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ABSTRACT 

An analysis is made of the distribution of deviations from Hardy-Weinberg 
proportions with k alleles and of estimates of inbreeding coefficients (f) ob- 
tained from these deviations.-If f is small, the best estimate off  in large 
samples is shown to be 2x,(T./N,)/(k - I) ,  where T. is an unbiased measure 
of the excess of the ith homozygote and N, the number of the ith allele in the 
sample [frequency = N , / ( 2 N ) ] .  No extra information is obtained from the T,,, 
where these are departures of numbers of heterozygotes from expectation. 
Alternatively, the best estimator can be computed from the T,,, ignoring the 
Tu. Also ( 1 )  the variance of the estimate o f f  equals l / (N(k  - 1)) when all 
individuals in the sample are unrelated, and the test for f = 0 with 1 d.f. is 
given by the ratio of the estimate to its standard error; ( 2 )  the variance is 
reduced if some alleles are rare; and ( 3 )  if the sample consists of full-sib families 
of size n ,  the variance is increased by a proportion ( n  - 1)/4 but is not 
increased by a half-sib relationship.-If f is not small, the structure of the 
population is of critical importance. ( 1 )  If the inbreeding is due to a proportion 
of inbred matings in an otherwise random-breeding population, f as determined 
from homozygote excess is the same for all genes and expressions are given 
for its sampling variance. ( 2 )  If the homozygote excess is due to population 
admixture, f is not the same for all genes. The above estimator is probably 
close to the best for all f values. 

ESTS of departure from Hardy-Weinberg proportions are frequently T made to check on random mating in populations, and the deviations from 
expectation are used to estimate inbreeding coefficients. In this paper we shall 
investigate some of the sampling properties of the deviations and of the esti- 
mates from them. 

We first need to clarify some aspects of the current usage of the inbreeding 
coefficient F. In discussing his early work in his recent volumes, WRIGHT 
(1969, p. 173) emphasizes that the coefficient relates two populations, one 
present and one past: “The symbol F is to be interpreted as the correlation 
between pairs of homologous genes in the uniting gametes that trace in the 
way indicated by the pedigree to the foundation stock, relative to the array of 
genes at any neutral locus in that stock,” and later: “the relativity referred to 
above has sometimes been overlooked or misinterpreted.” 

Later he modified his usage by reinterpreting F as a description of popula- 
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tion structure, by defining it as the correlation between uniting gametes rela- 
tive to the gamete pool of the present population. HALDANE (1954)  uses essen- 
tially the same approach for “the inbreeding coefficient of a population” by a 
definition ( f )  in terms of the excess of homozygotes above Hardy-Weinberg 
expectations in the population. 

Wright extended the second concept in a population separated into a large 
number of equivalent subpopulations within which mating may not be at ran- 
dom, e.g., a human population, consisting of separate races in each of which 
there is a proportion of first cousin matings. He defined the following corre- 
lations: FIT, between uniting gametes relative to the whole population; FIS,  
between uniting gametes relative to their own subpopulation; FST, between 
random gametes from the same subdivision relative to the whole population; 
and showed that 

( 1  - FIT) = ( 1  - FIS)( 1 - FsT). 

We shall restrict the term f to measures of the inbreeding coefficient from 
the excess of homozygotes in the population and F for that obtained from 
pedigrees, because these are not necessarily equivalent. We consider two ex- 
treme models. The first is a large population in which there is no permanent 
subdivision but a proportion of matings are between close relatives (FsT = 0, 
FIS # 0). The population value off will then be the same for each locus and 
will equal FIS. The second is a population made up of n separate subpopulations 
in each of which there is random mating (FST # 0, FIS = 0). Because the extent 
of divergence of allele frequency between the subpopulations will differ among 
alleles at multiallelic loci and among loci, the value off will not then be the 
same for each locus and its expected value will be (n - l ) F s T / n .  

In later sections of this paper, we shall consider estimation off in both of 
these cases. Initially, we analyze the sampling properties for populations that 
are in Hardy-Weinberg equilibrium (HWE), or can be assumed to be as a null 
hypothesis in tests, where we need make no distinction between the two situ- 
ations that give rise to departures from HWE. 

