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ABSTRACT 

Genotypic correlations and regressions can be estimated from multiallelic 
data sets either by weighting the allelic effects additively or by specifically 
weighting the genotypic interactions. Both methods can be extended to mul- 
tiple loci, but they do not fully take into account the joint segregation patterns 
at the loci. These genotypic statistics have a great importance in sociobiological 
contexts, as they can be used for genetic descriptions of social structures. In 
this paper I examine the two estimation methods and show how the genotypic 
correlation and regression coefficients from genotypic interactions are con- 
nected to other statistics of standard population genetics; special emphasis is 
given to the sample-size correction when intracolony correlations from small 
samples were estimated. I also show how genotypic correlation and regression 
can be estimated in subdivided populations, both in continuous populations 
with isolation by distance and in populations divided into separate subpopula- 
tions. The latter analysis is an example of a more general hierarchic correlation 
analysis. 

ENEALOGICAL relationships lead into gene identities, and differing re- G lationships give rise to varying probabilities of sharing identical genes. 
Such a probability can be calculated from known pedigrees, or it can be esti- 
mated as a correlation coefficient from frequency data. The gametic correla- 
tion between a mating pair is interpretable as an inbreeding coefficient of the 
offspring, and genotypic correlation between two individuals is known as the 
coefficient of relationship (WRIGHT 1922). The coefficient of relationship can 
be interpreted in terms of the probability of the individuals sharing identical 
genes in common. In recent sociobiological literature, it has proved important 
to estimate this probability unidirectionally, because we are interested in the 
following problem: If one individual helps another, what is the probability that 
the individual being helped will transmit to its offspring genes carried by the 
helper? (HAMILTON 1964). This unidirectional relationship can be measured 
by genotypic regression (HAMILTON 1972; MICHOD and HAMILTON 1980; 
UYENOYAMA and FELDMAN 198 1). The importance of genotypic regression is 
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that it can be used to predict the gene transmission and the change in gene 
frequencies in connection to the helping behavior (see MICHOD 1982 for a 
review). 

There are two important aspects I want to point out before proceeding 
further. First, the correlation and regression coefficients convert into general 
pedigree estimates only in the absence of selection. When social evolution is 
studied, the locus affecting social behavior is under selection and leads to a 
different regression value than would a neutral marker locus (UYENOYAMA and 
FELDMAN 198 1) .  Second, the coefficients are calculated as group estimates, 
and, hence, they depend on the group used as a reference. This has been 
worked out for gametic correlation, which can be estimated in subdivided 
populations using WRIGHT’S ( 1  943) well-known formula 

1 - FIT = ( 1  - F s ~ ) ( l  - F1.s). ( 1 )  
In the present paper I examine how genotypic correlation and regression coef- 
ficients are estimated on the basis of neutral marker loci. HAMILTON (1972) 
discussed such measures and showed that genotypic correlation among group 
members in a subdivided population is 

r = ~ F s T / (  1 + FIT) (2) 

(see also MICHOD and HAMILTON 1980; UYENOYAMA and FELDMAN 1981). It 
is clear from (2) that the choice of an appropriate measure to describe the 
population structure depends on whether one wants to estimate genetic differ- 
entiation and population-breeding structure separately (gametic correlation) or 
wants to include the effects of the breeding structure in the correlation esti- 
mate (genotypic correlation). When studying a population subdivided in sepa- 
rate subpopulations, we are interested in factors (such as drift and migration) 
affecting the allele frequency differentiation, and it seems best to describe the 
population structure using WRIGHT’S F statistics. When a Mendelian population 
is subdivided in social groups, we are not primarily interested ir, allele fre- 
quency differentiation but in the genotypic basis of that subdivision. The gen- 
otypic estimates are appropriate for that case. Much of the current theory 
concerning social evolution refers to the population structure defined in gen- 
otypic terms, and although the correlation estimates at neutral loci differ from 
those at loci under selection, they provide useful information for considering 
thresholds of weak selection in the population with a given genotypic structure. 

