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ABSTRACT 

Using the isolation-by-distance model as an example, we have examined 
several assumptions of spatial autocorrelation analysis applied to gene frequency 
surfaces. Gene frequency surfaces generated by a simulation of Wright’s iso- 
lation-by-distance model were shown to exhibit spatial autocorrelation, except 
in the panmictic case. Identical stochastic generating processes result in surfaces 
with characteristics that are functions of the process parameters, such as pa- 
rental vagility and neighborhood size. Differences in these parameters are de- 
tectable as differences in spatial autocorrelations after only a few generations 
of the simulations. Separate realizations of processes with identical parameters 
yield similar spatial correlograms. We have examined the inferences about 
population structure that could have been made from these observations if 
they had been real, rather than simulated, populations. From such inferences, 
we could have drawn conclusions about the presence of selection, migration 
and drift in given natural systems. 

VOLUTIONISTS believe that they have a satisfactory understanding of E the nature of the processes leading to population differentiation at the 
infraspecific level. They consider mutation, selection, migration and drift, as 
well as factors related to the organization of the genetic material, sufficient to 
explain the phenomena of population differentiation and speciation. However, 
the relative importance of these factors in these microevolutionary processes 
continues to be the subject of controversy. 

Patterns of spatial variation of morphometric and other variables, and es- 
pecially of electrophoretic variants, must reflect the workings of these proc- 
esses, and biologists have looked to such patterns to evaluate the relative roles 
played by the several microevolutionary factors. However, it is difficult to 
separate the effects of the several putative factors in spatial variation patterns. 
Some recent attempts in this direction (CAUGANT, JONES and SELANDER 1982; 
JONES, SELANDER and SCHNELL 1980; SOKAL and RISKA 1981; SOKAL 1983; 
SOKAL, BIRD and RISKA 1980; SOKAL 1979a; SOKAL and FRIEDLAENDER 1982; 
SOKAL and MENOZZI 1982; SOKAL and ODEN 1978a,b; and SOKAL and WAR- 
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TENBERG 198 1) have been based on spatial autocorrelation analysis and depend 
on several assumptions. These are (1) spatial variation patterns (spatial response 
surfaces) can be summarized and characterized by a “signature” obtained 
through spatial autocorrelation analysis, spectral decomposition and related 
techniques. (2) Similar deterministic forces result in similar spatial response 
surfaces. (3) Stochastic processes with the same parameters yield independent 
and differing spatial surfaces, but these surfaces will have similar signatures 
suggesting similar generating processes. (4) Changes in these parameters will 
be reflected by changes in the signatures. ( 5 )  All variables studied, especially 
electrophoretic variants, are unlikely to track the same environmental factor 
across geographic space, and the ones that do are unlikely to respond in the 
same way to the same environmental factor. Linkage may result in similar 
patterns for a few variables. However, commonality of spatial patterns among 
all biological variables would, therefore, make a selectional interpretation of 
the observed spatial variation implausible and would suggest a diffusion process 
(mass migration) instead. 

To test these assumptions, we employ a simple population biological proc- 
ess-that of random differentiation with local dispersal but in the absence of 
selection. A well-known example of such a process in the evolutionary litera- 
ture is the isolation-by-distance model (WRIGHT 1969). We shall, in this paper, 
distinguish between dispersal and migration, using these terms in the ecological 
sense (RICKLEFFS 1973). The former relates to movement of organisms away 
from their place of birth, the latter to mass migrations of populations, typically 
in one direction. In population genetics, dispersal is commonly termed migra- 
tion, whereas the second process, relevant to some models of population struc- 
ture, is considered less frequently. In the isolation-by-distance model, individ- 
uals mate at random within a defined neighborhood but are constrained from 
mating with other, more distant members of their species by limitations on 
their dispersal. 

The isolation-by-distance model and the related stepping stone model have 
been studied by various authors (KIMURA and WEISS 1964; MORTON, MIKI and 
YEE 1968; M A L ~ C O T  1969; ROHLF and SCHNELL 1971; MARUYAMA 1977). 
These models have been related to a number of cases in human and other 
populations (NEI and IMAIZUMI 1966; CHAKRABORTY 1976; CHAKRABORTY, 
CHAKRAVARTI and MALHOTRA 1977; WRIGHT 1978). These authors used a 
variety of statistical approaches to study the behavior of these models, among 
them genetic correlations, gene identities and the F-statistics. The relationships 
of these statistics to spatial autocorrelation coefficients have not yet been es- 
tablished. They will not be investigated here since the major purpose of this 
paper is to test the assumptions of our approach using spatial autocorrelation 
analysis (SOKAL and ODEN 1978a,b; SOKAL 1979a; SOKAL and WARTENBERC 
198 1). In this approach, a spatial correlogram (explained in the next section) 
serves as the signature of a spatial surface. 