POPULATIONS IN HARDY-WEINBERG PROPORTIONS 

Notation: Let the sample size be N and the number of individuals of genotype 
AiAj be N,, i d j ,  where i, j = 1 ,  . . . , k alleles. The number of the allele Ai 
in the sample is Ni = c&, Nji + N,., the frequency of Ai in the sample is 
N i / 2 N  and the frequency in the population from which the sample was drawn 
is pi. The departure, Dii or D,, of numbers of individuals from Hardy-Wein- 
berg expectation in the sample is given by 

Di, = Nii - N ? / ( 4 N ) ,  Dq = Nq - NiNj / (2N)  ( 1 )  
where 2Dii + Dli + . . . + Dik = 0. For two alleles 

D l l  = 0 2 2  = - D I 2 / 2  = (NllN22 - N:2/4)/N = D ,  say. 

As we shall discuss subsequently, even for a population in HWE, it is well 
known that E(D)  # 0. Thus, HALDANE (1954)  defined a quantity for two alleles, 
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(2) 
which generalizes (SMITH 1970) to 

= [2(2N - 1)Nii - Ni(Ni - 1)]/[4(N - 1)) (3) 

and Tg = [(2N - l)Ng - NiNj]/[2(N - l)]  

Also, let Ni = (NI, . . . , Nh) and Ng = (N11, . . . , N U )  be vectors of allele and 
genotype numbers, respectively, in the sample and p = (P I ,  . . . , ph) be the 
vector of allele frequencies in the population. 

Sampling properties of the disequilibria: These can be considered at two levels: 
first, conditional on the numbers of each allelic type in the sample, Ni, and 
then unconditionally. Formulas are given for conditional means and variances 
in APPENDIX (1). In particular, these show 

(4) E(Dit I Ni) = -Ni(2N - Nt)/[4N(2N - l)] 

E(Dq I Ni) = NiNj/[2N(2N - l)], i < j 
these values departing from zero because the sampling of genotypes, given 
allele frequencies, is without replacement. However, E(Tg1 Ni) = 0, for all i 
and j .  When unconditional on the sample numbers, from the multinomial 
distribution 

E(Dii) = -pi(l - pi)/2, E(Dij) = pipj ( 5 )  
This bias in Dii can also be obtained by noting that the allele frequency Nil  
(2N) varies among samples, with variance pi(1 - pi)/(2N), so the expected 
frequency of homozygotes computed from these sample frequencies is Np' + 
pi( 1 - pi)/2, compared with the population frequency of Np'. 

The conditional variances of Dii and Tii are, from the appendix, 

(6) var(Dii I Ni) = N;(Ni - 1)(2N - Ni)(2N - Ni - 1)/[2(2N - 1)'(2N - 3)] 

var(Ti; I Ni) = ((2N - 1)*/[4(N - l)]') var(Dii I Ni) 

and the unconditional variances are 

(7) var(Dii) = p?(l - pi)'[(4N' - 2N - 3)/(4N)] + pi(l - p,)/(SN) 

var(T,i) = [ N ( ~ N  - 1 ) / ( 2 ( ~  - ~))]p'(l - pi)*. 
Values for var(Tii) and var(Tg) are also given by SMITH (1970). They differ in 
form from those for the variances of Dg(i < j )  because the TU have mean 0, 
whereas the Dv do not (equation 5) .  Note, however, that the bias in D, is small: 
for example, from (5) and (7) 

E(Dii)/SE(Dii) = ! h ( N [  1 + 1/(8N2pj( 1 - pi))]}-', 

i.e., the bias is of order l / f i  of its standard error. The sampling properties 
of Dg and Ti, can also be compared in terms of their mean square error (MSE) 
to check, following WEIR and COCKERHAM (1984), whether unbiassed esti- 
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mators of parameters describing inbreeding have minimum MSE. In this case 

MSE(D,,) - MSE(Tlz) = $,(I - p l ) [ l / ( 8 N )  - (%)pt ( l  - p , ) ] ,  
and so, unless gene frequencies are very extreme, D,, has the lower MSE. We 
shall generally use the unbiassed estimator, however. As sample size increases, 
formulas for the conditional variances, with N, replaced by 2Np,,  and the 
unconditional variances of N,, D, and T,  approach the same values. The large 
sample variances and covariances are shown in Table 1 .  

The entries in Table 1 may be summarized as follows: ( 1 )  genotypes with 
no alleles in common have positive correlations between their deviations; ( 2 )  
the deviations of a homozygote and a heterozygote with an allele in common 
are negatively correlated; (3) the correlations for two heterozygotes with an 
allele in common are positive if the frequency of the common allele is greater 
than 0.5 and vice versa. 