The theoretical background for calculating the coefficients of genotypic re- 
lationships is well developed for pedigrees (see e.g., CANNINGS and THOMPSON 
1982), but their estimation from genotype frequencies observed in natural 
populations has appeared problematic. There are two basic approaches for 
estimating genotypic relationships: the estimate can be based on weighting 
either the allelic effects or the genotypic interactions. My associates and I have 
earlier introduced a sample-size-corrected regression method for a biallelic 
locus based on weighting the allelic effects (PAMILO and CROZIER 1982), and 
STANTON ( 1  960) has derived a correlation coefficient for multiple alleles by 
weighting genotypic interactions. Here, I show how STANTON’S estimate is 
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connected to other statistics of standard population genetics and how it is 
affected by sample-size correction. Weighting of the allelic effects can also be 
done with multiple alleles, and both methods are extended to multiple loci. 1 
also examine the estimation of genotypic correlation in subdivided populations 
in a way analogous to WRIGHT’S (1951) F statistics (1).  

GENOTYPE INTERACTIONS 

I)itrac01on~ correlation: STANTON (1  960) formulated genotypic correlation be- 
tween two groups, Z and U,  with the help of an interaction matrix in which 
the genotypes of the Z group form the rows, genotypes of the U group form 
the columns and the elements of the matrix consist of the frequencies of 
pairwise interactions between the genotypes in the two groups. The correlation 
coefficient is 

(3) 
z z u  - z z z u  

r =  
J[Zz’ - (Zz)2][Zu2 - ( Z U ) 2 ]  

where the symbols refer to allele, genotype and genotype-interaction frequen- 
cies, and the sums of z and z 2  are over the columns, the sums of u and u 2  
over the rows and the sum of zu’s is calculated over all the elements of the 
interaction matrix (STANTON 1960; CROZIER, PAMILO and CROZIER 1984). The 
sums are calculated by weighting the genotypic interactions with a special 
weighting scheme that depends on the number of alleles at the locus. If we 
modify STANTON’S (1 960) method to make an intragroup correlation coeff- 
cient, the matrix consists of interactions of an individual with the other group 
members and is symmetric. This means that intragroup correlation equals 
intragroup regression. I will next analyze the nature of these estimators and 
the effects of sample-size correction on them. My main interest is in estimating 
genetic relatedness among and between individuals living in social groups. I 
will call such a group a colony and, accordingly, use the term intracolony 
correlation. 

If a sample from a given colony Tn has i”J, individuals, there are N,(N, - 
1)/2 interactions between them. Inserting these in the interaction matrix of a 
locus with s alleles (s(s + 1)/2 genotypes) and weighting each colony equally, 
we get after considerable algebra 

where hexp,, = 1 - Zx;, and hobs,, = 1 - ZX,,,, are the expected and observed 
heterozygosities within the colony m and Hexp and HobS in the whole population. 
Note that the mean allele (it) and genotype (xv) frequencies are calculated by 
weighting the colonies equally. We can now insert these sums into (3) and 
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obtain 

We see from (4) that r can be expressed in terms of expected and observed 
heterozygosities within the colonies and in the whole population. Similarly, 
CHAKRABORTY (1980) earlier noticed that the result does not depend on the 
number of alleles used for constructing the original weighting scheme intro- 
duced by STANTON (1960). The same formula (4) can also be used in the case 
of genetic dominance by considering all of the dominant phenotypes as homo- 
zygotes for the dominant allele, but one has to remember that the resulting 
correlation coefficient differs from that with intermediate heterozygotes. I 
should also remark that (4) does not give the genotypic correlation when the 
locus is affected by selection. 

