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ABSTRACT 

Estimates of allele frequencies at six polymorphic loci were collected over 
eight generations in two populations of Euphydryas editha. We have estimated, 
in addition, the effective population size for each generation for both popula- 
tions with results from mark-recapture and other field data. T h e  variation in 
allele frequencies generated by random genetic drift was then studied using 
computer simulations and our  direct estimates of effective population size. 
Substantial differences between observed values and computer-generated ex- 
pected values assuming drift alone were found for three.loci (Got, Hk, Pgi) in 
one population. These observations are consistent with natural selection in a 
variable environment. 

OR nearly 20 yr empirical population genetics has grappled with the prob- F lem posed by the large amounts of genetic variation found in natural 
populations. Evidence supporting the neutral theory of molecular evolution 
has usually come from comparisons of data to certain stationary properties of 
neutral models. Properties of natural populations such as the expected heter- 
ozygosity, variance in heterozygosity and frequency spectrum are seen to be 
in reasonable accord with predictions from the neutral model (FUERST, CHAK- 
RABORTY and NEI 1977; CHAKRABORTY, FUERST and NEI 1980). Those work- 
ers who feel that most polymorphisms are maintained by natural selection have 
taken a different approach to the problem and have produced a number of 
independent investigations of particular polymorphic loci in several organisms 
(MCDONALD and AYALA 1978; PLACE and POWERS 1979; BURTON and FELD- 
MAN 1983; WATT, 1983; WATT, CASSIN and SWAN 1983). Such studies aim to 
establish the biochemical and physiological differences between electrophoretic 
variants and then to relate these to pertinent ecological data to develop a 
coherent picture of the forces maintaining the particular polymorphism. 

Recently, many of the statistical tests of the neutral theory have been ques- 
tioned. ROTHMAN and TEMPLETON ( 1  980) show that EWENS’ (1972) sampling 
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theory and tests based on it (WATTERSON 1977) rely on a special assumption 
about the distribution of the number of copies of neutral alleles. When this 
assumption is relaxed the resulting neutral models can yield frequency spectra 
and homozygosities similar to those expected from heterosis. GILLESPIE (1 979) 
has shown that the infinite allele model and his model of selection in a random 
environment have the same stationary distribution. Therefore, the agreement 
between empirical observations and the infinite allele model noted by FUERST, 
CHAKRABORTY and NEI (1977) can be used with equal strength to support 
Gillespie’s model of natural selection. Another problem with these tests is the 
assumption that the study population has reached its stationary distribution. A 
population undergoing a variety of drift processes approaches its stationary 
distribution at a rate governed by the second largest eigenvalue which equals 
1 - const/2N, where N is the effective population size. If N is even moderately 
large this rate can be extremely slow. PERLOW (1979) has shown that the 
elegant test of the infinite allele model devised by WATTERSON (1977) IS . sen- 
sitive to the stationary assumption. 

Several tests of the neutral theory have been devised which use observations 
of allele frequencies over several generations. The first such test was described 
by LEWONTIN and KRAKAUER (1973). Their test was based on calculating stand- 
ardized variances of allele frequency changes over one or several generations 
in the same population. In their initial work, however, Lewontin and Krakauer 
did not properly account for the sampling process in allele frequency estima- 
tion; corrections for this have been noted since by PAMILO and VARVIO-AHO 
(1980), NEI and TAJIMA (1981) and POLLAK (1983). Yet, to use this method 
as a test of neutrality, the sampling distribution of the standa5dizep variance, 
P, must be known. NEI and TAJIMA (1981) have shown that nF/E(F),  where n 
is the number of independent alleles (or loci) used to estimate F, has a x2 
distribution with n degrees of freedom. However, we do not generally know 
E@) and it is not clear that, if this quantity is replaced with a small sample 
estimate, the x2 distribution will be preserved. Furthermore, even when E@) 
is known the x2 approximation becomes worse if @ is based on observations 
separated by several generations. Finally, it is not at all clear what will happen 
to the distribution of &/E(@) if more than one generation has passed and the 
effective population size does not remain constant over time. 

Other tests of neutrality that utilize temporal data have been described by 
FISHER and FORD (1 947), SCHAFFER, YARDLEY and ANDERSON (1977) and WAT- 
TERSON (1 982). However, both of these tests require precise knowledge of the 
effective population size. Unfortunately, this is seldom known for natural pop- 
ulations. At best an estimate of total population size may be available from 
mark-recapture techniques. 

