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ABSTRACT 

The phenomenon of marginal underdominance at a stable equilibrium in a 
two-locus-two-allele deterministic selection model is studied analytically using 
bifurcation theory. This technique and additional numerical studies indicate 
several new aspects of the phenomenon that are of biological importance. 
Marginal underdominance can occur at both loci simultaneously and can be 
present in a model with small fitness differentials. This can occur for a fitness 
scheme that is a one parameter generalization of the classical symmetric fitness 
model. 

OST of the deterministic theory of selection in Mendelian populations has M concentrated on models of one or two loci, in part for reasons of mathe- 
matical simplicity. Underlying this research strategy has been the tacit assump- 
tion (or hope) that much of the behavior of one- or two-locus systems imbedded 
in truly multilocus systems could be understood by examining one- or two-locus 
models. One example of such an assumption was the conjecture that at a stable 
equilibrium in a multilocus model the marginal fitnesses at subsystems must 
appear as though the subsystems are at a stable equilibrium. In particular, one- 
locus subsystems must exhibit overdominance. If this conjecture had been true, 
apparent examples of underdominance at one-locus genetic systems at a stable 
equilibrium (LEWONTIN and WHITE 1960; CHRISTIANSEN et al. 1974; MITTON and 
KOEHN 1975) could not be explained by appealing to unseen loci. 

In a recent paper (HASTINGS 1981a), numerical examples of marginal under- 
dominance at a stable equilibrium of a two-locus-two-allele model were pre- 
sented. This settled the conjecture of KARLIN and CARMELLI (1975) but left open 
the question of the forms of the fitness matrices that lead to marginal under- 
dominance, since the results were strictly numerical. Thus, an assessment of 
the possible biological import of the phenomenom was difficult. In the present 
paper, I will present an analytical characterization of a class of fitness matrices 
that lead to marginal underdominance for a range of recombination values. This 
characterization will be produced using bifurcation theory in a fashion similar 
to that used in HASTINGS (1981b) to study a different problem in two-locus-two- 
allele models. 

Additional numerical results will also be reported here, showing that there 
are ways other than those deduced by bifurcation theory in which marginal 
underdominance can arise. I will also present examples of ways in which 
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marginal underdominance can appear simultaneously at both loci in a two- 
locus-two-allele model. 

The results of this paper will thus allow an assessment of the biological 
import of the phenomenon of marginal underdominance. A knowledge of the 
form of the fitness matrix permits a judgment of the likelihood of fitness 
patterns leading to underdominance occurring in nature, and the nature of the 
equilibria at which marginal underdominance occurs. Additionally, one can 
determine the most likely form for the other equilibria present in situations in 
which underdominance is possible. However, the results in this paper must also 
be viewed with caution, since multilocus systems may behave differently from 
two-locus systems with respect to marginal underdominance. 

BACKGROUND 

The model used here is the standard two-locus-two-allele discrete time 
deterministic model reviewed in KARLIN (1975). Let A and a be the alleles at the 
A locus, and B and b be the alleles at the B locus. The frequencies (and “names”) 
of the four chromosomal types AB, Ab, aB, and ab are xl, XZ, x3 and x4, 

respectively. Let w,, (with w,, = w,, and w14 = wB) be the fitness of an individual 
with chromosomes xL and x,. 

Let D be the disequilibrium, 

D = xlx4 - X S ~ ,  (1) 

(2) 

P A  be the frequency of allele A, P E  that of allele B, so 

P A  = XI + x2, 

Finally let r be the recombination rate between the two loci. 

P B  = XI + x3. 

The evolution of this system is described by 

xi = W-l(xLwL -+ rD) for i = 1 to 4, (3) 

where the sign is minus for i = 1 and 4 and is plus for i = 2 or 3. The marginal 
mean fitness of x, is 

4 

wi = w,;x; 
;= 1 

and the mean fitness of the population is 
4 

w = 2 wixi. 

