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ABSTRACT 

The estimation of the amount of sequence variation in samples of homolo- 
gous DNA segments is considered. The data are assumed to  have been ob- 
tained by restriction endonucIease digestion of the segments, from which the 
numbers and frequencies of the cleavage sites in the sample are determined. 
An estimator, 6, of the proportion of sites that are polymorphic in the sample 
is derived without assuming any particular population genetic model for the 
evolution of the population. The estimator is very close to  the EWENS, SPIEL- 
MAN and HARRIS (1981) estimator that was derived with the symmetric 
WRIGHT-FISHER neutral model. ENGELS (1 981) has also recently proposed 
an estimator of the same quantity, and he arrived at his estimator without as- 
suming a particular population genetic model. The sampling variance of 8 
and ENGELS’ estimator are derived. It is found that the sampling variance of 
6 is lower than the sampling variance of ENGELS’ estimator. Also, the sampling 
variance of e ,  an estimate of e (=+Nu) is obtained for the symmetric WRIGHT- 
FISHER neutral model with free recombination and with no recombination. 

A restriction endonuclease cuts DNA segments wherever the enzyme’s recog- 
nition sequence occurs. When a number of homologous DNA segments are 

each treated with a particular restriction endonuclease, sequence heterogeneity 
is revealed if it is found that not all the segments are cut in the same locations. 
Quantitative estimates of the amount of sequence variation can be obtained with 
data derived from restriction endonuclease digestion of homologous DNA seg- 
ments. EWENS, SPIELMAN and HARRIS (1981) and ENGELS (1981) have each 
proposed an estimator of p ,  the proportion of nucleotide sites which are poly- 
morphic in a sample of segments examined with restriction endonucleases. The 
EWENS estimator, gw, was based on an analysis of the WRIGHT-FISHER neutral 
model with symmetric mutation. For a detailed description and analysis of the 
WRIGHT-FISHER model, see EWENS 1979. gw differs from earlier intuitive esti- 
mates (e.g. JEFFREYS 1979) by a factor of two. The applicability of tw to other 
models, neutral or otherwise, was unclear from EWENS’ derivation. ENGELS de- 
rived his estimator, pAp, with just one simple assumption (which will be stated 
in the next section) ; no other details of the population structure were needed. 
Engels suggested that p^s was to be preferred to & because it did not depend on 
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detailed assumptions concerning the population from which the sample was 
taken. 

In  this note, I present a simple derivation of an estimator, i;, which is very 
close to &. The derivation of i; is not based on a particular model for the evolu- 
tion of the population. With this derivation it is more easily seen under which 
conditions f i W  and p* apply to other models; p^w and i; apply to a more restricted 
class of symmetric neutral models than does jjg. 

It is shown that the sampling variance of I; is less than the sampling variance 
of i;g. Estimators of the sampling variance of i; and ~3~ are also obtained. 

EWENS showed that the same data used to estimate p could be used, under the 
symmetric WRIGHT-FISHER neutral model, to estimate 0 =  NU, where N is the 
population size and U is the neutral mutation rate. The sampling variance of 
the EWENS estimator of B is obtained under the no-recombination neutral model 
and the free-recombination neutral model. 

DEFINITIONS AND ASSUMPTIONS 

Consider a set of n homologous segments, each L nucleotides long. The data 
to be analysed are assumed to have been obtained by treating each segment with 
a restriction enzyme and determining the points at which each segment is cut. 
A block is defined as i consecutive nucleotide positions, where i is the length 
of the recognition sequence of the restriction enzyme being used. Usually i is 
4 or 6. A cleavage site is defined as a block for which at least one DNA segment 
of the set has the recognition sequence and is thus cut. A block or cleavage site 
is referred to as “monomorphic” if all the DNA segments in the set are identical 
at the nucleotide positions in this block o r  cleavage site. Otherwise, the block 
or cleavage site is “polymorphic.” Let m be the number of cleavage sites found, 
and k be the number of the cleavage sites which are polymorphic (that is the 
number of sites at which some, but not all, of the segments were cleaved.) Re- 
call that p is the proportion of all nucleotide sites that are polymorphic in the 
set. Estimates of p are the central interest of his note. 

