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ABSTRACT 

A mathematical model for nonrandom generalized transduction is proposed 
and analyzed. The  model takes into account the finite number of transducing 
particle classes for any given marker. The equations for estimation of the dis- 
tance between markers from cotransduction frequency data are derived and 
standard errors of the estimates are given. The  obtained relationships depend 
significantly on the number of classes of transducing fragments. The  model was 
applied to estimate the number of transducing fragment classes for a given 
marker in transduction with phage P22 of Salmonella typhimurium. It was found 
that the literature data on frequencies of cotransduction in crosses with mutual 
substitution of selective and nonselective markers can be rationalized most ac- 
curately by assuming that the mean number of classes is equal to 2. An improved 
method for analysis of cotransduction data is proposed on the basis of our model 
and the results of calculation. The method relies on solving a set of algebraic 
equations for cotransduction frequencies of markers located within one phage 
length. The  method allows a relatively precise determination of distances be- 
tween markers, positions of transducing particle ends and deletion or insertion 
lengths. The approach is applied to the trp-cysB-pyrF and aroC-hisT-purF-dhuA 
regions of the Salmonella typhimurium chromosome. 

HE fine structure of the bacterial chromosome has been investigated by T various methods including conjugation, transduction, transformation, 
deletion analysis and others. Rapid progress has been observed especially in 
the application of physicochemical and recombinant DNA methods, such as 
heteroduplex analysis, restriction nuclease mapping and sequencing of DNA. 
Nevertheless, to determine gene distances comparable to the length of phage 
DNA the method of cotransduction is still most often applied, as indicated in 
recent editions of linkage maps of Salmonella typhimurium (SANDERSON and 
ROTH 1983) and Escherichia coli (BACHMANN 1983). However, this approach 
meets some difficulties since the values of cotransduction frequency for given 
markers depend on the donor strain, the phage strain (CHELALA and MARGO- 
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LIN 1974, 1976; SCHMIEGER and BACKHAUS 1976; KRAJEWSKA-GRYNKIEWICZ 
and KLOPOTOWSKI 1979) and the selective marker used. 

It was recognized relatively early that the chromosome is cut by the phage 
endonuclease system in nonrandom specific sites. The evidence for phage P22 
and Salmonella typhimurium comes from works of OZEKI (1  959), SMITH-KEARY 
and DAWSON (1963), ENOMOTO (1967) and others. This specificity leads to 
significant differences in cotransduction frequencies in crosses with mutual 
substitution of selective and nonselective markers (see Table 2) due to nonsym- 
metric position of the markers with respect to the ends of transducing particles. 
Because of nonrandom composition of transducing fragments, the additivity of 
distances determined on the basis of cotransduction frequency is not satisfac- 
tory. Moreover, the cotransduction frequency depends on the presence of 
deletions or insertions in the donor chromosome even at a distance from the 
markers (CHELALA and MARGOLIN 1974, 1976; KRAJEWSKA-GRYNKIEWICZ and 
KLOPOTOWSKI 1979). 

Therefore, it seemed worthwhile to perform a theoretical analysis in which 
the effect of nonrandom composition of transducing particles on cotransduc- 
tion frequencies would have been included. We investigated how the number 
of different transducing particle classes influences the relationship between the 
cotransduction frequency and the distance between markers. The number of 
transducing particle classes that carry a given marker was estimated from pub- 
lished data on phage P22 transduction in S.  typhimurium. We found that the 
data can be explained the best assuming the mean number of classes is 2. 

The apparently small number of transducing particle classes for the phage 
P22-S. typhimurium system creates the possibility of a much more precise de- 
termination of distances between markers, positions of particle ends and rela- 
tive numbers (weights) of the particles. In order to perform such an analysis, 
it is necessary to obtain a large set of linkage values between different markers 
in a chromosome region of length comparable to the phage DNA length. Such 
data have been available for the trp-cysB-pyrF region (SCHMIEGER and BACK- 
HAUS 1976) and are described here for the aroC-hisT-purF-dhuA region of the 
S.  typhimurium chromosome. The analysis has been applied to these regions. 