It is of interest to know how (4) is related to our earlier biallelic estimate of 
relatedness, which is given as a linear regression coefficient (PAMILO and CRO- 
ZIER 1982) as 

1 
zxy  - - z x z y  

SSXJ C 
h = - =  

1 
z x 2  - - ( z x y  " ssx 

C 

(5 )  

where x refers to the allele frequency of a given individual and y to the allele 
frequency in the rest of the sample from that colony. The sums are calculated 
first over all individuals within a colony and then over the colonies weighting 
these equally. Using the same notations as (5) (except that we need no subscript 
to indicate the allele), we find that 

z x  = zy = cx 

and inserting these in (5) ,  we see that it equals (4) for two alleles. 

(PAMILO 1982a) 
When the sample size N, from each colony is equal (e.g., N), (5) reduces to 
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where 

1 
2 - SS, 

sx - - c \  
i (1  - i) FST = - x(l  - 2)  

When N is very large, (6) approaches the limit given by (2). We can also show 
that, with equal sample size N, (4) reduces to (6) where FST is replaced by NEI’S 
(1973) multiallelic estimator of FST (also called G S T )  

1 
FST = 1 - - C Zhexp,m/Hexp- (7) 

We can thus conclude that our earlier biallelic estimate is a special case of 
STANTON’S intracolony correlation and that the estimates approach the ex- 
pected value when the sample size increases. 

It can also be noted that combining (4) and (2) yields a sample-size-corrected 
estimator for multiallelic FST, denoted here by F&. 

This can be compared with the estimator derived by NEI and CHESSER (1983). 

This part of (8) corresponding to - Ehexp,m of (7) and generally denoted by Hs 

is identical with NEI and CHESSER’S formulation when the samples are of equal 
size, but there is a slight difference between the two when N,  varies from 
colony to colony. NEI and CHESSER also derived an unbiased estimator for 
Hexp, but as they note, the ratio of two unbiased estimates does not necessarily 
lead to an unbiased estimate of the ratio. 

1 
C 

The equation (8) can be derived in an alternative way as 

F,& = 1 - (1 - P1)/(1 - P2) (9) 
where P I  is the probability of sampling an identical allele from two individuals 
in the same colony, and P2 is the same probability for the whole population. 
To produce (8) we have to assume that P2 approaches Ex‘, which is not exactly 
true in small samples (see NEI and CHESSER 1983), and 

1 1 
1 -PI = 1 - - E -  C Xii c N,, - 1 [;, (. - &) + : + x] - &)] 

c N,, - 1 
1 = - E -  

and we see that (9) equals (8). 
Intergroup correlation and regression: In intracolony calculations STANTON’S in- 

teraction matrix is symmetric, and correlation is the same as regression. In 



312 P. PAMILO 

intergroup comparisons this is no longer true, because we now recognize two 
parties (e.g., X and U) which may, or may not, be from the same colony. Let 
us take an example in which genotypic regression is calculated between pairs 
X and Y,  and let x,,,,, and yl,.? denote the frequencies of allele i in the mth pair 
of X and Y. When we construct an interaction matrix and apply (3) to calculate 
regression of Yon X, the resulting regression coefficient appears to take a form 
similar to the intracolony coefficient (4), if we replace Zx: by Zx,y, and 
2Zx,TIn by ZZx,,,y,,m, the summations taking place over the alleles and (in the 
latter) over the X, Y pairs. There is no need for the sample-size correction 
term that appeared in (4), and the regression coefficient of Y on X is 

In our earlier studies we have calculated intergroup regression from biallelic 
data as a linear regression between the allele frequencies in X and Y (PAMILO 
and VARVIO-AHO 1979). For that coefficient (when calculated only for one 

mediately that the resulting regression coefficient equals that of (1 0). 
Genotypic correlation between X and Y is obtained as the geometric mean 

of the regression coefficients bm and bxv. 
Multiple loci: If there are several polymorphic loci, it would be of interest to 

use their joint segregation pattern in estimating genotypic correlations. Unfor- 
tunately, the preceding method does not allow that, and the multilocus estimate 
has to be computed using the loci as independent units. We can calculate the 
means of FsT (or its equivalents in equations 4 and IO) and F over the loci and 
then apply (2). This procedure assumes that the loci are expected to give 
identical information, i . e . ,  the segregation patterns are not disturbed by differ- 
ent selection pressures, geographic differentiation, etc. Note that the multilocus 
data for this averaging method need not even come from the same individuals. 