In the two-allele case, where Dll = 0 2 2  = -D12/2 = D ,  a simple demonstra- 
tion of these formulas is given by noting that x 2  with 1 d.f. used to test the 
significance of the deviation is, for large sample sizes (where p is the frequency 
of the first allele), 

x 2  = D 2 / [ N p 2 ]  + 4 D 2 / [ 2 N p ( l  - p ) ]  + D 2 / [ N ( 1  - p)'] = D2/ [Np2(1  - p)'] .  
Since x: is distributed asymptotically as a standardized normal deviate, it fol- 
lows that var(D) = Np2( 1 - p ) * .  The deviation of the number of heterozygotes 
from expectation (H), therefore, has variance H 2 / N ,  where H = 2Np( l  - p ) .  
This does not apply in the multiple-allele case, however. 

In general, the expectation of the usual x 2  statistic does not equal its degrees 
of freedom in small samples, both because the D, do not have zero mean and 
because the expected numbers of each genotype are based on those in the 
sample. As we shall discuss subsequently when considering estimation of the 
inbreeding coefficient, these departures are likely to be greatest if there are 
rare alleles. 

The consequences of family structure in the sample: Equations ( 5 )  to (7) and the 
classical tests for goodness-of-fit to Hardy-Weinberg proportions assume ran- 
dom sampling from a large population, such that members of the sample are 
not related. This is often unlikely to be true. T o  what extent is the test then 
invalid? We consider the case of HWE and use approximations for variances 
appropriate for a large sample, such that terms of O ( 1 / N 2 )  can be ignored 
relative to those of O( l/N). 

First, the biases in the D, ( 5 )  are increased by family structure in the sample. 
If it is contributed equally by F fathers and M mothers, the deficiency of 
homozygotes is given by 

E(&) = -NP,(l - p1)(1/(8M) + 1 / ( 8 F )  + 1 / (4N) )  (8) 
(ROBERTSON 1965), which reduces to -p,(l - p , ) / 2  when M = F = N .  

Second, the variances of the D, are also increased because related individuals 
are more likely to have the same genotype. We consider the two-allele case 
for illustration. Expanding D in a Taylor series of terms of N l l ,  N12 and N22 
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and taking expectations, 

with higher order terms removed and derivatives evaluated at NG equal to 
their expected value with HWE in the population. After rearrangement, this 
equation reduces to 

var(D) = var[Nl1(1 - p)‘ - ~ u p ( l  - p )  + ~ 2 2 ~ ~ 1 ,  

which is the variance of the sum of the “scores” of N individuals, when the 
three genotypes are assigned scores (1 - p)‘,  -p(l - p )  and p‘, respectively. 
Score has mean zero and variance p‘(1 - p)’. If the sample consists of S groups 
of relatives of size n, then the variance may be written as 

var(D) = p’(1 - p)’[Sn + Sn(n - I)r] = ~ p ‘ ( 1  - p)‘[1 + (n - l)r], 

where r is the correlation of score within groups. It is simple to show that r 
is zero for half-sibs and ?A for full-sibs. The increase in variance is then de- 
pendent only on full-sib relationship and may be written as 

var(D) = Np‘(1 - p)‘[1 + (n - 1)/4]. 

Allowing for full-sib families of variable size 
(9) 

var(D) = ~ p * ( 1  - p)*[% + ii(1 + aX/~z’)/4] 
where n and c; are the mean and variance of family size, respectively. Using 
Monte Carlo simulation, we have shown that this expression for the increase 
in variance is a good approximation even in small samples with few families. 

B. S. WEIR (personal communication) has shown that the coefficient of r in 
(9) is, more generally, twice the two-gene descent measure (COCKERHAM 1971) 
defined as the probability that, for two individuals, both their paternally and 
maternally derived genes are identical by descent or the paternal of the first 
is identical with the maternal of the second and vice versa. Also, the formula 
applies for multiple alleles where, for allele i ,  p is replaced by pi. 

The variance of the estimated departure from HWE is thus increased if 
some of the individuals sampled are full sibs (or otherwise related through 
both parents) but not if half sibs (or otherwise related through one parent) 
since the latter does not affect the probability that individuals have identical 
genotypes. The x’ goodness-of-fit test is thus biased with full-sib families; to 
illustrate this we have assumed that, for two alleles, D is normally distributed 
with mean zero and variance given by (9) and computed the probability that 
a “significant” departure from HWE will be obtained using tabulated 5 and 
1% significance levels (Table 2). The biases in the Hardy-Weinberg tests are 
seen to become large rapidly if there are appreciable relationships among the 
sampled individuals. 