The estimation of distances is routinely based on the relationships derived 
by KEMPER (1 974) or by WU (1  966). The results of the work presented in this 
paper show that the use of one relationship for mapping (KEMPER 1974) is 
unfounded from the mathematical point of view, and the application of the 
other (WU 1966) should be limited to systems with a large number of the 
transducing classes. 

The generally accepted mechanism of transducing particle formation in- 
volves sequential cutting of the chromosome from preferred starting points 
(CHELALA and MARCOLIN 1974). This mechanism explains why a deletion or 
insertion in one point of the chromosome may change the linkage value for 
markers located even at relatively long distances. Therefore, the ability to 
define positions of transducing particle ends using the method presented here 
creates the possibility of estimating the lengths of chromosomal rearrangements 
(such as deletions, insertions, duplications). 



MODEL FOR GENERALIZED TRANSDUCTION 635 

TABLE 1 

Bacterial strains 

Strain Genotype Source 

TKlOOO Wild type N. D. ZINDER 
TK200 hisCBHA FIE350 1 purF 145 KRAJEWSKA-GRYNKIEWICZ 

TK221 HfRK5 aroC5 hisT1529 hisCBHAFlE3501 W. WALWAK 
TK514 his1504 purF145 This paper 
TK5 15 aroC6 hisTl504 This paper 
TK559 pi-dhu-1 hisDCBHAFlE712 KRAJEWSKA-GRYNKIEWICZ 

TK560 dhuA69 hisDCBHAFlE712 KRAJEWSKA-GRYNKIEWICZ 

TK566 pi-dhu-1 KRAJEWSKA-GRYNKIEWICZ 

TK567 dhuA69 This paper 
TKl558 hisTl504 B. N. AWES 
TK2750 dhuA69 hisCBHAFIE3501 This paper 
TK275 1 dhuA69 hisCBHAFlE3501 This paper 
TK2752 hisCBHA FIE350 1 This paper 
TK2760 dhuA69 gnd::TnlO This paper 
N K l l 4  gnd::TnlO edd N. KLECKNER 
T R  140 aroC5 purF145 J. R. ROTH 

AND KLOPOTOWSKI 

AND KLOFTOWSKI 

AND KLOPTOWSKI 

AND KLOPTOWSKI 

MATERIALS AND METHODS 

The genotypes and sources of strains used in characterization of the aroC-hisT-purF- 
dhuA region are shown in Table 1. All strains are derivatives of S. typhimurium strain 
LT2. Strains TK514 and TK515 were derived by transducing the hisT1504 mutation 
from strain TK1558 into strain TR140 and selecting wrinkled recombinants aroC+ and 
purF+, respectively. Strains TK2750 and TK2751 were derived by transducing the 
dhuA69 mutation from strain TK560 into strain TK200, selecting dhu- purF+ and dhu- 
purF- recombinants, respectively, on minimal medium supplemented with D-histidine 
and adenine plus thiamine. Strain TK2752 was obtained as a purF+ recombinant of 
TK200 as recipient and TKlOOO as donor strain. Strain TK2760 was obtained as a 
result of transduction of the TnlO transposon from NK114 to the TK567 recipient 
and selection of a clone resistant to tetracycline. 

Phage P22 L4 int- (SMITH and LEVINE 1967) was used in transductions. 
Media, cultures and transduction procedures have been previously described (KRA- 

JEWSKA-GRYNKIEWICZ and KLOPOTOWSKI 1979). 
Numerical calculations were performed on a CDC6000 computer (courtesy of the 

Computer Center, Polish Academy of Sciences). Computer programs were written in 
FORTRAN. 