In this paper we describe a test of the neutral theory that depends on the 
variation in allele frequencies utilizing genetic data and estimates of effective 
population size collected over many generations. The final test statistics are 
the result of extensive computer simulations and thus are useful only for our 
data sets. This loss of generality is more than compensated for by a test 
procedure which is relatively free of simplifying assumptions. This and other 
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advantages of computer intensive statistics have been discussed by DIACONIS 
and EFRON (1983). 

We also investigate the ability of our  test procedure to detect modes of 
natural selection that increase the variation in allele frequencies. We find that 
our methods are able to detect selection that increases allele frequency varia- 
tion, such as selection in a random environment. 

MATERIALS AND METHODS 

Genetic and ecological data have been collected for the univoltine checkerspot butterfly Euphy- 
dryas editha, an endemic of serpentine grasslands in the San Francisco Bay Area. Two populations, 
known from areas H and C, were studied at Jasper Ridge Biological Preserve on the Stanford 
University campus, California, from 1973 and 1980 (EHRLICH et al. 1975; EHRLICH and MURPHY 
1981). Adults fly and oviposit from approximately mid-March through late April. Thus, the life 
cycle is composed of truly discrete nonoverlapping generations. 

Genetic data: Electrophoretic data were collected each year for six polymorphic loci: glutamate- 
oxaloacetate transaminase (Got), hexokinase (HK), @-hydroxybutyric acid dehydrogenase (Hbdh), 
phosphoglucose-isomerase (Pgi), phosphoglucomutase (Pgm) and superoxide dismutase (Sod). Details 
of the electrophoretic methods are given by MCKECHNIE, EHRLICH and WHITE (1975). 

Estimating adult numbers: Population size data were also collected each year using the mark- 
recapture methods of BRUSSARD, EHRLICH and SINGER (1974) and EHRLICH and DAVID” (1 960). 
In brief, each year’s study of a population consisted of several separate census visits to the site 
during which adult individuals were captured, individually marked if not already marked and 
released. These data were used to estimate the size of the population according to the Jolly-Seber 
model (SEBER 1973, chapter 5, correction for bias not employed). T w o  features of the Euphydryas 
census data make the Jolly-Seber method particularly appropriate here: (1) The population is open, 
i.e., the adult population size is constantly changing in time as newly eclosed adults augment it 
and dying or emigrating adults diminish it. (2) Both weather (flight) conditions and sampling effort 
vary from time to time, and therefore, capture probabilities are potentially different for each 
separate census visit. The Jolly-Seber model is a widely used method that takes account of both 
of these features of the population. It provides estimates of N,, the population size at census visit 
i, for all census visits except the first one. It also allows estimation of E,, the number of new aduks 
entering the population between samples i and i + 1. For our estimate of total population size B 
for a site at a given year, we summed all of the B, corresponding to that year and site. The 
variance of the estimate of B was obtained from Jolly’s (see SEBER 1973, chapter 5) formulas for 
the variances and covariances of the B, and the general formula for the variance of a sum of 
random variables. 

I t  became necessary to employ a slight modification of the Jolly-Seber method when m,, the 
number of previously marked butterflies caught in the ith sample, equaled zero. Under these 
conditions, the estimate of N ,  becomes undefined. Rather than to arbitrarily employ some bias- 
correcting alteration in the formula for N,, we chose to pool the animals of sample i with those 
of sample i - 1 under these conditions. Also, the Jolly-Seber method does not give an estimate of 
N I  (= Bo), the number of animals that joined the population before the first census visit and 
survived to that time. Usually, we have not attempted to estimate N I ;  instead, we ignore it and 
confine our problem to estimating the total number of individuals that joined the population 
during the time spanned by the census visits. Because there are always some individuals present at 
the time of the first visit, we are thereby underestimating the total size of the population, but this 
is only a slight underestimation because the first census is placed early in the flight season and 
most of the butterflies eclose during the time spanned by the census. On two occasions URH 
1974, 1978) our data pooling resulted in a large number of individuals being present at the first 
census. In these two cases we estimated the total number present on day 1 using the number 
captured and the probability of capture for the second census date. This number was added to 
the standard estimate of total population described previously. 