Estimation of f and testing for deviations from equilibrium: We now consider 
the estimation off and properties of the estimates in two- and multiallele cases. 
The expected genotypic frequencies are 

E(Ni,)  = N [ p ?  + f p i ( l  - pi)] and E(Ni j )  = 2Npipj(1 - f ) .  
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TABLE 2 

Eflect of family structure on bias in Hardy-Weinberg tests 

Probability of rejection of HWE (%) 

Samde of unrelated individuals 5% 1 %  

Half families o f  n = 1 ,  half of n = 2 1.7 
n = 2  8.0 2.1 
n = 4  13.9 5.2 
n = 8  23.7 12.0 

7.0 

The “obvious” estimator for the two-allele case, where there is only 1 d.f., is 
from D ,  

fD = 4ND/[N1(2N - Nt) ] ;  

but since, forf = 0, E(D I N , )  # 0, f~ is biased (4), whereas Haldane’s estimator 
[from (3)1 

fT = 4NT/ [Nt (2N - NI)] 

is not. If, however, f # 0, f~ is not unbiased. HALDANE (1954, p. 633) forgot 
to include the gene frequency terms in the denominator of his formula and 
thus concluded that f~ was always unbiased. The bias is small, of orderf/(2N), 
and is, therefore, not serious. Nevertheless, we shall use fT in subsequent 
analyses, because its unbiasedness at f = 0 is a desirable property and leads to 
some simplification in the formulas. We shall first consider estimation off  in 
the multiallelic case before considering the sampling properties in more detail. 

When we wish to test for homozygote excess the null hypothesis is of HWE; 
therefore, it is reasonable to extract 1 d.f. to estimate f and for this estimate 
to have optimal properties when f = 0. We are then able to obtain explicit 
formulas for the estimator and its variance, whereas, i f f#  0, iterative methods 
are required and will be discussed subsequently. LI and HORVITZ (1953) have 
considered alternative estimators but not their sampling properties; YASUDA 
(1968) gave an expression for the variance of the maximum likelihood esti- 
mator but not for the estimator itself. 

In view of the complexity of some of the formulas, we shall derive the 
estimator on the assumption that the sample size is large but investigate its 
properties more generally. For k alleles there are k ( k  + 1)/2 different esti- 
mators off from T y  given by 

xi = ~ N T ~ I / [ N I ( ~ N  - NI)], & = -2NTy/(NiN,). (10) 
These are constrained by k equations of the form 2TI1 + T I ,  + . . . + T,k = 0, 
and the large variances forf;, are given by (7) and Table 1 after appropriate 
scaling, for example, as 

( 1 1 )  var(3,) = I/N 

C O V ( . L  AA = PIP,/[NU - P A 1  - PJ)I. 
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In APPENDIX (2) we show that a set of weights that minimize the variance of 
a pooled estimator f are (1 - p , ) / ( k  - 1) for jI and 0 for J j ,  i .e. ,  f = Cz( l  - 
p , ) $ / ( k  - 1). This uses only the departures in homozygotes but nevertheless 
makes full use of the data. Because of the dependencies between the T,, and 
T,,, the same estimate can also be obtained using only she heterozygotes and 
giving j j  weight ( p ,  + p j ) ,  i . e . ,  f = E L j  ( p ,  + $,)Aj/@ - 1). Thus, we 
have, at the optimum, 

When the p i  are estimated, the estimator in (12) is not the most efficient, but 
derivation of anything better is not feasible. Equation (12) then becomes 

In large samples, using (7) and (12), it can be shown that 

vartfi-) = 1 / [ ~ ( k  - I)], (14) 
which is also the variance of the maximum likelihood estimator obtained by 
large-sample theory (YASUDA 1968). For two alleles, this reduces to 1/N and a 
simple illustration is that, i f f  is viewed as a correlation of genes in uniting 
gametes, its variance is that of an estimate of a point correlation coefficient 
for a sample of size N with a true correlation of zero. 

For smaller samples, using the APPENDIX, we obtain from (12) 

which, for two alleles, reduces to 

Thus, we see that, somewhat surprisingly, rare alleles give most information 
about the inbreeding level, providing it is low. CANNINGS and EDWARDS (1969) 
noted this using a different formulation. As a consequence, when estimatingf, 
it is very inefficient to combine data on rare alleles: if there are three or more, 
it is better to combine the frequent than the rare ones. (It will be shown later, 
however, that when f # 0, rare alleles lead to high variances off.) 

The estimator (13) was suggested as “the simplest method of estimation in 
the sense that it involves the least arithmetic labor” in a discussion of several 
estimators by LI and HORVITZ (1953). However, they did not give sampling 
variances of the different estimates nor realize that this was also the minimum 
variance estimator when the true value off is zero. 

