
Supporting Text

Mathematical Model

In what follows, we use the notation X cell to refer to any of the O, I, E or D cells, respectively.

When necessary, V k
X refers to the membrane potential of the kth X cell, Ik

syn,X refers to the

synaptic input to the kth X cell. The current-balance equations (CBE) for the O, I, E and

D cells are as follows:

CO dVO/dt = Iapp,O − INa,O − IK,O − IL,O − Ih,O − IA,O − Isyn,O,

CI dVI/dt = Iapp,I − INa,I − IK,I − IL,I − Isyn,I ,

CE dVE/dt = Iapp,E − INa,E − IK,E − IL,E − Isyn,E + Iconn,E,

CD dVD/dt = Iapp,D − INa,D − IK,D − IL,D − Isyn,D + Iconn,D,

where VX are the membrane potentials (mV), CX are the membrane capacitances (µF/cm2),

Isyn,X are the synaptic currents, and Iapp,X are the applied bias (DC) currents (or tonic

drives). In the CBE, INa, IK , IL, Ih, and IA are the transient sodium, delayed rectifier

potassium, leak, hyperpolarization-activated (or h) mixed-cation and A currents, respec-

tively. All the currents have units of µA/cm2. The ionic currents are given by
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INa = GNa m3 h (V − ENa),

IK = GK n4 (V − EK),

IL = GL (V − EL),

Ih = Gh r (V − Eh),

and

IA = GA a b (V − EA),

where m, h, n, r, a, and b are the gating variables, and GZ and EZ (Z = Na, K, L, h, and A)

are the maximal conductances (µS/cm2) and reversal potentials (mV ), respectively. Note

that the subscripts referring to the type of cells (X = O, I, E, and D) have been omitted

for simplicity. For the O cells we used the following parameters: GNa = 107, GK = 319,

GL = 0.5, GA = 2, Gh = 20, ENa = 90, EK = −100, EL = −70, EA = −90, Eh = −32.9,

CO = 1.3, and Iapp,O = 0.8. For the I, E and D cells, we used the following parameters:

GNa = 100, GK = 80, GL = −0.1, ENa = 50, EK = −100, EL = −67, CI = CE = CD = 1.0,

Iapp,I = 0.6, Iapp,E = 1.4, Iapp,D = 0.12, GED = 0.3, and GDE = 0.05.

For k = 1, 2, the synaptic currents are given by

Ik
syn,O = G1,k

IOSIO,1(V
k
O − Ein) + G2,k

IOSIO,2(V
k
O − Ein) + Gk

EOSEO(V k
O − Eex),

Ik
syn,I = G1,k

II SII,1(V
k
I − Ein) + G2,k

II SII,2(V
k
I − Ein) + G1,k

OISOI,1(V
k
I − Ein)+

G2,k
OISOI,2(V

k
I − Ein) + Gk

EISEI(V
k
I − Eex),

Isyn,E = G1

IESIE,1(VE − Ein) + G2

IESIE,2(VE − Ein),

and

Isyn,D = G1

ODsOD,1(VD − Ein) + G2

ODsOD,2(VD − Ein),

where Ein = −80 and Eex = 0 are the inhibitory and excitatory reversal potentials (mV ),

respectively. The electrical coupling between the E and D compartments are given by

Iconn,E = GED(VD − VE) and Iconn,D = GDE(VE − VD).

The gating variables obey kinetic equations of the form (x = m, n, h, r, a, and b)

dx

dt
=

x∞(V ) − x

τx(V )
,

where
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x∞(V ) =
αx(V )

αx(V ) + βx(V )
and τx(V ) =

1

αx(V ) + βx(V )
.

For the O cells,

αm(V ) = −0.1 (V + 38)/(exp(−(V + 38)/10) − 1),

βm(V ) = 4 exp(−(V + 65)/18),

αh(V ) = 0.07 exp(−(V + 63)/20),

βh(V ) = 1/(1 + exp(−(V + 33)/10)),

αn(V ) = 0.018 (V − 25)/(1 − exp(−(V − 25)/25)),

βn(V ) = 0.0036 (V − 35)/(exp((V − 35)/12) − 1),

αb(V ) = 0.000009/exp((V − 26)/18.5),

βb(V ) = 0.014/(0.2 + exp(−(V + 70)/11)),

a∞(V ) = 1/(1 + exp(−(V + 14)/16.6)),

b∞(V ) = 1/(1 + exp((V + 71)/7.3)),

r∞(V ) = 1/(1 + exp((V + 84)/10.2)),

τr(V ) = 1/(exp(−17.9 − 0.116 V ) + exp(−1.84 + 0.09 V )) + 0.1,

and

τa(V ) = 5.