Adult numbers and effective population size: Since males and females can be identified in the field, 
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separate estimates of the number of males B,  and females B, are usually available. In some years 
the sex ratio was quite biased with females making up only IO-20% of the population. Unfortu- 
nately, the variance of the estimates of the separate male and female numbers is much larger than 
the estimate of total population size with males and females pooled. This is important in the 
decision to use separate B,  and B,, or  just pooled B assuming a 1:l sex ratio, to estimate Ne.  Thus, 
even though we expect an estimate of Ne that utilizes the separate sexes to be less biased, it is 
liable to have much larger variancq This, of course, will make it more difficult to detect deviations 
from the drift model. As a consequence we have examined four estimators N ,  of the effective 
population size. In APPENDIX 1 we derive an inbreeding effective population size that takes into 
account unequal sex ratio, variance in female reproductive success and changing population size. 
Four versions of this effective population size are considered which make various assumptions 
about the sex ratio and population growth. As noted by EWENS (1982), the inbreeding effective 
size will not necessarily be the same as the variance or eigenvalue effective population size; how- 
ever, its derivation appears to be much simpler in the present setting. The  estimator with the 
smallest mean squared error was used as Ne in the computer simulations. This procedure does 
introduce a bias in our results which we consider in the discussion. 

In a few years females were so rare that not enough were recaptured to allow a direct estimate 
from the Jolly-Seber procedure. In these years we estimated the frequency of females in the 
population, c,  from their frequency in the captured pool of animals. Since males are almost twice 
as likely as females to be captured (EHRLICH, LAUNER and MURPHY 1984), c is probably biased 
downward. T h e  effect of this will be estimates of Ne that are too small. We will discuss the effect 
of this bias on o u r  test statistics later. The total number of females N, was then estimated as B.c,  
and the total number of males N, as B . ( l  - c). The  variance of these estimates were obtained via 
the delta method (BISHOP, FIENBERC and HOLLAND 1975; pp. 486-488). 

Variance in offSpring number: Another factor that has a significant effect on the effective popu- 
lation size is the variance in offspring number and survivorship which is substantial between 
females. This variability can be partitioned into at  least three components. First, there is variability 
in the number of eggs laid per egg mass and the number of egg masses. Females may lay between 
40 and 200 eggs per egg mass, and in the laboratory they may lay up to seven egg masses or 
more, although four is perhaps more typical in the field. Second, there are marked differences in 
survival of egg masses laid in wet and dry environments. E. editha usually lays eggs on green 
Plantago erecta and Orthocarpus densajlorus. However, these plants may undergo rapid senescence, 
and the larvae may hatch into a dry environment in which mortality is virtually 100% (SINGER 
and EHRLICH 1979). Third, there is variability in larval survival even within wet environments. 

Assuming that these three factors act independently of each other, we can derive formulas for 
the mean and the variance of female offspring number (see APPENDIX 2 for details). Let the 
random variable W, be the number of surviving offspring from a female’s ith egg mass. The mean 
number of surviving offspring from egg mass i is E(Wi), and the formula for it is found to be 

E(WJ = X(1 - 6)u,  = w,, 
where U% is the mean number of eggs in egg mass i, 6 is the probability that the egg mass hatches 
into a dry environment and X is the individual probability of survival from larva to adult in a wet 
environment. The variance in number of surviving offspring from egg mass i is Var(W,), which is 

where U:, is the variance of the number of eggs in egg mass i. If it is assumed that the separate 
egg masses of a female are independent, the total variance in female fecundity Var(F) is just the 
sum of the Var(W,) over egg masses. 

T h e  actual calculations of Var(F) make several assumptions. Although females may lay up to 
seven egg masses, o u r  experience indicates that four egg masses may be more typical in the field. 
The  mean number of eggs per mass and the variance are estimated from the work of MURPHY, 

LAUNER and EHRLICH (1983) which looked at female fecundity as a function of diet. We assume 
the diet of sugar water and 0.004 M amino acids to be most similar to the diets available on Jasper 
Ridge. We also assume that the probability of hatching into a dry environment (6) is 0.71. SINGER 
and EHRLICH (1979) cite a range for 6 at 0.27-0.83 for the year 1971. We have chosen a value 
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FIGURE 1.-The life cycle used in the computer simulation that incorporates random genetic 
drift and sampling of allele frequencies. 

toward the higher end of this range (actually the value observed 1 wk into the 1971 flying season). 
The possible biases this choice might introduce is discussed later. Finally, X is chosen such that 
each female at time t had, on average, 2Nl+i/N,  offspring in the next generation. For models I 
and 111 (see APPENDIX 1) it is assumed that N,+I = N,. Models I1 and IV allow for population 
increase and decrease and, therefore, use the actual estimates of total population size N ,  and N l C l .  
Carrying out  the calculations produces an estimate for the variance in female fecundity of 5.49 
when N1+, = N,. 