WARD and SING (1970) consider the sample sizes required for testing depar- 
ture  from HWE as a function of significance level (a),  power (P )  and true value 
off. For multiple alleles, however, they used the overall x2 test with k ( k  - 1)/ 
2 d.f. For example, with a = 0.05, p = 0.9 and f = 0.05, they computed 
required sample sizes of 4205, 2324, 1887 and 1692 for k = 2, 4, 6 and 8 
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alleles, respectively. The power of the test for departure can be increased 
considerably by using only the single degree of freedom that maximizes infor- 
mation aboutf. For low values off, such as this, the required sample size to 
give the same power with k alleles when a single degree of freedom is extracted 
will decline in proportion to k - 1 as shown by (14). Hence, using the single 
degree of freedom test, the sample sizes required in the example will be 4205, 
1402, 841 and 601 approximately, for k = 2, 4, 6 and 8, respectively. These 
represent a substantial increase in efficiency over the overall x2 test, although 
the numbers required remain large. 

ESTIMATION OF f I N  INBRED POPULATIONS 

Large populations with no subdivision; FST = 0; Fls # 0: There are two alter- 
natives: (1) all individuals have the same inbreeding coefficient or (2) a pro- 
portion of matings are between close relatives, e.g., full cousins, and all others 
are at random. It is in fact difficult to imagine any practical situation leading 
to (1) (a cyclical mating scheme as occasionally used in laboratory experiments 
would be an example) and in practice most analyses are concerned with struc- 
ture (2). The two differ only in that in (2) samples will differ in the proportion 
of inbred individuals, leading to a correlation betweenf values at different loci 
in the same sample. This proves to be very small and will be ignored. 

Many aspects of the problem have been discussed previously (LI and HOR- 
VITZ 1953; YASUDA 1968; SMITH 1970; MANTEL and LI 1974; CURIE-COHEN 
1982). Analyses of population mixture which would lead to heterogeneity 
among the proportional deficiencies of different heterozygotes are deferred to 
the next section. 

Iff in the sampled population is nonzero, the estimate (13) is not minimum 
variance. Both f and the gene frequencies have to be estimated simultaneously. 
For loci with two alleles, LI and HORVITZ (1953) show that the simple gene 
count, N,/2N, is the maximum likelihood estimator, $,, of gene frequency; but 
for multiple alleles, this is not so, although LI and HORVITZ, quoting SEWALL 
WRIGHT, argue that it should be taken as such. We do not accept this view 
for the case we consider here of homogeneous inbreeding of all alleles, for it 
is clear that, when there is an excess of homozygotes due to inbreeding, they 
give less information about gene frequency. It turns out, however, that N,/ 
( 2 N )  is very close to $, unless the population is very highly inbred. We present 
deviations in terms of Dz,(i.e., as N,, - Np?) for simplicity, although there might 
be some benefit in using the T,, to remove bias at smallf. CURIE-COHEN (1982) 
also gives a maximum likelihood estimator but takes f i t  = N,/(2N). 

A suitable iterative solution to the maximum likelihood equations is as fol- 
lows, which uses information only on the homozygotes, optimal for at least 
small f. Given a set of estimates fL and $,, i = 1, . . . , k, obtain a new estimate, 
ft of the inbreeding coefficient as 

k 
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and, replacingfL by?;, new estimates of the allelic frequencies as solutions to 
the quadratic equations 

N ( 2  - fL)( 1 - fL)fi? + [ N ( 2  - f~)f~ - Ni( 1 - f L ) ] f i i  - (Ni - Nii)fL = 0. (1 7) 
Equation (16) is now recomputed using the estimates fromJl7) and so on, and 
convergence is very rapid. Starting with $i = Ni /2N and fL = 0, (16) reduces 
to (1 2), so the latter gives the first iterate for the inbreeding coefficient. 

The large sample variance offL is given by (14) when f = 0 (YASUDA 1968), 
but it has a very involved formula otherwise. For two alleles the variance of 
T was computed by SMITH (1970), from which that for fL can be deduced. 
Small sample values were given, but for simplicity consider just large sample 
sizes where second order terms can be ignored. Then, where q = 1 - p 

and 

which reduces to 

var(f) = + f ( p  - q ) 2 / ( p q ) 1 / ~ ,  if !is small, 

and 

var(f) = (1 - f 2 ) / N ,  if p = q = 0.5. 

Large sample formulas for var(f) from (12) for multiple alleles are given by 
CURIE-COHEN (1982) but not for the maximum likelihood estimator (1 6). 

