteristic direction*. The orbits of system **A2,** which approach the origin along characteristic directions, divide a neighborhood of the origin into a finite number of open regions, called sectors. For an analytic system, there are three types of sectors: hyperbolic, parabolic, and elliptic [see Perko (2)].

Solving for θ in Eq. **A3** for $0 \le \theta \le \pi/2$, we obtain three simple roots:

$$
\theta_1 = 0, \theta_2 = \pi/2, \theta_3 = \arctan \frac{\sigma + \beta_+ - \beta_-}{\gamma + \sigma}.
$$

Proposition A3. There exist $\varepsilon_1 > 0$ and $r_1 > 0$ such that there is a unique orbit of system **A2** in $\{(r,\theta): 0 < r < r_1, 0 \leq \theta - \theta_3 \leq \varepsilon_1\}$ that tends to the trivial equilibrium $E_0 = (0,0)$ along $\theta = \theta_3$ as $t \to -\infty$.

Proof. Making the Briot-Bouquet transformation

$$
x = x, y = zx, ds = xdt,
$$

we transform system **A2** into the following system:

$$
\begin{cases}\n\frac{dx}{ds} = \beta_{-}x + (\beta_{+} - \beta_{-})xz - \frac{x^{2}}{\kappa_{F}},\\ \n\frac{dz}{ds} = \sigma z - (\gamma + \sigma)z^{2}.\n\end{cases}
$$
\n[A4]

The Briot-Bouquet transformation maps the first, second, third, and fourth quadrants in the (x, y) plane into the first, third, second, and fourth quadrants in the (x, z) plane, respectively. The inverse Briot-Bouquet transformation maps the *z* axis in the (x, z) plane to the point $(0,0)$ in the (x, y) plane, and maps the orbits in the left of the *z* axis in the (x, y) *z*) plane to orbits in the left of the *y* axis in the (*x*, *y*) plane with reversed directions. Thus, we consider only equilibria of system **A4** in the *z* axis. There are two equilibria: (0,0) and $(0, \sigma/(\gamma + \sigma))$. Linear analysis shows that $(0,0)$ is an unstable node, and $(0, \sigma/(\gamma + \sigma))$ is an unstable saddle. Thus, there is a unique separatrix in the interior of the first quadrant of system **A4**, which tends to $(0, \sigma / (\gamma + \sigma))$ as $t \to -\infty$.

By the inverse Briot-Bouquet transformation, there exist $\varepsilon_1 > 0$ and $r_1 > 0$, such that there is a unique orbit of system **A2** in $\{(r,\theta): 0 < r < r_1, 0 \leq |\theta - \theta_3| < \varepsilon_1\}$ that tends to (0,0) along $\theta = \theta_3$ as $t \to -\infty$.

Proposition A4. System **A2** does not have limit cycles.

Proof. Denote the functions on the right-hand side in system **A2** by $f(x, y)$ and $g(x, y)$. Choose a Dulac function *xy* $D(x, y) = \frac{1}{x}$ and notice that $x, y > 0$. We have

$$
\frac{\partial(D(x, y)f(x, y))}{\partial y} + \frac{\partial(D(x, y)g(x, y))}{\partial x} = -\left(\frac{\beta_{-}x}{y^{2}} + \frac{x^{2}}{K_{F}y^{2}} + \frac{\tau y}{x^{2}} + \frac{1}{K_{F}}\right) < 0.
$$

This implies that system **A2** does not have a limit cycle.

Combining Propositions **A1-A4** and using Poincaré-Bendixson's Theorem [see Perko (2)], we have the following theorem about the dynamical behavior of solutions to systems **A1** and thus system **2**.

Theorem A5. For the original system 2, the topological structure of the trivial equilibrium E_0 *in the interior of the first quadrant consists of a parabolic sector and a hyperbolic sector; the semitrivial equilibrium* E_F *is stable if* σ *<0 and unstable if* σ *>0; the positive equilibrium* E^* *is a global attractor if* $\sigma > 0$ *.*

B. Steady States for System 3

To find the steady states of system **3**, consider

$$
\lambda - \nu \overline{S} - \eta \left[\Phi_{\nu_F} (\overline{i}_s) + \Phi_{\nu} (\overline{i}_k) + \Phi_{\nu^+} (\overline{i}_k) \right] \overline{S} = 0,
$$
\n
$$
\frac{d}{da} \overline{i}_s(a) = -\mu_s(a) \overline{i}_s(a),
$$
\n
$$
\frac{d}{da} \overline{i}_s(a) = -\mu_s(a) \overline{i}_s(a).
$$
\n[B1]

From the first equation in **B1**, we have

$$
\overline{S} = \frac{\lambda}{\nu + \eta \overline{\Phi}}, \overline{\Phi} = \left[\Phi_{v_F}(\overline{i}_N) + \Phi_{v^-}(\overline{i}_R) + \Phi_{v^+}(\overline{i}_R) \right].
$$
 [B2]

From the second and third equations in **B1**, we have

$$
\overline{i}_{N}(a) = \exp\left[-\int_{0}^{a} \mu_{N}(\hat{a}) d\hat{a}\right] \overline{i}_{N}(0) = \exp\left[-\int_{0}^{a} \mu_{N}(\hat{a}) d\hat{a}\right] \eta \left[\Phi_{v_{F}}(\overline{i}_{N}) + \Phi_{v_{F}}(\overline{i}_{N})\right]
$$
\n
$$
\overline{i}_{R}(a) = \exp\left[-\int_{0}^{a} \mu_{R}(\hat{a}) d\hat{a}\right] \overline{i}_{R}(0) = \exp\left[-\int_{0}^{a} \mu_{R}(\hat{a}) d\hat{a}\right] \eta \left[\Phi_{v_{F}}(\overline{i}_{R})\right]
$$