To convert the phage length units into the base pair numbers, we use the value of 
4 1 kb (1 kb = 10' base pairs) for the length of phage P22 DNA (SUSSKIND and BOTSTEIN 
1978). 

RESULTS 

The model 
The  model is an extension of models discussed by KEMPER (1974) and WU 

(1 966) on a finite number of transducing particle classes. I t  is 'assumed in the 
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FIGURE 1 .-Transducing particle classes. A hypothetical region of the bacterial chromosome 
carrying genetic markers A and B is shown. Marker A is carried on two classes of transducing 
particles (N = 2). t is the distance between the two markers. The different transducing particles 
are shown as segments of identical length, the ends of which are indicated by arrows. The particles 
are produced by sequential cuts of the chromosome proceeding from nuclease recognition sites 
located either to the left or to the right from the region shown. Neighbor particles resulting from 
the same sequence of cuts were omitted. The values of weights (U;) are hypothetical. 

model that endonucleolytic cleavages of chromosome are sequential and that 
the transducing particles generated are of equal length. The model takes into 
consideration the possibility that a given marker is carried by several classes of 
transducing particles. Different classes of particles are generated by different 
series of cleavages that originate at various chromosomal locations. T o  observe 
a nonzero cotransduction frequency of two markers, it is necessary and suffi- 
cient that both markers are carried by at least one class of transducing particles. 

Let A and B be the point markers under consideration. The distance between 
the markers is denoted as t. The distance is expressed in units in which the 
length of the transducing particle is 1. The coordinates of markers A and B 
are 0 and t, respectively (0 < t < 1) (Figure 1). 

Let N be the number of classes of transducing particles which contain marker 
A. If phage nuclease sites are given by coordinates . . ., SI - 1, s2 - 1 ,  .; sl, 
5 2 ,  . .- ;  s1 + 1, s2 + 1, . - ;  and so on, then transducing particles carrrying 
marker A can be represented as intervals (si, s, + l),  where 0 < si < 1 ,  i = 1 ,  
2, + . a ,  N .  Since the coordinate of marker A is 0, si can be considered also a 
distance between the cut site and marker A. 

Different series of cuts may not be equivalent with respect to the frequency 
with which they occur in the cell; therefore, a term of weight of the transduc- 
ing particle class is introduced. The weight wi is defined as the ratio of the 
number of (si, si + 1) transducing particles to the total number of the particles 
that carry a given marker. In an example in Figure 1, the two transducing 
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particle classes constitute 40 and 60% of total population of particles that carry 
marker A ;  therefore, their weights are 0.4 and 0.6, respectively. 

In transduction, a part of the transducing fragment can be inherited. Let 
P (A,  B) be the probability that markers A and B will be coinherited. If A is 
the selected marker, the cotransduction frequency cA is defined as the ratio of 
the mean number of events in which markers A and B are coinherited to the 
mean number of events in which marker A is inherited. Hence, 

where summation in the numerator is over transducing particle classes that 
contain both markers A and B. Summation in the denominator is over trans- 
ducing particle classes that contain marker A; that is, over all N classes. 

The above assumptions are confirmed by numerous experimental studies 
(for a review, see SUSSKIND and BOTSTEIN 1978). However, to establish a 
relation between the distance t and cotransduction frequency, further assump- 
tions have to be adopted with respect to the explicit form of function P(A,  B), 
distribution of cut sites si, i = 1 ,  2, . e ,  N, and numerical values of weights 
Wi.  