Likelihood ratio methods can be used to test whether f = 0 and whether 
the data fit the model of homogeneous inbreeding at all alleles. 

Rare alleles: If one or more alleles are rare, especially if a homozygote class 
is missing, the estimating procedures (1 3), (16) and (1 7) may not work: either 
giving negative expected genotype frequencies or, for fL, failing to converge. 
A numerical "hill-climbing" procedure can be used to maximize the likelihood, 
with constraints imposed to prevent solutions going out of bounds. 

An alternative procedure is to combine rare alleles. This loses efficiency if 
f = 0 (14) but increases efficiency iff is large, as the above expressions and 
those of CURIE-COHEN show. The best recipe is not obvious. 

A subdivided population, with random mating within subpopulatiom; FST # 0; 
FIs = 0: Here, we face problems of a different kind. Suppose that, unknown 
to the investigator, the population consists of two isolated subpopulations, A 
and B ,  descended from the same foundation stock and now equally numerous. 
We might expect that, for any gene, the gene frequencies P A  and P E  in the 
subpopulations would differ because of genetic drift. A sample from the pop- 
ulation would then be expected to have an excess of homozygotes, equal to 
( P A  - pB)'/4. This is the well-known Wahlund effect. Furthermore, if we 
consider several genes, starting at the same frequency in the foundation stock, 
we would not expect P A  - P E  to be the same for all. Thus, in this situation we 
expect the population f value, measured from homozygote excess, pit  - p ! ,  to 
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be different for different genes. The same will be true for different alleles at 
the same locus. Superimposed on the sampling that leads to different f values 
for different genes, we have the estimation o f f  for a particular gene by 
repeated sampling of diploid individuals from the population. For this latter 
problem alone, the method using (16) and ( 1 7 )  applies. But, in fact, we fre- 
quently need to summarize information over many genes and ask more general 
questions, such as “what is the best estimate off for this population?” or “does 
the population of all cows have a higher f than that of all humans?” In such 
questions, we treat the loci involved as a random sample of such loci and wish 
to make inferences about the genetic structure and history of the population. 
The main source of error may then be variation over loci. Therefore, we need 
to discuss how with this model we should combine information from several 
alleles at a locus and from several loci. We first need to make the approach 
with two subpopulations more general. Consider a population consisting of n 
randomly chosen subpopulations, and a gene with frequency pim in the mth 
subpopulation. It is easily shown that the excess of homozygotes, pii - p‘ ,  
equals 

n 2  n n - 1  

Now, the second term on the right hand side of ( 1 8 )  is an estimate of the 
variance, V, of gene frequency between subpopulations, based on (n - 1 )  d.f. 
We have then 

Y 

m n  

where pio is the frequency in the foundation stock. The variance of V over loci 
is 2V2/ (n  - l ) ,  assuming the inbreeding of the subpopulations, FST, is suffi- 
ciently small that the pim are normally distributed. It follows that the variance 
off over genes in the same population is 2 E 2 ( f ) / ( n  - 1 ) .  This variance may 
be much larger than that due to repeated sampling of individuals. In a popu- 
lation with n = 5 ,  E ( f )  = 0.1 and a sample size of 800, the variance off over 
genes is 2 X (0.1)‘/4 = 0.0050 and that due to sampling within populations is 
0.00 12. 

Note that, if the pedigree inbreeding coefficient of the subpopulations rel- 
ative to the foundation stock is F, the expected value off, as the correlation 
between uniting gametes relative to the population as a whole, is not F but 
F(n - l ) / n .  

How then do we combine information for the deviations of the k ( k  + 1) /2  
genotypes at a locus with k alleles? Consider only the variation due to genetic 
drift and ignore that due to present sampling of individuals. Using$, for the 
population value derived from the ijth genotype, we  need the drift variances 
and covariances of the separate f values, noting that J,  is an estimate of 
-(n - l)cov(p;, pj)/(npiopjo).  I f f  values are small, we can derive these from 



714 A. ROBERTSON AND W. G.  HILL 

known formulas for sampling from a normal multivariate distribution, i . e . ,  that 
in samples of size n from a population in which the covariance between variates 
x and y is C,, the sampling covariance between C, and C,, is (C,,C, + C,C,,)/ 
(n - 1) (KENDALL and STUART 1968, eq. 41.98). It appears that the variance- 
covariance matrix of the various genotypic deviations in a subdivided popula- 
tion is proportional to that given in (7), which arises when sampling individuals 
from a population when f = 0. This is perhaps not surprising-the present 
estimate is an intraclass coefficient of genes in subpopulations arising by drift 
from the foundation stock, whereas that in (7) is the coefficient between genes 
in the same individual in a sample of N from a population at equilibrium. 