Comparison with indirect estimates of effective population size: Recently, there have been several 
proposals to estimate effective population size indirectly from observations of allele frequency 
variation over time (NEI and TAJIMA 1981; POLLAK 1983). These methods assume that variation 
in allele frequencies over time is due solely to genetic drift and sampling for estimation purposes. 
Since we hope to use our estimates of effective population size to determine whether drift alone 
can account for the observed variation, it would seem inappropriate to use these methods to 
estimate effective population size. However, these methods consistently produce estimates of ef- 
fective population size that are about one order of magnitude smaller than estimates obtained by 
several other methods (POLLAK 1983; BECON, KRIMBAS and LOUKAS 1980). The same is true for 
our data. As we show in the next section Pollak’s method of estimating effective population size 
is sensitive to the presence of variable natural selection. Thus, we feel justified in disregarding 
these estimates. 

Computer simulations of Euphydryas population genetics: We now ouline the life cycle used.in our 
computer simulations (Figure 1). The dynamics of a single locus with k alleles will be modeled. 
The frequency of the j t h  allele at time t is P,,. The vector of all allele frequen-es at time t is 
represented by P, = (PI,, , Pi - l , f )T .  At generation t drift occurs by sampling N, zygotes from 
an infinite zygote pool. S e we only have estimates of the effective population size, G1 is a 
random variable chose? from a normal distribution with mean N, and variance U;, which are given 
in Table 1. After the N1 adults have produced the gamete pool for the next generation, N,, adults 
are sampled without replacement to estimate the allele frequency vector P,. This estimate is 
denoted P,. The N,, are known exactly and correspond to the actual sample sizes used to 
estimate allele frequencies in the various Euph yas populations. After eight generations of drift 
the covariance matrix of the observations PI, , Ps was calculated. At this point, one iteration 
is complete. 

A total of 1000 iterations were performed. Thus, there were 1000 covariance matrices for the 
drift-only process from which we made statistical inferences. All of the loci used in this survey 
were polymorphic, and there was no indication that any allele became fixed or lost in the eight 
generations of observations. Thus, if during the course of the  computer simulation an allele was 
lost or fixed, that particular sequence of allele frequency vectors was ignored. Because of the small 
number of generations considered, mutation and migration $an be ignored. The initial allele 
frequencies were set to the observed values in 1973. 

For loci with just  two alleles we simply followed the variance of the most common allele. The 
computer simulations provided information on the distribution of this variance. For loci with more 
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TABLE 1 

Estimates of effective population size, the standard error, UN., and the method of 
estimation' 

Population 

Yr n;, UN, Method N .  U& Method 

1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

762.0 
164.0 
856.0 

4022.0 
374.0 

27.7 
182.0 
195.0 

366.0 
23.9 

135.0 
786.0 

6.2 
4.15 

20.7 
32.1 

I1 
11 

111 
I l l  

I 
IV 
IV 
111 

144.0 
27.5 
92.6 

974.0 
179.0 

16.8 
33.2 
90.2 

18.1 
2.6 
7.39 

149.0 
18.1 

1.54 
2.85 

13.2 

111 
I1 

I11 
I11 

I 
IV 
111 

I 

a See APPENDIX 1 .  

than two alleles we have calculated the covariance matrix of P. Let the covariance matrix resulting 
from the i th iteration be Si. I f  we perform a total of m iterations, then we estimate .!?(Si) as 

For each sample covariance matrix we calculate the following statistic, 

X, = ( t  - l)IInIZoI-InIS,I+ trS,Z;' - ( k  - 1 ) I ,  

where t is the number-of generations (eight in our case) and k is the number of alleles at the 
particular locus. If the P, have a multivariate normal distribution then X, will P, distributed as x2 
k(k - 1)/2 (MORRISON 1976, p. 248). There  is no reason to assume that the P, has a multivariate 
normal distribution, so the purpose of the computer simulation is to describe empirically the 
distribution of the X, under the drift-only hypothesis. 

RESULTS 

The final estimates of effective population size with their standard errors 
are given in Table 1 for both populations JRC and JRH. In Table 2 we present 
the yearly allele frequencies and sample sizes for both JRC and JRH. Only the 
alleles used to calculate the covariance matrix are given in Table 2. 