(4) 

(5) 
i= 1 

The marginal fitnesses at the A locus are the quantities that would be observed 
if only that locus were studied. They are computed as (e.g., BODMER and 
FELSENSTEIN 1967; KARLIN 1975; EWENS and THOMSON 1977): 

( 6 4  

(6b) 

2 
WA.4 = (w11x:: + 2W12XlX2 + W22x2/(X1 + XZ) 

W A ~  ( ~ 1 3 ~ 1 x 3  + ~ 1 4 ~ 1 x 4  + ~ 2 3 ~ ~ x 3  + w~~xzx~) / [ (xI  + XZ) ( ~ 3  + x4)I 
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Similar definitions apply to the B locus. 
Marginal underdominance will hold at the A locus if the inequalities 

W A ~  < Waa (74 

W A ~  C WAA (7b) 

and 

hold. EWENS and THOMSON (1977) showed that for any full system at equilibrium, 
any marginal subsystem must have marginal fitnesses which satisfy the condi- 
tions for equilibrium. Hence, in a one locus subsystem, at equilibrium the 
quantities WAA - W A ~  and waa - W A ~  must have the same sign. Consequently, 
the inequalities (7) are seen to be equivalent to: 

wia < W a a W U ,  (8) 

a form more useful below. 

ANALYSIS OF THE MODEL USING BIFURCATION THEORY 

The analysis in the present section will concentrate on a bifurcation analysis 
of a two-locus-two-allele system in the vicinity of a corner equilibrium (e.g., P A  

= p~ = 0 or XI = x2 = x3 = 0, x4 = 1) for those values of the recombination 
parameter r slightly smaller than the critical value rc which makes the corner 
equilibrium stable. This will allow the approximate determination (in powers 
of rc - r)  of a stable polymorphic (internal) equilibrium for these special values 
of r. The possibility of marginal underdominance at this stable equilibrium can 
then be assessed using the inequality (8). 

The necessary preliminary calculations of the stability of a corner equilibrium 
are in BODMER and FELSENSTEIN (1967) and are summarized next. In what 
follows I have normalized the fitnesses so that w14 = w23 = 1. The linearization 
of the system (3) about the corner equilibrium 

P A  = p B  = 0 (9) 

x’ = Jx (10) 

takes the form: 

where the matrix J is: 

(11) 
) *  (:;: 0 w34/w44 

(1 - r)/wM 0 0 
w24/w44 0 

The vector x is the three-dimensional vector with entries xl, x2, x3. (Note that it 
is sufficient to use the three variables above since the four frequencies xz sum 
to one. The choice of these coordinates is indicated by the fact that at the corner 
equilibrium the vector x is zero.) Hence, if 

1 > w44 > W24r w34 

the equilibrium (9) is (locally asymptotically) stable if r > rc and unstable if r 
e rc where 

(12) 

rc = (1 - WM). (13) 
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In what follows I will assume that (12) holds and that w44 is greater than $5 so 
that r, is less than %. 

If it were the case that w44 were larger than 1 as well as w24 and w34, then the 
corner equilibrium would be stable for any value of the recombination param- 
eter r. Instead, I will examine the case in which (12) holds, which implies that 
the stability of the corner equilibrium changes as r is varied through rc. 
Bifurcation theory implies that this change in stability occurs when a second 
equilibrium whose value depends on r passes through the fixed (corner) equi- 
librium. Bifurcation theory provides a means to compute the stability and 
approximate location of this new equilibrium. The procedure will be to find 
this new curve of equilibria, and determine when this curve consists of stable 
equilibria exhibiting marginal underdominance. 

The necessary theoretical background for the bifurcation calculations that 
follow is in HASTINGS (1981b), which also treats a two-locus population genetics 
problem, although dealing with a different set of variables. The first step is to 
change variables so that the linearization matrix (11) takes the form (H O H O )  (14) 

at the point where r = re and the 2 x 2 matrix H has both eigenvalues less than 
1. An appropriate change of variables is 

y = Px (15) 

x = P-ly (16) 

and 

where the symbols x and y represent three-dimensional vectors and the matrices 
P and P-', with the eigenvectors of (11) as the columns of P-', are: 

(17) 
O ") 
; :). (18) 

( 

( (1 - w44)/(w44 - w34) 0 1 

1 
P =  -(I - w M ) / ( W &  - w24) 1 0 

-(1 - w44)/(w44 - w34) 0 1 

1 
and 

p-' = (1 - w44)/(w44 - w24) 

The goal now is to find the coefficient fll of y: in the equation for yi to use in 
the bifurcation calculations. Bifurcation theory (see HASTINGS 1981b; HASSARD, 
KAZARINOFF and WAN 1981) says that to lowest order the dynamics of the 
system (3) are governed by the equation for y; in the neighborhood of the 
equilibrium (9) and the parameter value r = r,. [At the new bifurcating equilib- 
rium determined by the equation for y;, to lowest order, the equilibrium values 
of y2 and y3 do not change from their values at the equilibrium (9).] Note that 
negative values of yl are not biologically meaningful because then xL for i from 
1 to 3 would be negative. Positive values of yl are biologically meaningful since 
from (18) all the xL would be positive if yl were positive and yz and y3 were 0. 
Specifically, the equation for y;, as determined from (ll), (17) and (18) is 