There are three practical implications: (1) In large samples, (1 3) is the min- 
imum variance estimator in a subdivided population, as it is in a population 
withf= 0. This would suggest its general use. (2) The variance offestimates, 
given subdivision, contains the unknown n, the number of subpopulations in- 
volved. An empirical estimate of the standard error of the population estimate 
would have to be obtained from the observed variation over genes. (3) The 
sampling variance off estimates is the same for all alleles. The information 
from a multiallelic locus is proportional to the number of alleles minus one. 

Note that, in the conventional x2 analysis of deviations from expectation 
with several alleles at a locus, fitting the best estimate off to the data will not 
remove all significance from the remaining deviations-different alleles may 
and probably will differ in their population f values. 

We examined this problem briefly by simulation at a locus with four alleles 
at equal frequencies. We produced 40 subpopulations by repeated sampling 
over several “generations” and from each took a final sample of 400 diploid 
individuals. The samples were combined at random in pairs to give 20 samples 
of 800 individuals with the required structure, with n = 2 and k = 4. We then 
have ten genotypes, constrained by four allele frequencies, giving 6 d.f. for 
deviations. The expected value off in such samples was 0.095. We calculated 
f in each of the 20 samples, first using (13) and, second, by the maximum 
likelihood procedure using (16) and (1 7), although the latter is not strictly 
applicable to populations in which alleles may have different f values. The 
results were as follows: (1) Using (13), fT had a mean of 0.100 and a standard 
deviation of 0.068. The expected variance off due to genetic drift, 2f2/3, is 
0.0067 and that due to present sampling [1/(800 X 3)] is 0.0004, giving an 
expected standard deviation of 0.084. After fitting the best f value, 5 d.f. 
remain for residual deviations. The xzA was significant at the 5% level in 18 of 
20 samples. (2) Using (16) and (17), fL had a mean of 0.122 and a standard 
deviation of 0.108. Thus, this estimator was both biased and inefficient. The 
difference between estimator and actual f value was particularly large for pop- 
ulations with high f. 

WhateTer the population structure, it appears that loci contribute informa- 
tion on f proportional to their number of alleles segregating less one. But the 
actual amount of information available is not calculable a priori, although an 
empirical measure can be obtained from the variation in estimates between 
loci. This effect of structure parallels closely that discussed between NEI and 
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MARUYAMA (1975) and ROBERTSON (1975) on the one hand and LEWONTIN 
and KRAKAUER (1973) on the other on f values calculated from the variance 
in gene frequency between subpopulations. There it appeared that the ex- 
pected variance off over loci, in the absence of selection, depended critically 
on population structure. This treatment is also relevant to another problem in 
population genetics. We discussed the present problems in terms of populations 
made up of isolated subpopulations, all descended from the same foundation 
with the same inbreeding relative to it. An obvious measure of the extent to 
which any pair of populations would have separated by genetic drift (the “dis- 
tance” between the two) is then FsT or some multiple of it. 

Suppose we knew the gene frequencies of a given allele in the two subpop- 
ulations to be  pi^ and pi, with a mean of pi. Then, the estimate of distance 
obtained from the allele is (9s -  pi^)^/[ pi( 1 - pi)] with expectation 2FsT. For 
this allele, thefvalue in the joint population is ( p ,  - f1~)~/[4&(1 - pi)]. Thus, 
for large samples, the estimate of distance we should get would be four times 
the estimate off. 

We may then apply the present theory to the estimation of distance from 
multiple alleles at a locus. For allele i, we have a distance estimate to which 
we should give weight (1 - pi) to give a overall estimate ( p s  - piB)‘/ 

[&(k - l)]. Estimates at different loci would have weight (k - 1) and the 
overall estimate (as a variance estimate with C ( k  - 1) d.f.) has sampling error 
equal to itself times d2/C(k - 1). This estimator was originally suggested by 
SANCHVI (1953), and his earlier work on the estimation of distance is reviewed 
by SMITH (1977). As EDWARDS and CAVALLI-SFORZA (1972) point out, these 
are equivalent, whenfis small, to the angular measures of distance which they 
have used. These contrast with those of REYNOLDS, WEIR and COCKERHAM 
(1 983) who, apart from other differences, used weights closer to pi( 1 - pi )  and 
are, therefore, probably less efficient. 
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APPENDIX 