ALLELIC WEIGHTING 

An alternative way to estimate genotypic correlation and regression is the 
approach used in quantitative genetics (FISHER 1918; FISHER 1958, pp. 30-37; 
FALCONER 1960, pp. 112-128). The alleles are given specific values (U,  for 
allele i), and the genotypic value is taken as the sum of the allelic values 
(haploid males at sex-linked loci can be treated as homozygotes). Correlation 
and regression can now be calculated on the basis of these genotypic values. 
Note that setting ai = uJ means pooling the alleles i a n d j  together, and if this 
is not wanted we must have ai # uJ. For a biallelic locus this method is equiv- 
alent to the weighting scheme used by PAMILO and CROZIER (1982). 

Intergroup calculations can be done using the mean genotypic values of the 
X and Y groups in each colony, and the intracolony correlation (generally called 
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intraclass correlation) can be estimated by several alternative methods (DONNER 
and KOVAL 1980; KARLIN, CAMERON and WILLIAMS 1981). I will next discuss 
two commonly used methods, the ANOVA method and the sib-pair method. 

If the sample size from each of c colonies is the same and equal to N, the 
intracolony correlation coefficient from the ANOVA method is 

s i  - stv 
r =  (N - 1)sL f s i  

where s i  and s L  are the estimates of the among-colony and within-colony 
variances. For a biallelic locus, (1 1) can be written (PAMILO 1982a) 

N e  ~ F S T  1 
N - 1 (12) -- r = - -  

N - 1 c - 1 1 + F + 2F.q-/(c - 1 )  

which results in slightly different values than (4) and (6), especially when c is 
small and FST is high. With an increasing number of colonies, (1  2 )  will approach 
the value obtained from (4) and hence, with large values of N, the expected 
value based on (2). 

The sib-pair method calculates the correlation coefficient using all pairwise 
comparisons between colony members, 

Y = ZZZ(X,, - ?)(xrnj - JC)/(cN(N - 1)s;) (13) 
where xrn, is the genotypic value of the individual i in colony m, and X and s,' 
are the sample mean and variance. When the sample size is the same, N, from 
each colony, the correlation coefficient calculated from (1 3) is the maximum 
likelihood estimator (ROSNER, DONNER and HENNEKENS 1977). It is easy to 
show that we get the same answer if, instead of calculating the correlation 
between pairs x,, and x,], we use pairs xml and (Nx, - xmr)/(N - l) ,  where x, 
is the mean value in colony m. This is the approach used by PAMILO and 
CROZIER (1 982). 

The problem of allelic weighting with multiple alleles and multiple loci is that 
the result depends on the weighting scheme, although the estimates from 
different weighting schemes should converge when large sample sizes are used. 
It might be good to rotate the weights, so that the alleles are given the same set 
of weights in different orders, and then use the mean of the obtained correlation 
estimates. As we are dealing with the Mendelian segregation of genotypes, we 
have no epistatic interactions, and such a model can assume simple additive 
effects of the loci (ANDERSON and KEMPTHORNE 1954). If the alleles have values 
a, at locus A and 6, at locus B, the genotypic value of an individual AJJB~B1 is 
(a,  + aj + b k  + b1)/2. Calculating correlations and regressions for multilocus values 
is otherwise identical with the single-locus procedure. 