The ENGELS estimator of p is 

where c is the total number of cuts at all cleavage sites, and ci is the number of 
cuts at the ith polymorphic cleavage site. The simple assumption upon which 
i;g depends is: The probability that the sequence at a random block on any par- 
ticular segment is the recognition sequence, is the same, whether or not the block 
is known to be monomorphic. Note that ENGELS’ assumption may not hold 
exactly, under neutral models, when mutation is assymetric. With assymetric 
mutation, knowledge that a block is monomorphic may change the probability 
that a specified sequence occurs on a particular segment at that block. 

The EWENS estimator of p is & = k/Zmj. (The “intuitive” estimator of p is 
k /mj . )  The estimator i; is defined as 

i; = k/(2m-k)j  . (2) 
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When n = 2, $ equals &. When k < m, $ and are nearly equal. The difference 
between and &, is of the order of terms which were ignored in EWENS’ deriva- 
tion of &. In the next section, I will show that $ can be easily derived under 
the assumption that a randomly picked block which is polymorphic in the Sam- 
ple is twice as likely to be a cleavage site as a randomly picked block which is 
monomorphic in the sample. At stationarity, under neutral models with sym- 
metric mutation, dimorphic blocks are twice as likely to be cleavage sites as 
monomorphic blocks. Thus, under any symmetric neutral model where all 
polymorphic blocks are in fact dimorphic blocks, the above assumption will hold. 
Under the symmetric WRIGHT-FISHER neutral model with 0 small, most poly- 
morphic blocks will be dimorphic. We now see why the intuitive estimator is 
biased by a factor approximately equal to two. Since cleavage sites are twice as 
likely at dimorphic blocks as at monomorphic blocks, the proportion ( k / m )  of 
cleavage sites that are polymorphic is expected to be approximately twice the 
proportion of all blocks that are polymorphic. This result is obtained explicitly 
in the next section. 

Even with neutral models in which polymorphic blocks are always dimorphic, 
the assumption that polymorphic blocks are twice as likely to be cleavage sites 
as monomorphic blocks, will not generally hold exactly when mutation is as- 
symetric (just as ENGELS’ assumption does not hold.) With symmetric neutral 
models, $ will be seriously biased, if it frequently occurs that more than two 
sequences are present in the sample at polymorphic blocks. This is not true of $,, 
which does not require that polymorphic blocks are dimorphic. 

DERIVING $ 

I will first derive an estimate of q, the proportion of blocks (rather than nu- 
cleotide sites) that are polymorphic in the sample. Consider the conditional prob- 
ability that a particular block is polymorphic given that the block is a cleavage 
site. This probability satisfies the following identity: 

Prob (polymorphismlcleavage site) = 

(3) 
Prob (polymorphism) Prob (cleavage site I polymorphism) 

Prob(c1eavage site) 

where Prob(po1ymorphism) is the probability that a randomly chosen block is 
polymorphic in the sample, which is just q. Prob (cleavage site] polymorphism) 
is the probability that a randomly chosen polymorphic block is a cleavage site; 
this probability is by our assumption twice the probability (denoted r )  that a 
monomorphic block is a cleavage site. The denominator, Prob (cleavage site), 
is the probability that a randomly chosen block is a cleavage site. This probabil- 
ity can be written as the sum of the probabilities of two mutually exclusive 
events, namely the event that the block is a polymorphic cleavage site and the 
event that the Mock is a monomorphic cleavage site. Thus it follows that 

P(c1eavage site) = 2rq + (I-q) I . (4) 
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Substituting into (3),  one obtains 

Prob (polymorphism I cleavage site) = 2rq/[2rq3 ( l - q ) r ]  , ( 5  1 

which, when q is small, is nearly twice the unconditional probability of poly- 
morphism, q. Solving (5) for g and estimating Prob (polymorphism1 cleavage 
site) by k/m, the observed frequency of polymorphism at cleavage sites, the 
following estimator of q is obtained: 

q z k l ( 2 m - k )  . (6) 

Following EWENS and ENGELS I assume that a given block may be polymorphic 
at no more than one its j positions. Thus I estimate p by G / j ,  and obtain the 
estimator 

F; = k/(2m--k)j . (7) 

One can also obtain I; from ENGELS’ estimator if one assumes that E ( c i )  equals 
n/2. Substituting nJ2 for  cz in (1) leads to p”. For neutral models with symmetric 
mutation and for which polymorphic blocks are always dimorphic, E(c , )  equals 
4 2 .  