In this paper we address the first, third and fourth of the assumptions. 
Specifically, we shall answer the following questions: (1) Does isolation-by- 
distance result in spatial autocorrelation? (2) Do identical generating processes 
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with the same parameters yield similar spatial correlograms? (3) Do changes in 
the parameters of the generating processes (dispersal or vagility in this instance) 
result in changes of the spatial correlograms? (4) If the results obtained here 
had been based on empirical data, could they have led to the rejection of one 
or more plausible mechanisms, such as selection or migration? As a by-product 
of these analyses, other interesting observations about the isolation-by-distance 
process emerge, which we also report. 

MATERIALS AND METHODS 

To generate gene frequency surfaces under an isolation-by-distance model, we employed the 
Monte Carlo simulation program developed by ROHLF and SCHNELL (1971), who examined the 
characteristics of spatial surfaces of gene frequencies representing isolation-by-distance models with 
varying parameters. This program simulates a population of 10,000 individuals arranged on a 100 
X 100 lattice, one individual on each grid point. The individuals are considered monoecious 
diploids capable of self-fertilization. Initially, this grid is settled at random by individuals repre- 
senting the genotypes for a one-locus two-allele system sampled from a population of gene fre- 
quency 0.5 at Hardy-Weinberg equilibrium. Once per generation, each individual is replaced by 
one offspring from parents chosen at random from within a defined neighborhood centered on 
that individual. We carried out five sets of experiments. In sets 1 and 2, one of the parents was 
taken at random from a neighborhood (WRIGHT 1969, p. 295) of size N = 9 individuals (which is 
a 3 X 3 sublattice centering on the individual to be replaced); the other parent was made sessile 
by designating the individual being replaced as the second parent of the offspring to be placed at 
the same location. The mean neighborhood size from which parents come at random for sets 1 
and 2 is, therefore, 5.0. In set 3, both parents were vagile and were taken at random from a 
neighborhood of size 11' = 9. In set 4, both parents were again vagile, but with a greater neigh- 
borhood size, N = 25 (a 5 X 5 sublattice). Finally, in set 5 ,  both parents were vagile with a 
neighborhood size of N = 10,000, effectively resulting in panmixia over the entire lattice. The 
program computes the results of each "mating" as stochastic realizations of the Mendelian expec- 
tations for the given cross. 

For sets 1 to 4, we carried out five independent runs, each lasting 200 generations. For set 5 ,  
the panmictic case, we computed only a single run of 200 generations. As expected, we found no 
spatial structure in this set, and additional replications seemed unnecessary. In set 2, we initialized 
the five runs with independent and random settlement of genotypes for each run, but we kept 
the same pattern of choice of location of the parents of the 200 subsequent generations in all 
runs. We did this to determine whether a common structure of the spatial mating pattern would 
make the results of the separate runs more homogeneous than those of set 1 ,  in which the separate 
runs represent independent random locations of the parents. The design of the experiments can 
be summarized in the following table: 

~~ 

One parent sessile No. of runs Set N 

1 9 (5.0) Yes 5 
2 9 (5.0) Yes 5" 
3 9 N o  5 
4 25 N o  5 
5 10,000 No 1 

" Run 1 of set 2 is the same as run 1 of set 1. 

We summarized the results of each run in every fifth generation by dividing the 100 X 100 
lattice into 400 sublattices of size 5 x 5 and computing the gene frequency for each of these 
quadrats containing 25 individuals. Additionally, we computed, for every fifth generation, variances 
of gene frequencies among quadrats and Wright's F-statistic of individuals with respect to the 
entire lattice (WRIGHT 1969, p. 294). This quantity, computed as F = (4DR-H2)/(4DR-H2 + 2H), 
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where D, H and R are the observed proportions of AA, Au and nu,  respectively, corresponds to 
FIT.  

The independence of the gene frequency surfaces of the 20 separate runs is attested to by 
correlations among the 20 surfaces at  generation 200. We computed these correlations by consid- 
ering the gene frequencies of each surface as a vector of 400 elements and calculating its product- 
moment correlation with other similar vectors representing the other surfaces. None of the cor- 
relations is high (the maximum is 0.262), and average correlations within sets and between sets 
are very low (see Table 1). No pattern of relationships differentiating correlations within and 
between sets emerges. Also, we can find no evidence from this table (or from an examination of 
the replicated correlograms representing runs in each set, discussed later) that the common spatial 
mating pattern in the runs of set 2 makes the surfaces of that set more homogeneous than those 
of other sets. Note that the average correlation of the surfaces within set 2 is not consistently 
higher than that within the other sets. For purposes of what follows, we shall, therefore, consider 
set 2 as a replication of set 1. 

For each run, we graphed gene frequency surfaces represented by 20 X 20 grids every fifth 
generation starting at generation 0 and terminating at  generation 200 and examined them visually 
for structure. To summarize the very large number of maps (820 in all) we employed the method 
of spatial autocorrelation (CLIFF and ORD 1981; SOKAL and ODEN 1978a,b). The set of localities 
required for the computation of spatial autocorrelation is the 400 quadrats of the 20 X 20 grid. 
The  details of the computation of spatial autocorrelation are furnished by CLIFF and ORD (1981) 
and, in simplified form, by SOKAL and ODEN (1978a). 