SUBDIVIDED POPULATIONS 

The genotypic correlation and regression estimates depend on the allele 
frequency variance among the colonies, and this variance increases when there 
is allele frequency differentiation within the study area, i.e., when the colonies 
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do not come from the same gene pool. The effect of population subdivision has 
been worked out for gametic correlation ( 1 )  (WRIGHT 1943, 1951; COCKERHAM 
1973), and in this section 1 will examine the effects of subdivision on intracolony 
genotypic correlation. 

Let us first examine a continuous population with isolation by distance. If we 
assume that there is no local inbreeding, the observed inbreeding coefficient F 
measures the areal allele frequency differentiation, and the standardized allele 
frequency variance among the colonies, FCT, is a function of F.  If we denote by 
Fcs the estimate that we would have without gene frequency differentiation, we 
can partition the FCT estimate (see WRIGHT 1943; JACQUARD 1975; HARPENDING 
1979) by dividing it into two components following WAHLUND’S ( 1  928) principle: 
that due to the subdivision of the population into colonies and that due to 
geographic allele frequency differentiation 

FCT = ( 1  - F)Fcs + F.  (14) 
If we assume that there is no inbreeding (no positive assortative mating between 
relatives), the genotypic correlation without gene frequency differentiation 
would be, from ( 2 ) ,  bcs = 2Fcs. This can be now written on the basis of (14) 

bcs = 2Fcs = ~ ( F c T  - F ) / ( 1  - F )  
= ( ~ C T  - 2F/(1 + F))/(l - 2 F / ( 1  + F ) ) .  (15) 

This result can be applied in continuous populations assuming that the social 
structure remains the same in different parts of the population. The equation 
( 1  5) allows a comparison with WRIGHT’S (1 943) classic formula for subdivided 
populations, my equation ( 1 ) .  When WRIGHT’S formula and (15) are compared, 
we find that 1 - FcS = 1/( 1 - FIc) or FCS = -FIG/( 1 - FIC), where FIC is the mean 
gametic correlation within the colonies. 

The equations ( 1  4) and ( 1  5) do not hold if there is local inbreeding, because 
in that case F reflects not only local differentiation but also the assortative mating 
between the relatives. This effect can be taken into account if we can distinguish 
between the two components in F.  This can be done with the help of (1 )  if we 
have a population divided into a number of separate subpopulations and each 
subpopulation has a number of colonies. Let us denote FIT as the total inbreeding 
coefficient, F,s as the mean inbreeding coefficient within the subpopulations, FST 
as the standardized allele frequency variance among the subpopulations, FCT as 
the standardized allele frequency variance among all of the colonies in the 
population and FcS as the standardized allele frequency variance among the 
colonies in the same subpopulation. From (14) 

FCT ( 1  - FST)FCS + Fs7 
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where rCT is the measured intracolony correlation in the whole population, rST 
the correlation among the subpopulations and TCS the estimate of the intracolony 
correlation within subpopulations. Because FcT and F X ,  when calculated from 
the pooled data, are weighted by the number of colonies sampled from each 
subpopulation, FST should also be calculated by weighting the subpopulations 
according to the number of colonies. This means that rST will become similarly 
weighted. Equation (1  6) can also be written as 

1 - rCT = (1  - rST)(I - T C S )  (1 7) 
which is of the same form as that for gametic correlation (1).  It should be noted 
that here TCS includes the effects of inbreeding within the subpopulations. 
Equation (1 7) is an example of a general property of intraclass correlation analysis 
in a hierearchically organized material as easily demonstrated from the expected 
values of the intraclass correlation coefficient at various levels of the hierarchy 
(e.g., KEMPTHORNE 1957, pp. 243-244). 

APPLICATION TO DATA 

Unequal sample sizes: I have discussed only the cases in which each colony is 
weighted equally. It may sometimes be of interest to weight the colonies accord- 
ing to the colony size. Assume that we are studying an ant population with a 
varying number of queens in the colonies and we estimate the genotypic corre- 
lation among the coexisting queens. When weighting each colony equally, we 
get an estimate of average relatedness per nest, and when weighting according 
to the queen number, we get an estimate of average relatedness per queen in 
that population. 