S A M P L I N G  PROPERTIES O F  f i  A N D  $9 

As just mentioned, Z; is just cg with the ci (which are variable quantities) re- 
placed by n /2  (which is constant.) Clearly the sampling variance of p” is less than 
the sampling variance of $B. It should be emphasized that p” applies to a more re- 
stricted class of symmetric neutral models than does $B. When polymorphic 
blocks are frequently not dimorphic, $ could be seriously biased. In this section, 
explicit expressions for the sampling variance of $ and eS are obtained. Estimators 
of these sampling variances are also obtained. Throughout this section it is as- 
sumed that polymorphic blocks are twice as likely to be cleavage sites as mono- 
morphic blocks. Also it is assumed that E(c , )  equals nJ2. 

Sampling variances depend on how one conceives of performing hypothetical 
repetitions of the experiment. Each repetition of our experiment could consist of 
sampling n homologous segments and applying a different restriction enzyme. 
The sampling variances of Z; and eg using this repetition scheme reflect the pre- 
cision with which they estimate the probability, p * ,  that a random site is poly- 
morphic in a random sample of n segments. Note that p ,  the proportion of sites 
which are polymorphic in a sample, would vary from sample to sample. The 
expectation of p is p*.  

Alternatively. each repetition of the experiment could consist of applying a 
different restriction enzyme to the same set of rz segments. The sampling vari- 
ances of 2; and p”*, with this repetition scheme, reflects the precision with which 
p^ and tg estimate p ,  the unknown proportion of sites which are polymorphic in 
the particular set of n segments under study. It is this latter type of repetition 
scheme which is considered in detail in this section, 
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Consider a set of n homologous segments with a fixed but unknown value of p .  
Each segment in this set consists of L - j -t 1, or approximately, L blocks. These 
blocks overlap with neighboring blocks, so that the presence of the recognition se- 
quence at one block is not independent of the presence or absence of the recogni- 
tion sequence at neighboring blocks. I will assume that this dependence has negli- 
gible effect on  the random variables k and m - k, since m < < L, so that we may 
assume that we are dealing with approximately L independent blocks. I will again 
assume that polymorphic blocks are polymorphic a t  only one of the j sites, so that 
there are jpL polymorphic blocks and (l-jp) L monomorphic blocks. With these 
assumptions the number of polymorphic cleavage sites (k) and the number of 
monomorphic cleavage sites (m-k) are independent binomially distributed ran- 
dom variables. Let r be the probability that the sequence at  a monomorphic block 
is the recognition sequence. By assumption, the probability that the recognition 
sequence occurs in the sample at a random polymorphic block is 2r. Since r is 
fairly small, if jpL, the number of polymorphic blocks, is not too small, the bi- 
nomial distributions of k and m - k will be well approximated by POISSON 
distributions: 

Using the POISSON distributions, one can calculate maximum likelihood estimates 
of the pair of parameters, rL and p ,  in terms of the observations, m and k. The 
maximum likelihood estimate of p obtained in this way is just I;. 

can be found using TAYLOR 
expansions and ignoring third ad higher order moments. Using this method and 
the POISSON distributions of (8) and (9), it was found that each estimate has a 
bias of order pz .  The variance of I; was found to be 

The approximate mean and variance of I; and 

Var(6) p/2rLj , (10) 

which can be estimated from the data by 

ENGELS obtained this result (his equation 18), when he calculated Var(cg) for 
n = 2 (because when n = 2, = I ; ) .  For n > 2, ENGELS did not calculate the 
sampling variance of eg. I do so now. 