In previous quantitative analysis of cotransduction (OZEKI 1959; SMITH- 
KEARY and DAWSON 1963; Wu 1966; KEMPER 1974), it was assumed that the 
probability of transfer of markers A and B from the transducing particle to 
the chromosome is proportional to the product of distances between markers 
and the ends of the particle. This corresponds to the model in which the 
transducing fragment first forms a duplex with the complementary region of 
the chromosome and then two crossovers occur at random sites. The above 
assumption is also applied in this analysis. If ends of the particle are si and 
si + 1, then 

Pj(A, B )  (1  - si)(si - t) .  (2) 
It is unknown how the phage nuclease recognizes starting sites for series of 

cuts. It is assumed further that each position of cutting site si has equal prob- 
ability of occurring in the cell. Finally, it is assumed for the purpose of eval- 
uating the number of transducing particle classes that the weights of the cuts 
are the same, i.e., 

w1 = w* = . . . = WN* 

These assumptions and (1)  lead to the following expression for CA: 
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One can also easily derive that 

Relationships between cotransducibility and distance 

Let us consider the following problems: 
1. What is the expected value (the mean) of cotransduction frequency when 

t, the distance between markers A and B, was determined by an independent 
method? 

2. What is the expected value of distance between markers provided that c 
(i.e., either cA or cB) is known? The experimentalist faces this problem most 
frequently. 

3. What is the expected distance if both CA and CB are known? 
4. What is the distribution of two-dimensional random variable (cA, cB)? 
5. What are the random errors of estimates 1, 2 and 3? 
The problems are solved below separately for different numbers of trans- 

ducing particle classes. For two values of N, namely for N = 1 and N = 03, an 
analytical solution can be easily obtained. 

N = 1: From (3) and (4) one calculates that nonzero values of CA and CB are 

(5)  
t 

CA($, t )  = 1 - - 
S 

If distance t is known, then, on basis of (5),  the expected value of cotransduc- 
tion frequency (the mean over s) is 

J O  

(symbol ( ) denotes the expected value). Hence 

( c )  = 1 - t + t In t. (7) 
Thus, one arrives at the formula derived by KEMPER (1974). The plot of (7) 
is given in Figure 2. What has been calculated is the expected value of cotrans- 
duction frequency for N = 1. Expected value is used in the mathematical sense 
here, as the mean of a set of values. For any individual case with distance t 
between two markers, the actual c can lie between 0 and 1 - t [equation (5) ,  
0 I t I SI, depending on the position of the ends of the transducing particle. 
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Distance t 

FIGURE 2.-Expected cotransduction frequency as a function of distance between markers. The 
numbers indicate the value of N for individual curves. Relative error of the estimate (broken line) 
is defined as the ratio between standard deviation and (c). 

Equation (7) gives the average value of c for all possible classes of transducing 
fragments. 

Thus, (7) is not a mapping function at all. It can only be used to calculate 
the expectations of the cotransduction frequency for any given distance t be- 
tween the markers. It seems that the original derivation of (7) (KEMPER 1974) 
was in fact an unintentional calculation of ( c )  as a function of t ,  which was 
not recognized at the time, and then was improperly used for mapping. 

T o  illustrate the derivation of the mapping formula, the dependence of the 
cotransduction frequency c on distance t and position of the cut site s [function 
(5) ]  was plotted in Figure 3. The mean value of t is calculated as the average 
t in the area limited by projections of coutour lines c = CO and c = co + Ac on 
plane c = 0 (Figure 2). Then we find the limit of ( t )  as c approaches zero. 
Thus, the mean t is calculated for all pairs (s, t)  which give c such that 

If d A  is an elementary area on plane c = 0, then 
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C +AC 
C 

FIGURE 3.-Dependence of cotransduction frequency E on distance t between the markers and 
position of the cut site s (N I= 1). Equation (5) was used to generate the plot. To obtain ( t )  as a 
function of c, the mean t is calculated over the shaded area. 

d 
d dA 

( t )  = -, 

where the integration is over the shaded area in Figure 3. By substituting t 
from (5) ,  since dA = SAC ds, we obtain 

rl 

J, (1 - C)S*AC ds 

Hence 
( t )  = %(1 - c) .  
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FIGURE 4.-Expected distance and the relative error of the estimate as a function of cotrans- 
duction frequency. The numbers indicate the value of N for individual curves. 