Following the scheme outlined in Figure 1 we  have calculated the expected 
covariance matrices for each locus assuming the effective population sizes listed 
in Table 1. These expected covariance matrices and their observed values are 
given in Table 3. For loci with just two alleles we have computed the expected 
variance and the distribution of this variance. The cumulative distribution of 
this variance is given by 4(x) = prob. (the observed value of the variance is 
SX). Clearly, if this probability is very small, or very large, then our observa- 
tion represents an unlikely event and we might question the underlying as- 
sumptions. In Table 3 we have listed the value of 4(x) for each two-allele locus 
( H k ,  Got, Sod), where x = the observed variance of the most common allele. 

For loci with more than two alleles our test statistic was Xi. The value of hi 
gets larger as the observed covariance matrix gets either larger or smaller than 
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the expected value. In fact, when Si = 20, Xi = 0. From the computer simu- 
lations we have estimated the expected covariance matrix and the distribution 
of Xi. For loci with more than two alleles (Hbdh, Pgz, Pgm) we have a cumu- 
lative distribution, 4(x) = prob. (observed value of Xi is I x ) .  Thus, only when 
4(x) is very large (close to 1) will we question our underlying hypothesis. These 
values of 4(x) are also given in Table 3. 

From Table 3 we see that there are three cases, out of 12, that show extreme 
test statistics, e.g., $(x) > 0.95. These loci are Got, Hk and Pgz in population 
JRC. Each of these loci shows more variation than expected from drift alone. 
We expect that 12 independent applications of this test would produce 0.6 
significant results by chance alone. In addition such chance deviations would 
be as likely to show less variation as more variation. Clearly, overdominance 
cannot account for these results. However, if selection varies over time, then 
we might expect more variation than drift alone would produce. T o  study this 
possibility we have examined the stochastic-additive-scale constant-fitness-func- 
tion (SAS-CFF) model of GILLESPIE (1978). [We will review only a few impor- 
tant features of the symmetric SAS-CFF model here; GILLFSPIE (1978) should 
be consulted for additional details.] We assume that the activity of the enzyme 
products coded for by genotype AiAi can be described by a random variable 
x i .  Heterozygotes are assumed to have an activity exactly intermediate between 
the two homozygotes; thus, the net activity of enzyme products of genotype 
AiAj is ( x i  + xj)/2. We assume further that E ( x i )  = 1, Var(xi) = a' and 
cov(xixj) = pg'. Finally, we assume there is some concave function that ade- 
quately describes the relationship between fitness and enzyme activity. For this 
study we have utilized the function (1 + .)xi/(. + xi), where a is a constant. 
T o  conduct the appropriate computer simulations with the SAS-CFF model 
we must specify values for rs2, p and a. 

Once done, the previous simulation was carried out as before, but viability 
selection is assumed to act after drift and prior to the sampling of allele 
frequencies. After each round of eight generations of drift and selection, we 
compute the covariance matrix and compare it to the critical value which yields 
a 5% type I error rate. After approximately 1000 replications of this process, 
the frequency with which the drift plus selection process exceeds the critical 
value is computed. This is simply the power of the statistical procedure. The 
strength of selection in these computer simulations is summarized by comput- 
ing the mean difference between the least and most fit genotype each gener- 
ation. These results are given in Table 4. 

As mentioned in the introduction, Pollak has described a method for esti- 
mating the effective population size from the variation in allele frequencies 
only. We have used this method in computer simulations with variable selection 
acting. The results are given in Table 5. It is evident that Pollak's method will 
be severely biased unless selection is quite weak. We should note that in the 
simulations that produced the results in Table 5 there was no variance due to 
allele frequency estimation N ,  (sample size) = N e ;  however, the standard devia- 
tion of these estimates was one to two orders of magnitude greater than the 
mean. 
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TABLE 4 

The probability of detecting selection (power) with type I error set at 5% 

Average Power 
fitness 

a2 P U P  difference Got Hk Pgi 

0.36 
0.18 
0.036 
0.0036 
0.36 
0.18 
0.036 
0.036 

0.32 
0.16 
0.032 
0.0032 

-0.32 
-0.16 
-0.032 
-0.0032 

0.198 
0.142 
0.062 
0.020 
0.825 
0.577 
0.256 
0.081 

0.40 
0.089 
0.054 
0.047 
0.75 
0.40 
0.067 
0.062 

0.48 
0.12 
0.077 
0.072 
0.80 
0.52 
0.16 
0.074 

0.36 
0.18 
0.036 
0.018 
0.36 
0.18 
0.036 
0.0 18 

0.32 
0.12 
0.032 
0.0 12 

-0.10 
-0.05 
-0.01 
-0.005 

0.169 
0.123 
0.054 
0.066 
0.574 
0.41 1 
0.182 
0.129 

0.33 
0.048 
0.034 
0.035 
0.482 
0.203 
0.048 
0.046 

The parameters U’ and pa’ from the SAS-CFF model are listed: CY was four in each case. The 
fitness difference is the average difference between the most and least fit genotypes. 