We computed both Moran’s I ,  a product-moment coefficient, and Geary’s c, a distance-type 
coefficient. Moran’s coefficient is computed as 

I = I7 u’,,&:JLr z,2, 
I ?=I 

where n is the number of localities in the study; E, indicates summation over all I from 1 to ) I  

and over all ,j from 1 to U ,  i f j ;  Z+ is the weight given to an edge between localities i and j (z~~~, 
need not equal it5z); z ,  = Y - F, where Y, is the value of variable Y for locality i, and Tis  the mean 
of Y for all localities; and 1.2’ = E,zo,, the sum of the matrix of weights (except for the diagonal 
entries, if any). For large sample sizes this coefficient ranges from -1 to + I .  The  formula for 
Geary’s coefficient is 

c = ( ) I  - I )  2 Z L ~ , ~ ( K  - Y,)‘/21\’ c 2,‘. 

All terms in this formula have already been explained. Geary’s r will range from zero, for perfect 
positive autocorrelation, to an unbounded positive value for negative autocorrelation, the expected 
value in the absence of autocorrelation being one. Since the results obtained with these two 
coefficients are quite similar, we report here only on the results with Moran’s I .  

We calculated Euclidean distances between the centers of these quadrats and grouped the 
distances between all pairs of quadrats in a frequency distribution with eight classes with unequal 
class intervals. The  first five classes had an interval of 1.0 and are represented by the class marks: 
1, 2 ,  3 ,  4, 5; the succeeding three classes ranged from 5.5 to 10.5, from 10.5 to 20.5 and froni 
20.5 to 30.5 and are represented by class marks 8.0, 15.5 and 25.5, all in quadrat units. Then 
we calculated the autocorrelation coefficients for each of the distance classes. 

The graph of spatial autocorrelation coefficients against distance classes is known as a spatial 
correlogram. Most of the spatial autocorrelation coefficients (138 of a possible 152) are statistically 
significant when tested against the null hypothesis that sample I does not differ from its expected 
value which is - ] / ( I ?  - I ) ,  using the test procedure given by CLIFF and ORD (1981). In this 
formula, ? I  is the number of points for which the autocorrelation is being computed. The statistical 
significance of niost coefficients, even when these are as low as 0.01, is due to the unusually large 
number of grid points 01 = 400) in this study. In the analyses that follow, we emphasize results 
for the first five distance classes, since this is where the effects of the isolation-by-distance process 
are most noticeable. We carried out the computations for spatial autocorrelation by the SAAP 
program developed by D. F.. W. 

2J I= I 
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TABLE 1 

Avertige painozse correlatmns betzcleen sufaces a t  generatzoiz 200, szthin and between sets 

Within set Between it and other sets Set no. 

1 -0.008 -0.026 
2 0.034 -0.023 
3 0.002 0.007 
4 0.056 -0.004 
5 -0.008 0.006 

CHANGE OVER SPACE 

The isolation-by-distance model results in statistically significant spatial au- 
tocorrelations. Figure 1 shows the average correlogram for each set over the 
first five distance classes at generation 200. The expected values for the case 
of no autocorrelation are -I/(n - l), which, in the present instance, equals 
-0.0025. This is so close to zero that the difference would be imperceptible 
and, hence, impractical to indicate in this figure. Most spatial autocorrelation 
coefficients up to distance class 4 in sets 1 through 4 are positive and substan- 
tial to moderate in magnitude, and almost all are highly significant. Average 
autocorrelation for distance class 5 is small (0.021). These results indicate areas 
of homogeneity representing the hills or valleys of the gene frequency surfaces. 
These are caused by inbreeding due to the limited vagility of each individual; 
matings in any one area tend to be among relatives, increasing the homoge- 
neity of local areas. By contrast, the correlogram resulting from set 5, the 
panmictic example, has very low autocorrelation coefficients, close to the ex- 
pected values. Since, for set 5 ,  the correlogram at any one generation is fully 
independent of that at a previous generation, we chose five replicates at ran- 
dom from the single run of set 5 for computing a mean correlogram for this 
design. 

Because spatial autocorrelations for different distance classes in one corre- 
logram are not independent of each other, the significance of an entire cor- 
relogram cannot be computed directly from the significance levels of the in- 
dividual coefficients. That is, we cannot infer, from the results of the separate 
significance tests for each autocorrelation coefficient, the correctness of the 
null hypothesis that sample values of I for all distance classes do not differ 
from the expected value -l/(n - 1). Rather, we  must employ a significance 
test for correlograms against the null hypothesis of no spatial autocorrelation 
such as those developed by ODEN (1983) or KOOIJMAN (1976). When Oden’s 
Q-test was used, every correlogram, except that for set 5 ,  was significant at P 
< 0.0005. Thus, significant spatial autocorrelation has been generated by the 
isolation-by-distance process in all sets except the panmictic one, and we may 
consider the average correlograms of Figure 1 to deviate significantly from 
the null hypothesis of no pattern in the gene frequency surfaces. 