It is not surprising that (8) (Figure 4) is not the inverse of (7). Obviously, when 
t = 1 then always c = 0, but if c = 0 then t need not to be 1 ,  since zero 
cotransduction frequency is obtained also when the cut is situated between the 
markers. 

Standard deviation of estimate (8) is 
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a; = %s(l - c y ,  
and the relative error of the distance estimation, 

is constant (only for N = 1 )  and does not depend on experimentally obtained 

When both cA and CB are known, the direct solution of (5) and (6) permits 
determining the positions of the transducing particle ends and the exact dis- 
tance between markers 

C. 

Cotransduction frequencies CA and cB constitute a two-dimensional random 
variable (s, t)  4 (CA, cB). In further analysis, the knowledge of the distribution 
of this variable will be needed. T o  make the results directly applicable in this 
paper, we define the set of arguments of the variable as restricted to elements 
that are given nonzero cotransduction frequencies (t < s). After simple but 
arduous calculations, one can derive the equation for the probability-density 
function 

The probability that we obtain cotransduction frequency from a given neigh- 
borhood of cA and CB is proportional tof(cA, c ~ ) .  From the definition of the 
probability-density function 

1’ i ’ f ( C ~ ,  CB) d d c e  = 1 

N = m: There is a one-to-one relationship between t and c. To calculate this 
dependence, the sums in (3) should be replaced by integrals. Hence, 

6’ (1  - S)(S - t)ds 
c =  $’ s(1 - s)ds 

and 
c = ( 1  - t ) 3 .  

The above formula was originally developed by Wu ( 1  966). Of course, in this 
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case ( N  = 00) cA is always equal to cB. Whether this formula should be used for 
mapping is debatable. Its use is sound if there is a large number of transducing 
fragment classes for any given marker, but it will lead to significant errors 
(comparable to the standard deviation) for N =1, 2 or 3 (APPENDIX 2). The 
function is graphically represented in Figure 4. 

2 < N < 00: The Monte Carlo computer simulation (HAMMERSLEY and HAND- 
SCOMB 1964) was applied. The expected c for a given t was determined as 
follows. The pseudo-random numbers sl, sp,  - - a ,  SN uniformly distributed in 
interval (0,  1) were generated. For each sequence SI, $2, - e ,  sN and a given t, 
the cotransduction frequency CA was computed according to (3). Number of 
repeats was 1000. Then, mean CA and standard deviation were computed. The 
value of t was changed over the interval (0, l), and the step was 0.01. The 
results are presented in Figure 2. 

The results indicate that for all N > 2, good approximation (but only for 
expected cotransduction frequency) is given by Wu’s formula (1 1). Cotrans- 
duction frequency determined from this equation does not differ from the 
estimates obtained here by more than 10% of the standard deviation. Random 
errors of the estimation are approximately proportional to l / f i .  

An experimentalist is usually much more interested in the estimate of dis- 
tance between markers. T o  obtain the estimate, the following procedure was 
used. In elementary run the values $1 ,  sp, - . -, t, cA and cB could be established 
(see above). Altogether, there were IO5 such sequences obtained. These se- 
quences were grouped into a total of 28 classes with respect to the numerical 
value of CA, ten classes for CA < 0.1 and 18 classes for 0.1 5 CA 5 1, as given 
in APPENDIX 3. Within each class of sequences the mean t and standard devia- 
tion were computed. They are the estimates of the distance between markers 
and of the random errors, respectively. 

Similarly, the expected value of t for known values of CA and CB could be 
determined by introducing classes with respect to the values of both CA and cB. 
T o  obtain the distribution of the probability-density function ~ ( c A ,  cB), the 
numbers of sequences in each class were normalized by dividing them by the 
total number of sequences (5000) and by the square of the linear dimension 
of the class if CA, CB < 0.1; 0.025 if CA or CB 2 0.1). The distribution is 
given in APPENDIX 3 for N = 2. 