TABLE 5 

Pollak’s estimates of effective population size, Ne, with symmetric variable 
selection (SAS-CFF) 

Average 
fitness 

2 diffrence N.  Var@”) 

0.36 0.198 -64 4.6 X lo6 
0.18 0.142 23 3.4 x 107 
0.036 0.062 168 1.2 x 107 
0.0036 0.020 190 8.6 X lo6 

No selection 0 206 3.8 X lo6 
_ _ _ _ _ ~  ~ 

The average fitness difference between the two homozygotes is given 
along with the variance of the SAS-CFF model. Other model parameters 
are p = 0.8, Ne = 200, N ,  = 200, (Y = 4 and Po = 0.5. 

DISCUSSION 

We regard the estimates of effective population size in Table 1 as the best 
estimates. These values incorporate differences in sex ratios every generation, 
the variance in female reproductive success and differences in population 
growth. Three “extreme” covariance matrices are found in Table S-Got, HK 
and Pgi in the JRC population. The observed covariance matrices for Got, HK 
and Pgi both show more variation than expected from drift and both have 
d(x) > 0.95. We would expect about one of the 12 tests at this level of 
“significance,” even with complete neutrality of all loci. The observation of 
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three tests in this region ($(x) > 0.95) can be interpreted as an excess and, 
therefore, an indication of substantial deviations from some underlying as- 
sumption. As shown in Table 4, if the assumption of neutrality is removed 
and selection is allowed to vary over time, large covariance matrices can be 
detected with some reliability. However, even with variable selection, the 
power of the tests is low unless the magnitude of selection is quite strong. We 
should note here that, even if our inferences from these statistical tests are 
entirely correct, i . e . ,  variable selection has been responsible for the increased 
variation in allele frequencies, we cannot differentiate between selection on 
the Got, Hk and Pgz loci and selection on other genes linked to them. Only 
detailed studies of specific enzyme polymorphisms, such as those of WATT 
(1977, 1983) on Pgi in Colias butterflies, can directly address this latter issue. 
His demonstration of a “trade off” between the heat stability and kinetic effi- 
ciency of different Pgz genotypes suggests that variable selection may be acting 
directly on this polymorphism in natural populations. 

It is of some interest to compare these results to those obtained in the first 
analysis of temporal data by FISHER and FORD (1947). They observed variation 
in the frequency of the medionigra allele over a 6-yr period and obtained 
estimates of the total number of Panaxia dominula moths in a natural popu- 
lation. They did not adjust the effective population size for ecological factors, 
considered in the present work; rather, they assumed that the population was 
no larger than their smallest observation of 1000 moths in 1943.. Application 
of their statistical test indicated that allele frequencies showed much more 
variation over the 6-yr period than would be expected from drift and sampling 
alone. 

Clearly, the results in Table 3 are dependent on accurate estimates of the 
effective population size. The weakest link in obtaining the final estimate of 
effective population size was the estimate of variance in female reproductive 
success. The final estimates of effective population size may be too high if ( 1 )  
the probability of eggs hatching in a dry environment were considerably 
higher, (2) there are other significant sources of death that affect whole egg 
masses, (3) the average female has fewer than four egg masses per season, (4) 
there is large variance in male reproductive success, or (5 )  the sex ratio were 
highly skewed in the years we assumed it was 1:l. 

Conditions 1-3 would each result in an increase in Var(F) which, we note 
from equation 1 ,  would reduce N e .  We have chosen an estimate of 6 (0.71) 
that was fairly high and thus do not consider condition 1 to be a likely source 
of bias. It certainly would be desirable, of course, to have reliable estimates of 
6 for each year. Condition 2 must occur to some degree; for instance, predation 
is probably patchy and affects whole families. The potential magnitude of 
predation on female variance in reproductive success remains to be studied. 
Our field observations indicate that condition 3 is not a significant source of 
bias. Experiments in the laboratory indicate differences in male reproductive 
success may exist; yet, quantitative values for these differences have not been 
obtained in either laboratory or natural populations. Since substantial differ- 
ences in male reproductive success could reduce the estimates of effective 
population size produced here and methods exist for quantifying these differ- 
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ences in natural population (COBBS 1977; OSTERGAARD and CHRISTIANSEN 
1981), this remains an important area for future research. T o  assess the pos- 
sible magnitude of condition 5 we have recomputed the JRC effective popu- 
lation sizes in Table 1 taking into account the sex ratios for every year ( i . e . ,  
using method IV). The harmonic mean of these new values is 133. The har- 
monic mean of the original JRC population sizes is 137. Therefore, condition 
5 is unlikely to have had a serious effect on our final test statistics. 