Figure 1 indicates differences among some of the average correlograms of 
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FIGURE 1 .-Average spatial correlograms summarizing results at generation 200 for five differ- 

ent sets of parameters. Each set is based on five replicates. Sets 1 and 2,  males taken at  random 
from a neighborhood of size S = 9, females sessile. Set 3, both sexes vagile, taken at  random 
from a neighborhood of size S = 9. Set 4, both sexes vagile, taken at random from a neighborhood 
of size iV = 25. Set 5 ,  both sexes vagile, taken at random from the entire population (neighborhood 
of size ,\’ = 10,000; panmixia). Set 5 was not replicated, and the average presented here is of five 
randomly chosen generations from the single run of this set. Ordinate: spatial autocorrelation 
coefficient (Moran’s I). Abscissa: the first five distance classes representing class intervals of one 
quadrat unit with an upper bound of 5.5 such units for class 5. 

the five sets. Before we examine these differences in detail, we shall first 
inspect the replicability of the results for separate runs with identical parame- 
ters. Figure 2 illustrates the results at generation 200 for each run in each set. 
In this figure we feature correlograms for all eight distance classes to permit 
readers to note the generally low autocorrelation coefficients starting at the 
fifth distance class (5  quadrat units). The correlograms depart appreciably from 
expectation for some runs at the eighth distance class (25 .5  quadrat units). In 
the four sets other than the panmictic set 5 ,  these departures increase with 
neighborhood size, being greatest in set 4. We attribute this phenomenon to 
the ”edge effect” already noted by ROHLF and SCHNELL (1971). All of the 
largest distances in the 20 X 20 surfaces are between quadrats along the 
margin of the surface. These areas in the lattice are more limited in choice of 
parents for the next generation than are more central locations; hence, the 
neighborhoods of these areas effectively are smaller than their nominal values. 
This effective reduction in neighborhood size produces greater effects in set 
4 than in set 1, which already has small homogeneous patches, even in the 
central portion of its area. The departures from expectation are caused by 
chance combinations of like or unlike patches forming along the periphery of 
the 20 X 20 surface. These combinations lack permanence (they usually last 
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FIGURE 2.-Spatial correlograms representing replicate surfaces at generation 200 for five dif- 
ferent sets of parameters. For definition of sets, see legend to Figure 1 and text. Set 5 was not 
replicated, and the average presented here is of five randomly chosen generations from the single 
run of this set. Ordinate: spatial autocorrelation coefficient (Moran's 4. Abscissa: distance in 
quadrat units. Note that the intervals of the distance classes are unequal, as described in the text. 
All eight distance classes are shown here to furnish a summarization of the entire surface. 

for 20 to 30 generations), although they are statistically significant at the time 
of their appearance. We could have avoided edge effects by connecting the 
edges of the lattice in such a way as to make it into an unbounded surface. 
However, we did not do so because, given the size of the lattice, edge effects 
are relatively unimportant, and, also, because we wanted our results to resem- 
ble those that might be obtained in real populations. 

The scatter among the correlograms of the five replicates in each set is least 
for set 5 and greatest for set 4 (see Figure 2). Although individual correlo- 
grams from different sets overlap, the general trends are sufficiently differ- 
entiated so as to make the mean correlograms in Figure 1 quite distinct (except 
those of sets 1 and 2, as already mentioned). 

To test whether the replicated runs of each set were more similar to each 
other than the results for the different sets, we calculated the area between 
each pair of correlograms over the first five distance classes as an index, A,  of 
agreement. We then compared pairwise A values within the sets with 230 
pairwise values representing runs in different sets. Such a test can be carried 
out by the Mantel test (MANTEL 1967; SOKAL 1979b) for which one calculates 
the observed and expected values of a quantity 2, which is the sum of the 
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products of the elements of the matrix of pairwise areas with the elements of 
another design matrix describing the intended comparison. In the Mantel test, 
one computes the permutational variance of Z and tests the departure from 
expectation as a normal deviate, relying upon the asymptotic normality of the 
distribution of the test statistic. However, in this example, because of the 
relatively small sample size, we chose not to assume asymptotic normality of 
the test statistic but, rather, evaluated the probability of the observed depar- 
ture based on a Monte Carlo simulation of 250 random permutations of the 
matrix of pairwise area values. 

As a preliminary test, we examined whether set 2 with fixed location of 
mating parents differed from set 1 where such locations were random. The 
observed differences within each set are not significantly less than those be- 
tween the two sets (P = 0.100). A Mantel test of whether the scatter among 
runs of set 2 is less than among set 1 also proved not significant (P = 0.744). 
For this reason, we merged sets 1 and 2 in all subsequent Mantel test com- 
parisons to form one set of nine runs, designated set 1 + 2. 