For the I, E and D cells,

αm(V ) = 0.32 (54 + V )/(1 − exp(−(V + 54)/4)),

βm(V ) = 0.28 (V + 27)/(exp((V + 27)/5) − 1),

αh(V ) = 0.128 exp(−(50 + V )/18),

βh(V ) = 4/(1 + exp(−(V + 27)/5)),

αn(V ) = 0.032 (V + 52)/(1 − exp(−(V + 52)/5)),

and

βn(V ) = 0.5 exp(−(57 + V )/40).

The synaptic variables obey a kinetic equation of the form

dS

dt
= N(V ) (1 − S) − β̄ S
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where

N(V ) = ᾱ (1 + tanh(V/0.1))/2.

For SOI and SOD, we use ᾱ = 5 and β̄ = 0.05. For SIO, SII, and SIE , we use ᾱ = 15 and

β̄ = 0.011. For SEI and SEO we use ᾱ = 20 and β̄ = 0.19. The values of the maximal synaptic

conductivities are divided into two groups. The first group contains a set of parameters that

are common to all cases (theta, gamma, and theta/gamma). These are G1,1
IO = G2,2

IO = 0.05,

G1,2
IO = G2,1

IO = 0.04, G1,1
II = G2,2

II = 0.02, G1,2
II = G2,1

II = 0.015, and G1

IE = G2

IE = 0.01.

The second group contains three sets of parameters, one for each case (theta, gamma and

theta/gamma). They are as follows:

I (gamma): G1,1
OI = G2,2

OI = 0.015, G1,2
OI = G2,1

OI = 0.008, G1

EO = G2

EO = 0.03, G1

EI = G2

EI = 0.1,

and G1

OE = G2

OE = 0.02.

II (theta): G1,1
OI = G2,2

OI = 0.04, G1,2
OI = G2,1

OI = 0.03, G1

EO = G2

EO = 0.005, G1

EI = G2

EI = 0.01,

and G1

OE = G2

OE = 0.5.

III (theta/gamma): G1,1
OI = G2,2

OI = 0.02, G1,2
OI = G2,1

OI = 0.01, G1

EO = G2

EO = 0.013, G1

EI =

G2

EI = 0.1, and G1

OE = G2

OE = 0.042.

Data Analysis

The power spectra Pxx and Pyy of two signals is calculated by using the Fourier transform

and presented as power spectral density. The coherence Kxy for two signals x and y is equal

to the average cross power spectrum Pxy normalized by the averaged power spectra of the

signals:

Kxy =
|Pxy|

2

PxxPyy

.

The coherence measures the strength of the linear relationship between two signals at every

frequency f . Its values are between 0 and 1. Kxy = 0 means phases are evenly dispersed

4



among all epochs. Kxy = 1 means phases of two signals are identical in all epochs; i.e., the

two signals are totally phase-locked at this frequency.

Bispectral analysis gives information about two component oscillations within a signal (de-

fined by their respective frequencies f1 and f2) and a harmonic component (defined by the

sum of the frequencies, f1 + f2). The bispectrum, B, is calculated by computing the triple

product Xj(f1)Xj(f2)X
∗

j (f1 + f2) for each window, j, of data time, then summing up over

all windows and finally taking the sum’s magnitude:

B(f1, f2) =

∣

∣

∣

∣

∣

∣

∑

j

Xj(f1)Xj(f2)X
∗

j (f1 + f2)

∣

∣

∣

∣

∣

∣

,

where Xj(f1), Xj(f2) and X∗

j (f1 + f2) are the Fourier transform components of the signal

(calculated by using Fast-Fourier Transformation). X∗ is the complex conjugate of X.

Although the bispectrum may increase with phase coupling, it may also increase due to

signal strength and other circumstances. By normalizing the bispectrum, the degree of

phase coupling can be estimated by using a quantity known as bicoherence, BIC:

BIC(f1, f2) =
B(f1, f2)

∑

j

√

RTPj(f1, f2)
,

where

RTPj(f1, f2) = Pj(f1)Pj(f2)Pj(f1 + f2)

is the triple product of the power spectrums, Pj.

The bicoherence gives values between 0 and 1, and, specifically, it can quantify the degree

of phase coupling between the component oscillations and the harmonic due to their sum.

For more detailed information about bispectral analysis, see (1).
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