One problem in equal weighting of colonies with unequal sample sizes is that 
small samples can bias the results because of large sampling errors associated to 
them. On the other hand, if each colony is weighted by the sample size, large 
samples get much weight in determining the sample means and variances and 
can bias the results. Thus, it seems desirable to use equal sample sizes or to take 
such samples that the smallest one is large enough to eliminate strong sampling 
errors and weight all the samples equally. Another possibility would be to set an 
upper limit, e.g., the median sample size, and weight all of the samples greater 
than that by this limit value and the smaller samples according to their sample 
size. The problems associated to unequal sample sizes are also discussed by 
DONNER and KOVAL (1 980) and KARLIN, CAMERON and WILLIAMS (1 98 l ) ,  and 
the present methods are easily modified to allow unequal weighting. It may be 
useful to calculate both weighted and unweighted estimates and base the conclu- 
sions on both of these and on the difference between them. 

Variance estimates: The variances of the correlation and regression estimates 
can be obtained by subsampling techniques (see CROZIER, PAMILO and CROZIER 
1984). I have examined two subsampling techniques, jackknife and bootstrap 
(EFRON 1981), by computer simulations similar to those used by PAMILO and 
CROZIER (1982) and CROZIER, PAMILO and CROZIER (1984). The jackknife 
technique forms c subsamples from the original data of c colonies by leaving out 
one colony at a time, and the bootstrap technique can be used to create any 
number of subsamples drawn from an imaginary population having a distribution 
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identical with that observed. According to EFRON ( 1  98 l) ,  bootstrapping gives 
better results than jackknifing in the case of parametric linear correlation, but 
my Monte Carlo simulations of STANTON’S (1960) interaction method showed 
that jackknifing was superior to bootstrapping (with c to 4c subsamples). The 
superiority of jackknifing is based on two observations: (1) the ratio of the mean 
standard error estimate (SI) from 50 simulations to the standard deviation of the 
point estimate (sq) from the same 50 simulations was generally closer to 1 .O, and 
(2) the coefficient of variation (CV) of the standard error estimate was smaller 
than in bootstrapping. Hence, I prefer the jackknife technique for estimating 
variances. 

Using the jackknife technique, I next compare the interaction and the sib-pair 
allelic weighting methods of estimating genotypic correlation. The allelic weight- 
ing is done by giving the allele a,  weight i, etc. The simulation results with 
multiple alleles show that STANTON’S interaction method gives generally better 
results than allelic weighting (Table 1; the sI/s:! ratio closer to 1.0, smaller CV, 
and the point estimate generally closer to the expected value). The simulation 
results also show that the multilocus estimate based on the interaction method 
gives narrower confidence limits for the correlation coefficient than any of the 
single-locus estimates. The properties of the interaction method and jackknife 
technique in estimating genetic relatedness in colonies of social insects are 
examined more closely by CROZIER, PAMILO and CROZIER (1  984). 

We have applied the present methods in studying population structures in 
social insects (CROZIER, PAMILO and CROZIER, 1984). Another application of the 
genotypic correlation could be in estimating polyandry (see WILSON 198 1 ; 
GRIFFITHS, MCKECHNIE and MCKENZIE 1982 for biallelic methods). In diploid 
organisms, the offspring of a single female, fathered by n unrelated males (each 
male contributing equally), have an expected genotypic correlation among them 

SASSAMAN (1 978) published mother-offspring genotype data (one locus with six 
alleles) from 20 broods of Porcellio scaber. From this material we get, using (4), 
genotypic correlation ( r  & SE) among the offspring 0.382 & 0.055, which 
corresponds to 1.90 effective inseminations per female. The point estimate 
obtained by WILSON ( 1  98 1)  using analysis of variance for the same data classified 
in biallelic form, 2.26, is somewhat greater than my present estimate but well 
within the range given by mean f SE, 1.34-3.25. 