The design of the experim$nt suggested five tests. For an experimentwise 
error rate of 0.05, the Dunn-Sidik method (SOKAL and ROHLF 1981) provides 
a significance level of 0.0 102 for each individual test. The observed differences 
within sets 1 + 2, 3 ,  4 and 5 are considerably and highly significantly less than 
those among sets. The Mantel test yields P < 0.00005. There are appreciable 
differences between the significant correlograms of sets 1 + 2, 3 and 4 from 
those of set 5, in which there is no spatial structure (P < 0.00005). When we 
omitted set 5, the remaining three isolation-by-distance sets differed apprecia- 
bly, but not quite significantly, among each other (P < 0.012). To test the 
effect of increasing neighborhood size from 5.0 to 9 (changing one parent 
from being sessile to being vagile in a neighborhood of size 9), we compared 
set 1 + 2 with set 3 and obtained an appreciable difference, which, however, 
is not significant by the Dunn-Sidak method (P < 0.028). A further test of 
increasing neighborhood size from 9 to 25 (set 3 vs. set 4) yielded no significant 
difference (P = 0.924). The last result is surprising in view of the apparent 
difference of the mean correlograms of these two sets, but is due to consid- 
erable variation among runs within each set. 

Different parameters of the isolation-by-distance model result in distinctly 
different gene frequency surfaces, as already pointed out by ROHLF and 
SCHNELL (1971). These authors found that, whereas the panmictic model (our 
set 5) produced no local differentiation, no inbreeding and no increased vari- 
ance of gene frequencies among quadrats over that expected within quadrats, 
for all other combinations of parameters, each of these variables increased as 
neighborhood size decreased, and within each neighborhood size as one of the 
parents became sessile. Thus, for a neighborhood size of nine with one sessile 
parent, the gene frequency surhces became quite coarse as early as generation 
30, with further increases in the unevenness of the surface texture at subse- 
quent generations. ROHLF and SCHNELL (1 97 1) carried out the simulations for 
120 generations. Our simulations for 200 generations further accentuated the 
differences they observed. 

At generation 200, there is a nonlinear relationship between fixation indexes 
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F and departure from the expectation of - l / (n  - 1) for the spatial correlo- 
grams shown in Figure 1 (or between the latter and variances in gene fre- 
quency among quadrats; both relations shown in Table 2). As neighborhood 
size increases, the fixation index for the entire lattice (and the gene frequency 
variance among quadrats) decreases, yet the autocorrelation is greatest at in- 
termediate neighborhood values, as shown by set 4. Thus, the autocorrelation 
function increases with neighborhood size up to a threshold, beyond which it 
decreases again. In other words, similarity between nearby quadrats is low 
when the neighborhood is either very small or very large. This phenomenon 
must be related to the size of homogeneous areas or patches on the gene 
frequency surface. 

The X-intercept for a surface is that distance at which a spatial correlogram 
turns negative or zero. This quantity was termed patch size by SOKAL (1979a) 
but is given a more neutral appellation here to avoid confusion with the con- 
notation of patch size in ecological theory. In square areas, the X-intercept 
closely approximates the length of one side (SOKAL, 1979a). For sets 1 and 2, 
the X-intercept is at a distance near 4 quadrat units, whereas for sets 3 and 
4, with larger effective neighborhoods, it is greater than 5 quadrat units (Table 
2). When tested by a Kruskal-Wallis test, these differences in X-intercepts 
among the sets can be shown to be significant (adjusted H = 8.300, P = 
0.0158). Set 1 + 2 has significantly lower X-intercepts than sets 3 and 4, but 
the later two cannot be shown to differ significantly. 

Why should the autocorrelation coefficients be higher in the surfaces with 
larger neighborhood sizes and lower overall fixation and variance? For any 
distance class, proportionately more of the point pairs within this distance class 
occur in the same area when homogeneous areas are larger. A higher propor- 
tion of within-area. distances for a given distance class results in higher spatial 
autocorrelation for that class. In other words, the surfaces of sets 1 and 2 have 
formed, on the average, 25 homogeneous areas, whereas those of sets 3 and 
4 have formed, on the average, fewer than 16. The fewer, hence larger, areas 
result in higher spatial autocorrelations. Yet, as areas grow still larger, loss of 
distinctness (contrast) among areas overcomes the effect of area size, and the 
autocorrelation decreases again, as we have seen. These relations will depend 
on the size of the homogeneous areas that result from the population genetic 
process, the size of the sampling area (quadrat size) and the overall size of the 
area studied. The X-intercept is always relative to the total area of study and 
cannot easily be compared across studies involving unequal geographic dis- 
tances or different connection weights. 