Our final estimates of Ne may be too small if (1) the probability of eggs 
hatching in a dry environment is closer to 0.2 rather than 0.7, (2) females lay 
five or more egg masses on average, or (3) differential capture rates of males 
and females lead to an underestimate of c.  

We have already commented on conditions 1 and 2. Condition 3 could have 
substantial effects on N e .  For instance, if the frequency of females in JRC 
during 1978 were 0.5 instead of 0.34, the harmonic mean of all population 
sizes in JRC would increase from 137 to 170. We note that, if we have under- 
estimated N e ,  then the expected variance in allele frequencies due to drift 
should be even smaller than the predicted values given in Table 3. Thus, Got, 
Hli and Pgi would still show more variation than expected. We stress that to 
obtain direct estimates of effective population size for natural populations 
sources of mortality that affect whole families should be closely examined. 

A qualitative conclusion from this work which is in accord with others 
(SCHAFFER, YARDLEY and ANDERSON 1977; WATTERSON 1982) is that selection 
has to be quite strong before patterns of allele frequency variation differ 
substantially from the neutral expectations. Other aspects of genetic differen- 
tiation of E. editha have been used to discount genetic drift. EHRLICH and 
WHITE (1980) have noted that Colorado populations of E. editha differ greatly 
from West Coast populations at the Pgm locus but are very similar at seven 
other loci. In the absence of significant migration they argue the lack of 
differentiation at most loci except Pgm must be due to some form of stabilizing 
selection or, if the populations only recently split, Pgm should not be so dras- 
tically different. 

NEI and TATENO (1975) have shown that in some circumstances drift alone 
can produce patterns of differentiation in which identities ( I l )  at some loci are 
high and at others low. Their simulation results, however, show approximately 
half of the loci in each category after 500 generations, with a trend toward 
increasing numbers of differentiated loci with generation time. Ehrlich and 
White’s results, however, show a high to low identity ratio of 7:l (binomial 
P = 0.03 if 4:4 expected). The approximate number of generations since the 
populations in their study were united is 7000, and the Ne was probably in the 
50-500 range. Furthermore, all of the loci studied by Ehrlich and White are 
polymorphic in the vast majority of E .  editha populations (MCKECHNIE, EHR- 
LICH and WHITE 1975), and it is reasonable to assume that all eight loci were 
polymorphic when the populations separated. In contrast, Nei and Tateno 
started their simulation with about 60% of their loci monomorphic. Thus, one 
would expect fewer similar loci than found in the Ehrlich-White data, but the 
opposite is the case. 

We have purposely tried to limit the number of assumptions necessary to 
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derive our final test statistics. The hope is that the final test will be more 
robust than previously described tests. The “cost” of making fewer assumptions 
is the need empirically to determine the distribution of test statistics via com- 
puter simulations. We point out that this procedure results in major differences 
in our final test criteria. For instance, the value of Xi for population JRH and 
locus Pgi was 10.9. If we had assumed that the allele frequency vectors were 
samples from a trivariate normal distribution, then our test statistic would have 
a x2 distribution with 6 d.f. Consequently, for this value of Xi, $(x) E 0.91, 
which indicates a nearly significant result. From our empirical distribution of 
A, we observe that the true value of +(x) is 0.35. Note that the computer 
simulations provide our expected value of the covariance matrix in addition 
to determining the distribution of A,. T o  derive this quantity analytically would 
be difficult at best without a number of additional simplifying assumptions. 
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to  L. D. MUELLER and a grant from the Koret Foundation of San Francisco. We thank MARCUS 
W. FELDMAN, JEFF POWELL and two anonymous referees for comments on a draft of this manu- 
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APPENDIX 1 

In this appendix we  derive an inbreeding effective population size, N e ,  which takes into account 
the relevant ecological details of Euphydryas. Our derivation closely follows the methods outlined 
by EWENS (1979). The  inbreeding effective population size is defined as the reciprocal of the 
probability ( x )  that two different alleles chosen at  random in generation t + 1 are descended from 
the same individual in generation t. Let N I  be the number of males and Nz the number of females 
in generation t. The  total population size in generation t ,  N I ,  is clearly the sum of N I  and Nz. For 
female i we denote the number of descendent alleles produced from each of i ' s  two copies by m, 
and mNZ+,.  For male i we denote similar quantities as p, and pN,+,.  Since each individual at time 
t + 1 has one allele from a female and one from a male the following relationships hold, 