Examples of subdivided populations: I will next apply the present methods in 
reanalyzing genetic data from subdivided populations of Formica ants. The data 
are based on electrophoretic variation at the MDH-2 locus in four species: in 
island populations of F. exsecta and F. fusca and in continuous populations of F. 
traizskuucasica and F. sunguinea (PAMILO 1983). The sanguinea population had 
five alleles; all of the others were biallelic. The calculations here are done using 
STANTON’S interaction method. 

In the island populations the genotypic correlation among workers in a single 
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nest (rCT k SE) from pooled material is 0.69 k 0.04 in exsecta (121 nests) and 0.62 
k 0.06 in fusca (232 nests). The estimates of rST are 0.14 and 0.15, respectively, 
and the corrected correlations, according to (16), are res = 0.64 in exsecta and 
rcs = 0.56 infusca. The estimate in fusca agrees well with those obtained from 
single islands (0.57 and 0.56, PAMILO 1983) and indicates either multiple mating 
or partial polygyny ( i . e . ,  multiple queens) of the nests (the expected correlation 
for one single-mated queen per nest is 0.75). Single-island estimates in two island 
populations of exsecta were 0.62 and 0.78, and the genotype distributions in the 
nests agreed with the assumption of them having a single queen (PAMILO and 
ROSENGREN 1983). The obtained correlation estimates in this species are proba- 
bly boosted by inbreeding within the islands (PAMILO and ROSENCREN 1983), 
and the results thus suggest either slight multiple mating or shared egg laying by 
two to several queens in some nests. 

In troizskaucasica and sunguinea I examined continuous populations but sampled 
them in a discontinuous way using a grid pattern (see PAMILO 1983), and it is 
possible to calculate the standardized allele frequency variance among the sam- 
pling plots. This FST was 0.11 in transkaucasica and 0.10 in sunguinea. The 
genotypic correlation among worker nest mates in the pooled material was rcT = 
0.47 k 0.04 in transkaucasica (1 61 nests) and 0.42 & 0.03 in sanguinea (1 37 nests). 
Using (16) we get rcs = 0.34 and 0.27, respectively, in the two species. In 
transkaucasica, I earlier estimated the genotypic correlation as 0.33 from a sample 
of 55 nests in a small area (PAMILO 1982b); the present result agrees well with 
this estimate. As there seems to be no local inbreeding, we can pool all of the 
216 nests and get TCT = 0.45 k 0.03, F = 0.09 f 0.03, and using (15) rcs = 0.33 
k 0.04, also in good agreement with the earlier result. In sanguinea, I also 
examined 137 nests in a core area of the same population from which the grid 
samples were taken. Within this core area b = 0.42 k 0.03, but this is probably 
boosted by local allele frequency differences (PAMILO 1983). However, the allele 
frequency differentiation within the core area did not yield a positive inbreeding 
coefficient, but there is an excess of heterozygotes. Thus, it seems probable that 
the nests have several queens sharing the egg laying; the level of multiple 
insemination detected in this species does not explain the observed level of 
relatedness (PAMILO 1982~).  As there was no indication of increased allele 
frequency differentiation with distances greater than those within the core area, 
we might expect that the standardized allele frequency variance 0.10 also 
describes allele frequency differentiation in the core population. Using this value 
as our estimate of F and pooling all of the 266 nests together we get the estimates 
rCT = 0.42 k 0.02 and, applying (16), rCs = 0.29, very close to the value obtained 
from the grid samples alone. 

The methods described here are probably best suited for social insects but 
have a great potential use in estimating average genetic relatedness in other 
organisms living in social groups. But, one has to remember that the average 
relatedness is a population estimate, and the actual relatedness is likely to vary 
among single colonies. Computer programs for STANTON’S interaction method 
are available by writing to the author. 
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