Using the definitions of T_F , T_{V^-} and T_{V^+} , we have

$$
\overline{i}_{N}(0) = \eta \left[\int_{0}^{\overline{I}} (V_{F}(a)\overline{i}_{N}(0) + V^{-}(a)\overline{i}_{N}(0))da \right] \exp \left[- \int_{0}^{\overline{I}} \mu_{N}(a)d\hat{a} \right] \overline{S}
$$
\n
$$
= \eta \left[\overline{i}_{N}(0)T_{F} + \overline{i}_{N}(0)T_{V^{-}} \right] \overline{S}
$$
\n[B3]

and

$$
\bar{i}_{\scriptscriptstyle R}(0) = \eta \left[\int_0^\infty V^+(a) \bar{i}_{\scriptscriptstyle R}(0) da \right] \exp \left[- \int_0^\infty \mu_{\scriptscriptstyle R}(\hat{a}) d\hat{a} \right] \overline{S} = \eta \left[\bar{i}_{\scriptscriptstyle R}(0) T_{\scriptscriptstyle V^+} \right] \overline{S} \tag{B4}
$$

From **B2**, we have $\overline{\Phi} = (\lambda - \nu \overline{S})/(\eta \overline{S})$. **B3** and **B4** imply that $\overline{i_N}(0) + \overline{i_R}(0) = \eta \overline{\Phi S}$. We then have the following claim:

Claim B1. If
$$
\overline{i_N}(0) + \overline{i_R}(0) \neq 0
$$
, then $\overline{i_N}(0) + \overline{i_R}(0) = \lambda - \mu \overline{S}$.

Now **B4** implies that

$$
\overline{S} = \frac{1}{\eta T_{V^+}} \text{ if } \overline{i_R}(0) \neq 0. \tag{B5}
$$

Substituting **B5** into **B3**, we have $\bar{i}_N(0) = \left[\bar{i}_N(0)T_f + \bar{i}_R(0)T_f\right]T_{v^+}$, which implies that

$$
\frac{\overline{i_R}(0)}{\overline{i_N}(0)} = \frac{T_{V^+} - T_F}{T_{V^-}} \text{ if } \overline{i_N}(0) \neq 0.
$$
 [B6]

We now prove the second claim.

Claim B2. A necessary condition for $i_N(0) > 0$ is $T_{V^+} > T_F$.

Because

$$
\bar{i}_{N}(0) = \bar{i}_{N}(0) \left(\frac{T_{V^{-}}}{T_{V^{+}} - T_{F}} \right) = (\lambda - V\overline{S} - \bar{i}_{N}(0)) \left(\frac{T_{V^{-}}}{T_{V^{+}} - T_{F}} \right),
$$

we have

$$
\overline{i}_{N}(0) = \left(\lambda - \frac{V}{\eta T_{F}}\right) \left(\frac{T_{V^{-}}}{T_{V^{+}} + T_{V^{-}} - T_{F}}\right),
$$
\n**[B7]**

and

$$
\bar{i}_{R}(0) = \left(\lambda - \frac{V}{\eta T_{F}}\right) \left(\frac{T_{V^{+}} - T_{F}}{T_{V^{+}} + T_{V^{-}} - T_{F}}\right).
$$
\n[B8]

Claim B3. A necessary condition for $\overline{i_N}(0) > 0$ and $\overline{i_R}(0) > 0$ is $\lambda > v/(\eta T_F)$.

For the existence of steady states, we have three cases.

(a) If $R_0 = (\lambda \eta/\nu) \max(T_F, T_{V+}) < 1$, then $\overline{i_N}(0) = 0$. **B3** thus implies $\overline{i_R}(0) = 0$. The equilibrium is given by

$$
\overline{S} = \lambda / \mu, \overline{I_N} = 0, \overline{I_R} = 0.
$$

(b) If $R_0 = (\lambda \eta/v) \max(T_F, T_{V+}) = (\lambda \eta/v)T_F > 1$, then $\overline{i_N}(0) > 0$ and $\overline{i_R}(0) = 0$. **B3** and **B4** give the steady-state values

$$
\overline{S} = 1/(\eta T_{v+}), \overline{I}_N = \left(\lambda - \frac{v}{\eta T_r}\right) \exp\left[-\int_0^{\infty} \mu_N(\hat{a}) d\hat{a}\right] \overline{I}_R = 0.
$$

(c) If $(R_0 = (\lambda \eta/\nu) \max(T_F, T_{V+}) = (\lambda \eta/\nu)T_{V+} > 1$, then $\overline{i_N}(0) > 0$ and $\overline{i_R}(0) > 0$. **B5**, **B7**, and **B8** yield the following steady-state values:

$$
\overline{S} = 1/(\eta T_{V+}), \overline{I}_N = \left(\lambda - \frac{v}{\eta T_F}\right) \left(\frac{T_{V^-}}{T_{V^+} + T_{V^-} - T_F}\right) \exp\left[-\int_0^\infty \mu_N(\hat{a}) d\hat{a}\right],
$$

$$
\overline{I}_R = \left(\lambda - \frac{v}{\eta T_F}\right) \left(\frac{T_{V^+} - T_F}{T_{V^+} + T_{V^-} - T_F}\right) \exp\left[-\int_0^\infty \mu_R(\hat{a}) d\hat{a}\right].
$$

1. Zhang, Z., Ding, T., Huang, W. & Dong, Z. (1991) *Qualitative Theory of Differential Equations* (Transl. Math. Monogr. 101, Am. Math. Soc., Providence, RI).

2. Perko, L. (1996) *Differential Equations and Dynamical Systems* (Springer, New York).