With p fixed, m - k and $ cc are independent, so the variance of I;B can be 
k 1  

found approximately with 
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If, in addition, the ci are assumed mutually independent, then the Var(Zc6) can 
be written 

Var(Zci) = {E(ci)}2Var(k) ,+ E(k)Var(ci) . (13) 

By assumption, the expectation of ci is nJ2. Taking derivatives of e, and using 
( 13), one finds 

ignoring terms in p2 .  The variance of the ci depends on the mechanism main- 
taining the polymorphisms. Var(ci) could be estimated by its observed variance, 

(ci - c) "/ (k - 1 ) , where c = 2 c i /k .  It is clear that Var (ci) is less than n2/4, 
2=1 

so the maximum variance of eg is twice the variance of I;. 

ESTIMATING e 
The analysis, so far, has concerned estimates of p, a property of a particular 

set of segments. One may also, as suggested by EWENS, SPIELMAN and HARRIS 
(1981), use the data to estimate e, a population parameter. Under the symmetric 

h 

WRIGHT-FISHER neutral model, EWENS proposed estimating e with e = ew/ 
log ( n )  . I n  what follows the nearly identical estimator ^e = $/log (n )  , will be 
considered. The sampling variance of this estimator will be derived under the 
following scheme of hypothetical repetitions. Each repetition would consist of 
the application of the same restriction enzyme to a new sample of n homologous 
segments obtained from a completely independent population with the identical 
parameter e. The populations will be assumed to be at stationarity with respect 
to allele frequencies. With this repetition scheme, p is a random variable. The 
distribution of p, under the neutral model, depends on 0 and the amount of re- 
combination. Note that with p a random variable, k and m - k are no longer 
independent, nor, necessarily POISSON distributed. 

For the two extreme cases of free recombination and no recombination, the 
distribution of p is easily described. In either case, the expected value of pL, the 
number of polymorphic nucleotide positions, is approximately LBlog(n). With 
free recombination, pL is approximately POISSON distributed. With no recombi- 
nation, WATTERSON (1975) gives the distribution of the number of segregating 
sites for the infinite-site model. For 0 small, his result should apply approxi- 
mately to the distribution of pL.  Thus, for either the free-recombination or no- 
recombination neutral model, the joint probability generating function of k and 

m - k can easily be written down. The variance of ê  can be obtained directly 
with the identity from conditional probability 

Var(lj) =E[Var($lp)I +VarrE(ljIP)l . (15) 
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Var($[p) is given by equation (IO). E($lp)  is approximately p .  Thus, regardless 
of the amount of recombination, 

Var($) = E(p/2rLj) + Var(p) 
= e log ( n )  /2rLj + Var (p) . (16) 

For the free recombination case, Var(p) is just Blog(n)/L, which (since I is 
small) is very small compared to the first term on the right hand side of (16).  
So, we have the approximation 

Var ($) = 6 log ( n )  /2rLj 

Var( i> = e/[2rijiog(n)l , 
and 

which can be estimated by 
A 

Var(i)  = &/A . (19) 
The variance in p contributes insignificantly to the variance in f i  and 9. 

For the no-recombination case, the variance of p L  is (WATTERSON 1975) : 

n-1 

Var(9) ~- I+ 2 1/i2 , 
2rLjlog ( n )  {log ( n )  }Z i=l 

which may be estimated by 

A A  n-1 
Var(9) =--I+ 

k {log(n)}Z %=l 

The variance of p ,  may contribute substantially to the variance of $ and Q, when 
there is no recombination. 

One can now calculate standard errors of the estimate, i, with (19) and (23) 
for the case of free recombination and no recombination respectively. 

APPLICATIONS 

Up to this point, data derived from the use of a single enzyme have been con- 
sidered. The results extend directly to data from several restriction enzymes 
provided all have recognition sequences of the same length. In this case, k is to be 
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interpreted as the total number of polymorphic cleavage sites, and m is the total 
number of cleavage sites. 

The data of BROWN (1980) will illustrate the use of the estimators. BROWN 
studied mtDNA from 21 individuals, with seven tetranucleotide restriction en- 
zymes. The data as summarized by ENGELS are: m = 244, k = 45, and c = 4672. 
The estimate, $, of the proportion of nucleotide sites that are polymorphic in this 

sample of DNA segments is 45 
= 0.0254, with standard error from (11) 

4 (488-45 ) 
of 0.0038. (The ENGELS estimate, & is 0.0264. cw is 0.0231.) 