CHANGE OVER TIME 

Without introducing recurrent mutation, this process can achieve temporal 
stationarity only at fixation or loss of an allele for the entire population. How- 
ever, it would take a very long time (on the average in the thousands of 
generations) to reach either of these two absorbing states. ROHLF and SCHNELL 
(1971) found that the fixation indexes of the surfaces they studied were still 
increasing after 120 generations of simulation. Our graphs of the fixation 
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TABLE 2 

Summnr! o j  diffrrriws oinung spts at  geizerutioii 200 

Set 

1 
0 Sessile 

2 
0 Sessile 

3 
P Vagile 

4 
P Vagile 

5 
P Vagile 

h’ 
F 
Variance 
X-intercept 
MD 
5 r;, 
rt-5 

5.0 
0.302 
0.06320 
4.0 
0.166 
0.490 
0.21 1 
0.916 

5.0 
0.294 
0.05948 
4.2 
0.152 
0.466 
0.180 
0.91 1 

9 
0.257 
0.04868 
5.4 
0.234 
0.533 
0.294 
0.858 

25 
0.106 
0.02592 
5.8 
0.267 
0.541 
0.359 
0.721 

1 o4 
-0.012 
0.00480 
Undefined 
0.01 1 
-0.010 
-0.016 
0.156 

a\r = neighborhood, population size of area from which parents of central individuals are drawn 
at random; F = average observed fixation index F,T at generation 200; Variance = average gene 
frequency variance among quadrats at  generation 200; X-intercept = average of X-intercepts at 
generation 200; MD = average Manhattan distance Cver-five distance classes of spatial correlogram 
at generation 200 against expectation of -0.0025; 11, 1 2  = average spatial autocorrelation coeffi- 
cient I for distance classes 1 and 2, respectively, at generation 200; = temporal autocorrelation, 
maximum of correlations between successive pairs of surfaces. These surfaces were taken at five- 
generation intervals from generation 0 to 200, and the correlations between them were averaged 
over the runs of each set. 

indexes (Figure 3 )  and of the variances among quadrats (Figure 4) indicate 
that, even after 200 generations, these curves have not yet reached an asymp- 
tote. Nevertheless, the rapid rise in these parameters for the first 50 genera- 
tions slowed considerably during later generations in the four sets with limited 
neighborhood sizes, because, in these later generations, the rate of decay of 
heterozygosity is so small. Empirically, we find autocorrelation structure to be 
quite stable beginning with generation 150 in all runs of these sets. Variances 
for sets 1 and 2 fluctuate around 0.06, whereas those for sets 3 and 4 fluctuate 
around 0.04 and 0.02, respectively. 

By examining correlograms for each run at five-generation intervals, we 
were able to study their development over time. Figure 5 shows the develop- 
ment of the correlograms over time for all runs of set 4. By generation 5, 
correlograms were already significant, and the average X-intercept is 2.2 quad- 
rat units. Homogeneous areas had already begun to form. By generation 10, 
the average X-intercept had increased to 2.4, rising further to 5.2, 5.2 and 
5.8 for generations 50, 100 and 200, respectively. Thus, the intercept by and 
after generation 50 appears to be more than 5 quadrat units, leading us to 
infer homogeneous areas equivalent to a square area of more than five quadrat 
units (or 25 lattice units) along one side. These homogeneous areas are more 
than 25 times that of the neighborhood. 

In set 3, spatial autocorrelation also develops virtually instantaneously. The 
average X-intercept is below that of set 4, being 2.0, 2.0, 4.2, 4.2 and 5.4 for 
5, 10, 50, 100 and 200 generations, respectively. However, by generation 200, 
the inferred average size of the homogeneous areas is nearly that of set 4, 
although the neighborhood of set 3 is only 9, making for a homogeneous area 
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FIGURE 3.-Observed changes in F, the fixation index for the entire lattice, as a function of 
generation number. Mean values for the five runs of each set are furnished for every fifth gen- 
eration. Set 5 is based on only a single run. 
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FIGURE 5.-Changes in gene frequency surfaces over time as shown by spatial correlograms. 
The  five replicates of set 4 (both sexes vagile, taken at random from a neighborhood of size IY = 
25) are shown at  six generations ranging from 0 to 200. Ordinate: spatial autocorrelation coeffi- 
cient (Moran’s I ) .  Abscissa: distances in quadrat units. Note that the intervals of the distance classes 
are unequal, as described in the text. All eight distance classes are shown here to furnish a 
summarization of the entire surface. 

to neighborhood ratio of 8 1. The eventual similarity of the X-intercepts by 
generation 200 for sets 3 and 4 is corroborated by their similar average cor- 
relograms for which we could not establish statistically significant differences. 

Figure 6 features the average correlograms for the five sets at different 
generation times. The sets with different parameters differ at all generation 
times after the inception of the isolation-by-distance process. Thus, given ad- 
equate replication, one can distinguish different parameter sets at a very early 
stage (by generation 5 )  in the development of the isolation-by-distance pattern. 

I t  is of interest to study the temporal autocorrelations of the surfaces. We 
can estimate these as matrix correlations (SNEATH and SOKAL 1973) between 
pairs of successive gene frequency surfaces represented by 400 quadrats at 
five-generation intervals. These correlations are shown in diagrammatic form, 
averaged over the five runs,  for sets 1 and 4 in Figure 7 .  As we expected in 
a phenomenon that shows both spatial and temporal autocorrelation, there is 
a gradual decrease of temporal autocorrelation between the surfaces as the 
time lag between them increases. There is also a tendency, at any constant lag, 
for temporal autocorrelation to rise as the number of generations increases. 
As time goes on, homogeneous areas increase in extent but also in amplitude 
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(maximal departure from the average gene frequency). This increase in relief 
of the gene frequency surfaces results in areas of near or complete fixation or 
loss that remain relatively stable for substantial periods of time. Thus, temporal 
autocorrelations are higher in set 1 than in set 4, even though the neighbor- 
hood and homogeneous areas are greater in the latter, because set 1 has a 
higher rate of fixation and, hence, greater surface relief. 