(19) yi = [l + (r, - r ) / w ~ ]  yl + flly'? + higher order terms. 
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More precisely, the theory used in HASTINGS (1981b) (cf. HASSARD, KAZARI- 
NOFF and WAN 1981) says that the system (3), for A sufficiently small, will have 
an equilibrium given by: 

yl = -A/( fllW44) + @(A2) 

y2 = @(A2) (20) 
y3 = @(A2) 

where 

A = rc - r. 
Hence, the biologically meaningful positive polymorphic equilibrium solutions 
to the equations (3) occur for r c rc and are stable if fll c 0. If f l l> 0, the positive 
solutions occur for r > re and are unstable, so the case of interest is when fll c 
0. In terms of the original variables x,, the gamete frequencies, the new 
equilibrium is [using (18) and (ZO)]: 

(21) 

x1 = -A/( fllW44) + @(A2) 

x2 = -h(l - w44)/[( fllW44)(W44 - w24)] + O(A2) 

x3 = -A(1  - w44)/[( fllW44)(W44 - w34)] + @(A2) , (22) 

x4 = 1 + A[l  + (1 - w44)[1/(w44 - w24) + 
1/(W44 - Wd]] / (  fiiW44) + O(A2) 

With the aid of a symbol manipulation routine, the quantity fll (which depends 
on all the second partial derivatives of xi evaluated at (9) and is calcuxted from 
(3), (18) and (20) using the fact that all the x, sum to one) is found to be: 

[(w44 - w24)(w44 - w34)(wll - 2 + w44) + (1 - w44)(w44 - w34)(w12 - 2W24 + 
w44) + (1 - w44)(w44 - w24)(w13 - 2w34 + w44) + (23) 

3 (1 - w44) ]/[w44(w44 - w24)(w44 - w34)1 

The meaning of this quantity will be explored below. 
To determine whether marginal underdominance holds at the bifurcating 

equilibrium, simply substitute the quantities (22) in the inequality (8) and 
consider the lowest order (in A) nonzero term. This turns out to be the A2 term, 
so underdominance holds at the A locus if: 

(244 
wll(w44 - w24)' + 2w12(1 - w44)(w44 - w24) + 

w22(1 - w44)' - W44(1 - w24)' > 0. 
An analogous condition holds at the B locus, namely underdominance holds if: 

(24b) 
wll(w44 - w34)' + 2W13(1 - w44)(w44 - w34) + 

W33(1 - WM)' - W44(1 - WM)' > 0. 

INTERPRETATION OF THE ANALYTICAL RESULTS 

The first step in the intepretation of the conditions (23) and (24) is to notice 
that not all of the entries in the fitness matrix appear in all the conditions. 
Specifically the stability (and direction) of the bifurcation does not depend on 
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wZ2 and w33. The condition for underdominance at the A locus does not depend 
on ~ 1 3  and w33 and similarly the condition for underdominance at the B locus 
does not depend on w12 and w22. This information makes it simple to generate 
examples at which marginal underdominance holds at one or both loci at a 
stable equilibrium. 

The first step is to choose all the entries in the fitness matrix except w22 and 
w33 so that the bifurcation is to a stable equilibrium, i.e., fll as defined in (23) is 
negative. Note that decreasing wllr w12 and w13 always decreases the quantity 
(23), making fll smaller. Hence, the first step in choosing fitnesses that lead to 
a stable bifurcation is to examine the form (23) takes when w11, w12, and w13 are 
all zero. Then, after simplifying, the inequality f l l <  0 derived from (23) becomes: 

(W44 - W24) (w44 - w34) (-2 + w44) + (1 - w44) (w44 - w34) (-2w24 + 
(25) 

W&) -t (1 - W44)(W44 - W 2 4 ) ( - 2 W ~  + W M )  + (1 - W44)3 < 0. 