( 1 )  Exact sampling formulas f o r  populations in HWE: An extension of HALDANE'S (1954) formula 
for two alleles (EMIGH 1980) gives an expression for the distribution of numbers of each genotype 
in a sample from a population in HWE, conditional on the numbers of each allele in the sample: 

where N ,  and N, are vectors of the numbers of each genotype and allele. Means, variances and 
covariances for the N ,  conditional on the N ,  are readily derived from (IA). Typical values are as 
follows: 

E(NII I N , )  = -N1(2N - N1)/[4N(2N - I)] + N:/(4N) 

E(NIz I N,) = N,Nz/[2N(2N - I)]  + NiNz/(PN) 

var(NI1 I N , )  = aNI(NI - 1)(2N - N1)(2N - NI - 1)/2 

var(N12 I N , )  = aNINz[(2N - NI - 1)(2N - NZ - 1 )  + (NI - I)(Np - I)] 

COV(NII, NZZ I Nt)  = ~ N I ( N I  - l)Nz(Nz - 1)/2 

cov(N11, NIZ I N , )  = -LYNI(NI - 1)(2N - NI - 1)N2 

COV(NII, N23 I N , )  = ~ N I ( N I  - 1)NzNs 
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where a = 1/[(2N - 1)'(2N - 3)] 

717 

(2'4) 

Because D, = N. - N,2/(4N) and D, = N,, - N,N,/(2N), 

E(Du I N,) = -N,(2N - N,)/[4N(2N - l)] and 

E(D, IN,) = N&"/[2N(2N - I)] 

and the matrix var(D, I N,) = var(N, I N,); and because 

it follows that E(Tq I Ni) = 0 and 

(2N - 1)' 
4(N - 1)' 

var(T, I N,) = ~ var(N, I N,) (3'4) 

i.e., (Y in (2A) is replaced by 1/[4(N - 1)*(2N - 3)]. 
( 2 )  Minimum variance estimator off for multiple alleles: Let V be the variance-coyariance matrix 

Of estimates off from each possible pair of k alleles, ordered as follows x' = ( f ~ l ,  f22, . . . , ?U, f i ~ ,  

fls, ~. . , &I.$. Thus, V is square and x a column vector, each of dimension 1 = k(k + 1)/2. Since 
the Jj are unbiased estimators, we require a set of weights w such that the linear estimate f = w'x 
has minimum variance. Because the j, a r e  not independent, there is more than one set of weights 
w, but each gives the same value off. An optimal solution for w must satisfy 

1 

v p ,  = C, an arbitrary constant, for all i 
j -  1 

and 

1 

wj = 1, for all i 
j -  I 

(5'4) 

One possible solution is w, = (1 - p,)/(k - 1) for i = 1 ,  . . . , k and w, = 0, otherwise, i.e., f = 
E t l  (1 - pi)Ji/(k - l), as we now show. Note that, from (lo), (11) and Table 1, the relevant 
large sample variances and covariances are, for example, 

Hence, for the row 1 of V corresponding tofl1, for example, 

and for the row k + 1 corresponding tof12, 
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k 

Thus, (4A) is satisfied and, since g=i (1 - pl)/(k - 1) = 1 ,  (5A) is also satjsfied. 

therefore, for fT given by ( 1 2 )  and using the above formulas for var(T,,) and cov(T., To) 
(3) Derivatio? of v ~ T ( ~ I - )  in (15) for  f = 0: The  conditional mean E(fT,,l N,) = 0 for f = 0; 

1 
8(N - 1)'(2N - 3 )  

var(fT1 N,) = - 4 x  
( k  - 1)' 

N,@" - l)N,(N, - 1)) I? N,2 +I N,Nl I +zz I N,(N,  - 1)(2N - N,)(2N - N, - 1) 

To compute the unconditional expectation, it is convenient to split the term in E, into two parts, 
i .e. ,  (N ,  - I ) / N  = 1 - l / N , .  Then, taking expectations, we have 

1 
2(k - 1)'(N - 1)'(2N - 3 )  

varcJT) = 

Dividing up the last term again, and simplifying, we obtain 

N(2N - 1) 
var(fT) = 

(k  - 1)(N - 1)'(2N - 3 )  

[2N(2N - 1 )  E ( l / N , )  - k(4N - 1) + 2N . I 1 
2(k - 1)'(N - 1)'(2N - 3 )  

- 

Note that E ( I / N , )  is not trivial if p ,  is small, and as a first approximation, take E ( I / N , )  = 1/(2Np,) .  
Ignoring second order terms, we get 