DISCUSSION 

We now return to the four questions posed in the introduction and note the 
information concerning them provided by the results reported in the preceding 
section. (1 ) Does isolation-by-distance result in spatial autocorrelation? The 
answer is clearly yes as shown in Figures 1, 2, 5 and 6 and as substantiated by 
significance tests of individual spatial autocorrelation coefficients and of entire 
correlograms. 

The similarity of spatial correlograms resulting from identical generating 
processes (question 2) and the changes engendered in spatial correlograms by 
changes in the parameters of the generating processes (question 3) are illus- 
trated in Figures 2 and 1,  respectively, and generally substantiated by the 
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Mantel tests. Would differences among correlograms be large enough to reveal 
important variation in neighborhood size when different studies are compared? 
The replication available in this study was sufficient to distinguish differences 
in dispersal resulting in an approximate doubling of neighborhood size in one 
case (compare the neighborhoods of sets 1 + 2, with those of set 3, but note 
that changes in correlograms brought about by an even greater increase in 
neighborhood size between sets 3 and 4 were less and could not be shown to 
be significant). In nature, we might expect greater differences in neighborhood 
sizes among populations being compared by such a method and, thus, could 
expect significantly differing correlograms. 

The relations among the various parameters describing the surfaces are 
summarized in Table 2. As the neighborhood size becomes larger, the mean 
observed fixation index F decreases from approximately 0.3 to near 0, and 
the variance of gene frequencies among quadrats, each based on 25 individuals 
or 50 genes, decreases from 0.0603 to 0.0048-quite close to the expected 
value of 0.005 under random mating. Thus, the smaller neighborhoods result 
in a higher degree of inbreeding which, in turn, causes near homozygosity and 
gene frequencies at, or near, loss or  fixation in some of the quadrats. In the 
larger neighborhood sizes, the lower degree of inbreeding dampens the peaks 
and troughs of the gene frequency surface. However, because the decreased 
inbreeding is brought about by an increase in dispersal of the organisms, the 
peaks and troughs have wider diameters in surfaces with greater neighbor- 
hoods. Because this results in more observations becoming alike at the short 
distances, this tends to increase the autocorrelation. This trend is reflected in 
the magnitude of the departure of spatial correlograms from the expectation 
under the null hypothesis that each value of I = -l/(n - 1). This departure 
from expectation is quantified as average absolute distances (Manhattan dis- 
tances; SNEATH and SOKAL 1973) over the first five distance classes (Table 2). 
Thus, whereas for sets 1 and 2 these distances are 0.166 and 0.152, they are 
0.234 and 0.267 for sets 3 and 4. However, in set 5 the entire 100 X 100 
lattice has become the neighborhood and, consequently, there is no spatial 
autocorrelation whatsoever, as indicated by the minute departure from expec- 
tation, the average Manhattan distance of the correlogram over the first five 
autocorrelation classes being 0.01 1. 

Another way of illustrating that an increase in neighborhood size results in 
an increase in the diameter of the peaks and troughs is the increase in the X- 
intercept shown for sets 1 through 4 in Table 2. The X-intercept cannot be 
estimated for the panmictic set, which constitutes a single homogeneous area, 
and would require embedding in a larger lattice to define it. The actual values 
of autocorrelation coefficients at distance class 1 and 2 are higher in the areas 
with larger neighborhoods and larger homogeneous areas, because proportion- 
ately more of the connections at distances less than the diameter of these areas 
are between similar gene frequency values. At still greater neighborhood sizes, 
the diameters of the homogeneous areas would increase, but their amplitude 
would decrease, resulting once more in a lower autocorrelation coefficient. 

Note that the maximal temporal autocorrelation (averaged within sets) be- 
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tween surfaces for a lag of five generations is highest in the surfaces with the 
smallest neighborhoods (it is 0.916 in set 1 and set 2, and decreases to 0.858 
for set 3 and to 0.721 for set 4). As expected, the panmictic set has essentially 
no temporal autocorrelation between surfaces. Its maximal value for a lag of 
five generations is only 0.156. Higher temporal autocorrelation for smaller 
neighborhoods can be explained because small neighborhoods result in very 
high peaks or deep troughs, i .p . ,  portions of the surface are near fixation or 
loss. Such regions of high relief tend to remain more stable than the wider 
peaks and troughs of larger neighborhoods, which show less relief. Because 
the standard errors of binomial frequencies near fixation or loss are very small, 
the probabilities of change in areas of high relief are diminished. Once a really 
high but narrow peak (or deep but narrow trough) has become established, a 
considerable amount of time is required for the joint action of chance sampling 
of the genome and of vagility to alter it. Note that this is not a property of 
smaller neighborhoods per se but rather a property of portions of the surface 
that are at, or near, fixation or loss. 