If 

w44/2 < w24 (264 

and 

only the last term on the left side of (25) is positive. If w4 = w23 = w24, then the 
left side of (25) is positive. However, if 1 - wd4 is very small, and the difference 
between wu and W23, w24 is larger but not so large that (26a) or (26b) is close to 
being violated, then (25) clearly holds. In particular, sufficient conditions for 
inequality (25) to be satisfied are: 

If inequality (25) is satisfied, then for sufficiently small values of wll, w12 and 
~ 1 3  the inequality (23) will hold and the bifurcation will be to a stable equilib- 
rium. The condition that wll, w12 and w13 be sufficiently small is not at all 
extreme, as demonstrated in an example below. 

Now that a fitness matrix producing a bifurcation to a stable equilibrium has 
been produced, the quantities w22 and w33, which have yet to be determined, 
can be chosen so that marginal underdominance holds at both loci at the 
bifurcating equilibrium. Note from inequalities (24) that simply by choosing w22 

and w33 sufficiently large the condition that marginal underdominance hold can 
be satisfied. As above, the condition that w22 and w33 be sufficiently large is not 
extreme, as will be shown below. 

It is important to note that the sufficient conditions for marginal underdom- 
inance to occur that have just been derived do not preclude a certain kind of 
symmetry in the fitness matrix, namely that the effects of the A and the B locus 
are identical. Hence, assume that the A and B loci are identical in their effects, 
so let: 
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c = w 2 4  = w 3 4 ,  

d = ~ 1 2  = ~ 1 3 ,  

k = ~ 2 2  = ~ 3 3 .  

(28) 

In fact the parameters c and d can be chosen to be the same, and have the 
inequalities (24) and fl l  < 0 satisfied. Thus, a fitness matrix that differs from the 
classical symmetric model (reviewed in KARLIN 1975 and EWENS 1979) only in 
having w 1 1  # w 4 4  can lead to stable marginal underdominance at both loci. 

Such an example of marginal underdominance, with small fitness differen- 
tials, will now be constructed. If we choose c = d = 0.98, and w 4 4  = 0.99, the 
condition derived from (23) that the bifurcation be to a stable equilibrium is 
satisfied if w 1 1  < 0.98. If we choose wll to be 0.97, then the conditions (24) that 
marginal underdominance hold are satisfied if k > 1.03. Hence, the following 
fitness matrix (displayed in 3 X 3 form, as all examples will be shown) leads to 
marginal underdominance at both loci, for the quantity (0.01 - r)  sufficiently 
small and positive: 

AA 0.97 0.98 1.04 
Aa 0.98 1.0 0.98 . (29) 
aa  ( B B  1.04 0.98 Bb 0.99 b b )  

At the equilibrium PA and p B  are very small. Numerically, the equilibrium is 
found to exist for r* < r < 0.01 where r* lies between 0.0090 and 0.0095. 

NUMERICAL RESULTS 

Even with the analytical characterization of the previous section, numerical 
work is still useful as a supplement to answer two important questions. The 
bifurcation analysis is an accurate descriptor of the dynamics only for values of 
r sufficiently close to r,. What is the behavior for other values of r ?  Can one 
find all instances of marginal underdominance in two locus systems using the 
bifurcation analysis described above? 

I have followed the dynamics, as r is varied, of two-locus models with fitness 
matrices leading to marginal underdominance that arise from the bifurcation 
analyzed above. In all cases the qualitative picture of the behavior is similar- 
for some value of r less than r, the equilibrium coalesces with an unstable 
equilibrium and disappears. I have not been able to deduce a simple measure of 
the length of the interval over which the equilibrium exists, although if rc is 
small the interval must be small since KARLIN (1978) showed that underdomi- 
nance cannot occur for r sufficiently small. 

However, it appears that if fitness differentials are larger than in (29), and 
underdominance holds at only one locus, the range of r values over which 
marginal underdominance holds can be much larger. For example, if the 
fitnesses are: 

0.33 0.31 0.56 

1.20 0.84 0.92 

there is a stable equilibrium with marginal underdominance at the B locus for 

(1.20 1.0 0.85) (30) 
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r* < r < 0.08, where r* lies between 0.061 and 0.062. When r = 0.062, the 
equilibrium is approximately P A  = 0.0495, P B  = 0.0622, D = 0.0265. The marginal 
fitnesses at the B locus are wBB = 1.016, WBb = 0.908, W b b  = 0.917. These certainly 
represent differences that could be detected. Note that the fitness matrix (30) 
does satisfy the conditions for bifurcation to a stable equilibrium with marginal 
underdominance at the B locus as determined in this paper. 