Estimating 8, we have $ = p/log(n) = 0.0083; assuming no recombination, 
the standard error, from (23), is 0.037. As noted by ENGELS, for mitochondrial 
DNA, 6' must be defined as Nu, rather than 4Nu. 

When data are obtained with restriction enzymes with different length recog- 
nition sequences, an estimate of the proportion of nucleotide positions that are 
polyniorphic is still easily obtainable. Following ENGELS, p can be estimated with 
exactly the same expression as before, but j is redefined to be the weighted 
average of the lengths of the recognition sequences, 

where m, is the number of cleavage sites in the sample that correspond to recog- 
nition sequences of length i. j must now be considered a random variable, but as 
discussed by ENGELS, the variance and covariances involving j are small, so re- 
sults concerning variances which assumed j to be constant are still essentially 
correct. 

I illustrate with the same example used by EWENS, SPIELMAN and HARRIS 
(1981) which they derived from the data of JEFFREYS (1979). One hundred and 
twenty homologous DNA segments were examined with eight restrictions en- 
zymes, seven with recognition sequences of length 6, and one enzyme with recog- 
nition sequence of length 4. The number of cleavage sites with recognition se- 
quence of length 4 was 7, that is, m4 = 7, and none of these cleavage sites was 
polymorphic. There were 47 cleavage sites for the other enzymes, m, = 47, and 
3 of these sites were polymorphic. Thus we have j =  [ (4) (7)  + (6) (47)]/ 
(7+47) = 5.74, and 

p ^ =  (0+3)/[5.74(14+94-3)] == 0.0051 , 

with standard error of 0.0029 from (1 1). 

Estimating 8, we have s* = O.O051/10g(120) = 0.0011. The standard error de- 
pends on the amount of recombination. Assuming free recombination, (19) gives 
standard error of 0.0006. Assuming no recombination, (23) gives standard error 
of 0.0007, only slightly higher than the free recombination result. 
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CONCLUSIONS 

The estimator, $, can be derived with an assumption which holds under sym- 
metric neutral models if it is also true that polymorphic blocks are always di- 
morphic. ENGELS' derivation of $g does not require that polymorphic blocks be 
dimorphic. However, the sampling variance of Pg is larger than that of p" (but 
less than twice the sampling variance of $.) The sampling variance of $ can be 
estimated with ( 1 1 ) . 

The estimate, +/log( n) , of the population parameter 8, has sampling variance 
which can be estimated by (19) and (23 )  for the free-recombination and no- 
recombination neutral models, respectively. 

The helpful comments of WILLIAM ENGELS and WARREN EWENS are gratefully acknowl- 
edged. The author is supported by Public Health Service Grant T32 GM 07517-04. 

LITERATURE CITED 

BROWN, W. M., 1980 Polymorphism in mitochondrial DNA of humans as revealed by restric- 
tion endonuclease analysis. Proc. Natl. Acad. Sci. U.S.A. 77: 3605-3609. 

ENGELS, W. R., 1981 Estimating genetic divergence and genetic variability with restriction 
endonucleases. Proc. Natl. Acad. Sci. U.S.A. 78 : 6329-63333. 

EWENS, W. J., 1972 The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 
87-1 12. ---, 1979 Mathematical Population Genetics. Springer Verlag, Berlin. 

EWENS, W. J., SPIELMAN, R. S., and HARRIS, H., 1981 Estimation of genetic variation at the 
DNA level from restriction endonuclease data. Proc. Natl. Acad. Sci. U.S.A. 78: 3748-3750. 

JEFFREYS, A. J., 1979 DNA sequence variants in the Gy- ,  Ay-, 8,- and P-globin genes of man. 
Cell. 18: 1-10. 

WATTERSON, G. A., 1975 On the number of segregating sites in genetical models without re- 
combination. Theor. Pop. Biol. 7: 256-276. 

Corresponding editor: W. J. EWENS 