N I  

NIP= (p, + $'NI+,) = Nt+I, 
, = I  

NZ 

Ne6 = 1 (mi + m N 2 + J  = N,+I, 
,=1 

where NI+] is the total number of individuals in generation t + 1 .  Following arguments similar to 
EWENS' (1979, p. 106) we see that 

?r = (Ni+l - 1)[2(2Nt+I - I)]-' ( p i  + t N l + i ) ( f i  + , ~ N I + ,  - 1 )  c 
.[z(pi + f i N , + i ) ] - ' [ z ( p i  + p N l + < )  - I]-' + 

I f  we let V, be the variance of the m,'s and V, the variance of the pi's then, 

x = [ 2 ( 2 6 N *  - l)]-l[vp/j + V J I  + p + m - 21. 

Thus ,  

Ne = 2(2INz - l)(Vp/j + V,/m + p + I - 2)-'. 

Since we have no information about the variance in male reproductive success, we assume 
Vp/p = 1 ,  yielding 

Ne = 2 ( 2 i N 2  - l)[Vm/m + 6(Nz/NI  + 1) - 1]-'. (1A) 
We consider four variations of ( IA)  that make various assumptions about the sex ratio and 

population growth. 



GENETIC DRIFT IN EUPHYDRYAS 511 

Model I: Equal sex ratio, no population growth. These assumptions imply that N I  = N 2  = N 1 / 2  
and m = 2 ;  thus, 

Nei = 2(2Nt - 1)(Vm/2 + 3)-’. (2‘4) 
Model ZZ: Equal sex ratio, population growth. With these assumptions we have N I  = N2 = N 1 / 2  

and m = 2Nl+1/Nl; thus, 

Neil = 4NiNi+1(2Ni+1 - l ) ( V R N :  + 8N!+1 - 2NiNi+i)-l. 

N ~ I I I  = 2NtNiN2(2Ni - 1)[N1N2(N2Vm - Nt)  + N:]-’ .  

Neiv = 2NiNzNt+1(2Ni+i - l ) [NiNz(NZV, - Nt+i) + N:+I(NI  + N2)I-l. 

(3‘4) 
Model ZZZ: Unequal sex ratio, no population growth. These assumptions imply m = Nt /Nz;  thus, 

(4‘4) 

Model ZV: Unequal sex ratio, population growth. With this model 6 = N1+I/N2; thus, 

(5‘4) 

APPENDIX 2 
Let us define some terms. Let Xi be a random variable that represents the number of eggs laid 

by a female in her ith egg mass. A particular realization of this random variable will be denoted 
xi .  We also have E(Xi) = and Var(Xi) = 0;. If d is the probability of an egg mass hatching into 
a dry environment, then let Y be an indicator random variable with 

0 with probability 6 
1 with probability 1 - 6 

Z, will be a Bernoulli random variable and, as before, zj will be a realization of Z,. If the larvae 
survive dessication, we assume they survive to become adults with probability X. Thus, in a mass 
of x, eggs that have survived dessication, the number that survive to adulthood, W,, will be 

z j .  The fate of egg j is survival to adulthood (if z, = 1) or death (if z, = 0). Finally, we let 
the total number of larvae from egg mass i that survive to adulthood to be Wi. Clearly, we now 
seek an expression for E(W,) and Var(W,). 

In both cases we find the expected values by conditioning successively on the values of X,, Y 
and 2;~; Z,. Thus, 

Y =  1 

E(Wi) = EIEIE(E[Wilxi, yp Z z j l l l l .  

Solving this we get 

E z,~x,, y = x , y ~  since ZZ, - B ( x , ~ x ,  ~ ( 1  - h)x,y), 

E[x,YXJx,] = Xx,(l - a), 
1 

E[X(l - 6)X,] = E(W,) = X ( l  - 6)ux, = W,. We do the same sort of conditioning to get Var(W,). 
After some algebra we see that 

var(w,) = W,[1 - x - W, + ~ a z , / u ,  + XU,]. 
Since the total fecundity, F ,  is equal to Cr=l W,, where m is the last clutch, we note that Var(F) = 
Cy-, Var( WJ. This derivation includes as special cases the “random survival” and “family survival” 
models considered by CROW and MORTON (1955). 