To answer the question concerning whether the bifurcation described above 
can find all cases of marginal underdominance, cases of marginal underdomi- 
nance derived using the numerical methods described in HASTINGS (1981a) were 
studied in detail. Two other ways in which underdominance can arise as r is 
varied were determined. One way is through bifurcation from a “face” equilib- 
rium, where one locus is polymorphic and the other is not. A fitness matrix 
where this occurs is: 

0.636380 0.786382 0.077030 
0.433378 1.0 ( 1.440334 0.417419 0.042957 0.138740 . (31) ) 

The face equilibrium with PA = 1, PB = 0.8245 (approximately) is stable if r > 
0.328, and unstable otherwise. If 0.290 < r < 0.328 there is a stable polymorphic 
equilibrium at which marginal underdominance holds at the A locus. This 
equilibrium approaches the boundary equilibrium as r approaches 0.328 from 
below. In principle, an analysis analogous to that of the present paper could be 
applied to this case, although the algebra is much more complex. The prelimi- 
nary calculations of the stability of the equilibrium are in BODMER and FELSEN- 

Another interesting way in which marginal underdominance can arise is for 
the character of a particular equilibrium to change from one with marginal 
overdominance to one with marginal underdominance as r is varied. Of neces- 
sity, according to the results of EWENS and THOMSON (1977) there must be a 
value of r at which all the marginal fitnesses are identical for this to happen. A 
fitness matrix for which this occurs is: 

0.625220 0.109520 1.243060 
0.405000 1.0 ( 0.919330 0.002090 0.323730 

STEIN (1967). 

0.480030 . (32) ) 
For a value of r approximately 0.357 all the marginal fitnesses at the B locus are 
the same at a stable equilibrium with P A  approximately 0.85 and PB approxi- 
mately 0.91. For larger values of r there is marginal overdominance at this 
equilibrium and for smaller values of r (but greater than 0.34) there is marginal 
under dominance. 

DISCUSSION 

Several new features and qualitative properties related to the phenomenon of 
marginal underdominance have emerged from the analysis here. The most 
important is that marginal underdominance can appear in cases in which the 
fitness differences among differing genotypes are small, as in the fitness matrix 
(29). This in itself suggests that the phenomenon may have more biological 
importance than was apparent from the previous numerical work. A second 
important biological feature is the possibility of marginal underdominance 
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appearing simultaneously at both loci in a two-locus model. Additionally, the 
form of epistasis required to generate marginal underdominance is not nearly 
as unreasonable as that indicated by the numerical studies in HASTINGS (1981a), 
as evidenced by the fitness matrices (29)-(31). The general conclusions drawn 
from the study here coincide with the viewpoint emerging from the experimen- 
tal work reported in MITTON and KOEHN (1975). They report that several isozyme 
loci in Eundulus heteroclitus exhibit heterozygote deficiency and none exhibit 
heterozygote excess. Perhaps an extension of the work reported here to multi- 
locus models would demonstrate that marginal underdominance is even easier 
to obtain. 

Another feature that is of interest is the range of values of the recombination 
rate, r ,  over which the phenomenon of marginal underdominance occurs. In the 
analysis here, if fitness differentials are small, rc is small, so marginal under- 
dominance holds at small values of the recombination parameter, r. This is 
perhaps surprising in light of KARLIN’S (1978) earlier analysis that marginal 
overdominance must hold for r sufficiently small. The analysis in the present 
paper shows that KARLIN’S analysis can only hold if r / s  is small where s is a 
measure of fitness differences. 

The nature of the equilibria at which marginal underdominance holds is of 
interest. In the examples generated by the analysis of the paper, if A is the 
locus at which underdominance holds, P A  will be small, with WAA much larger 
than W A ~  whereas W A ~  and waa are nearly equal. Such an observation would 
certainly appear curious to an experimenter. In fact, in the examples generated 
here, since w22 would have been chosen large, the equilibrium with PA = 1 
would also be stable. 

The work reported here and elsewhere (HASTINGS 1981a and 1981c) indicates 
that there are many surprises in the equilibrium and dynamic behavior of 
multilocus population genetic models. To the extent that phenotypes are deter- 
mined by many loci with epistasis playing an important role, some of the 
intuition gained from the analysis of models with few and especially one locus 
must be viewed with caution. This caveat applies as well to the results in this 
paper itself (a metacaveat). Marginal properties of systems with more than two 
loci may be much more complex and surprising than those of systems with two 
loci. 
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