Thus, when describing surfaces of gene frequencies or of morphometric 
variables, one must consider many parameters. For gene frequencies, it is 
insufficient to examine only their variance or the fixation index. Because sur- 
faces can take on so many different shapes and forms and these can indeed 
reveal different population biological processes, one must characterize the sur- 
faces in as many different ways as possible. Spatial correlograms are only 
limited characterizations of surface structure. As we have seen, correlations 
between surfaces for different gene frequencies and time periods are also 
necessary. In other cases (e .g . ,  SOKAL and MENOZZI 1982), correlograms need 
to be tailored to test directional trends or other special hypotheses. 

Can the findings of this study be extended to serve as a basis for inference 
from empirically obtained data (question 4)’ If, in a study of allozyme fre- 
quencies, we had obtained results such as those that were recorded in the 
replicates of any one set, spatial autocorrelation analysis would have yielded 
no similarity (correlation) between the surfaces (Table 1) and considerable 
similarity between the correlograms (Figure 2). Given such data for different 
loci in the same population, and following the line of reasoning advanced by 
SOKAL and ODEN (1 978b), SOKAL (1 979a) and SOKAL and WARTENBERG (1 98 l ) ,  
we would have concluded that this combination of dissimilar surfaces and 
similar correlograms suggested a stochastic process with the same parameters. 
Thus, the present study is consistent with this particular model. In such a data 
set, selection would be an improbable interpretation for the observations. Dis- 
similar surfaces imply dissimilar selective agents and, except for the quite im- 
probable case of different selective agents having the same autocorrelation 
pattern, one would expect these dissimilar surfaces to have dissimilar correlo- 
grams, which they do not have. Furthermore, more than one locus might well 
be tracking a single selective agent, which should lead to similarity in small 
groups of surfaces and correlograms. T h i s  is not the case. Large scale migra- 
tion can also be eliminated, because such a process involving populations with 
different initial gene frequencies would result in similar surfaces for most loci, 
which was not the case in this study. 
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But what conclusions could be obtained if the investigator, on examining 
some acutal data, encountered results such as those obtained from replicates 
of different sets in this study? In the simplest imaginable case, the investigator 
might study two allozyme frequencies in the same population with correlo- 
grams that differed as do replicates from sets 1 and 4. The surfaces would still 
be uncorrelated, but now the correlograms would differ appreciably. Isolation- 
by-distance could not be responsible for both correlograms since it would affect 
both loci equally. A more plausible explanation would be that there are two 
spatially autocorrelated environmental variables, with different patch sizes, 
being tracked by two different loci. Alternative explanations are possible here, 
but such a combination of observations would at least eliminate the hypothesis 
of chance fluctuations, which would be an important conclusion. 

In relation to this argument, there remains the problem of the lack of a 
significance test for the difference between two correlograms. Although a test 
for the significance of individual correlograms has been developed (ODEN 
1983), there is no corresponding test for the difference between a pair of 
correlograms (or among the members of a sheaf of correlograms). The test 
furnished earlier in the manuscript is based on replicated results for each of 
the sets. When we carry out such a test for the five replicates of set 1 us. the 
five replicates of set 4, there is a significant difference between them by the 
Mantel test (P = 0.012). However, this test cannot be used for comparing two 
correlograms-one sampled from each of the sets. We are currently working 
on a significance test for the difference between two correlograms. If this can 
be developed with sufficient power, then one might be able to pick up fairly 
subtle differences between correlograms. However, even if such a test existed, 
it probably would not be successful here since variability among replicates, 
especially of set 4, is high. This is possibly due to edge effects in set 4 being 
more prominent in this simulation with larger neighborhood size. If we had 
made the lattice unbounded, or if in a field situation the patch size had been 
imbedded in a much larger population, such edge effects might not have 
occurred. This would, therefore, have given us higher replicability, which 
would have made it much simpler to distinguish the two types of correlograms. 
In other cases, moreover, it is reasonable to expect that strong selection pres- 
sures would lead to radically different correlograms, as, indeed, data analytic 
experience in our laboratory with various data sets has shown. Such intrapop- 
ulation heterogeneity is, of course, not limited to correlograms. A similar 
heterogeneity among samples of gene frequencies of two different populations 
would make it difficult to substantiate differences between two single samples, 
one from each population. 

It is clear from the preceding discussion that this method for analyzing gene 
frequency surfaces is not a magic key for unlocking the secrets of population 
structure. It does, however, permit the investigator to ascertain the presence 
of necessary, but not sufficient, conditions for the operation of certain evolu- 
tionary factors. Thus, one can eliminate certain forces as impossible or at least 
improbable. Although this is not proof that the remaining forces are, indeed, 
responsible for the structure as observed, it does represent progress in our 
understanding of population structure. 
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