The results led to the following essential conclusions: 
1. Dependence of the expected distance on cotransduction frequency 

measured is different for various N .  The computed functions are displayed in 
Figure 4 and are tabulated in APPENDIX 2. It can be derived analytically that 
(t)  = (N + l)/(N + 2) when c = 0. 

2. Relative error of the estimation, defined as the ratio of standard deviation 
and the mean, is the greater the greater is c (for c 2 0.1). Only for N = 1 the 
relative error does not depend on c. For a given c,  the error is roughly 
proportional to l / f i  (Figure 4). 

3. When cA and CB are known, the accuracy of the estimation can be in- 
creased. For N = 2 the error may be reduced by about a one-half, as evident 
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from the comparison of numerical data in APPENDICES 2 and 3. For N = 1 the 
exact value of distance t can be determined. 

Estimation of the number of transducing particle classes for phage P22- 
Salmonella typhimurium system 

Usefulness of the conclusions presented above depends on the possibility of 
evaluating the number of transducing particle classes (N) for the chromosome 
region where genes A and B are located. Except for perhaps one region (OZEKI 
1959), the number of classes has not been determined. However, there is a 
possibility of estimation of average N for the bacterial chromosome and the 
given phage, assuming that N is constant in various regions of the chromosome. 

The data of the previous section-namely, the distribution of random vari- 
able (CA, cB)-show that the greater is N the less difference between CA and cB 
should be observed. Therefore, we can infer the N value from differences 
between cA and CB for various pairs of markers. 

The reasoning is based on the method of maximum likelihood (e.g., see 
POLLARD 1977). Let there be m independent observations [here: (cA, cB)*, i = 
1, 2 , - .  ., m]. Let us formulate the hypothesis that the value of the estimated 
parameter is N (N = 1, 2, - e ) .  For each hypothetical N we calculate the values 
of probability-density functionf(cA, cB). T o  find out which N is most likely, we 
define the likelihood function as the product Off(CA, CB), i.e., 

N 

L(N)  = n &(CA, CB). 
i= 1 

The value of N for which L(N)  assumes maximum (i .e.,  for which the occur- 
rence of the observations mentioned is the most likely) constitutes the required 
estimate. 

Calculations were made for the phage P22-Salmonella typhimurium system. 
It was attempted to collect a possibly large set of published data on cotrans- 
duction frequencies in crosses with mutual substitution of selective and non- 
selective markers. The data for 17 crosses are listed in Table 2. The values of 
f(cA, cB) were assigned to each cross and a given N (N = 1, 2, 3, 4) on basis of 
the computation results. The value of function L was subsequently calculated. 

The results (Table 2) show that the maximum of L is assumed for N = 2, 
and that the values of L for other N are severalfold smaller. Therefore, it is 
concluded that the mean number of transducing particle classes is equal to 2 .  

Two main factors influence the accuracy of this estimate. The first is the 
assumption of the same number of classes (N) for various regions of the chro- 
mosome, which may not be fulfilled. Therefore, the result N = 2 does not 
exclude an alternative that for some regions the number of classes is 2, but 
for some others it is 3 or 1. Different cuts might also have different weights. 

The second factor is that cotransduction data used in this analysis (Table 2) 
constitute a small sample with respect to distinguishing between two-dimen- 
sional distributions. However, this type of error seems to be less important 
since numerical values of L(N)  were severalfold smaller for N other than 2 as 
compared to the maximum value. 
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TABLE 2 

Estimation of the mean number of transducing particle classes for the phage P22- 
S. typhimurium system 

Frequency of 
cotransduc- Value of the probability-density function 

Markers tion (W) for given N 

A B CA CS Source 1 2 3 4 

pyrA ilvS 

PYTA fol 
leuA fol 
gal nadA 

leuA araB 
trpA cysB 
trpA pyrF 

cysB pyrF 
hemA dadA 
dhuA purF 

aroC purF 

guaA purI 
cysE pyrE 

argA thyA 
lys thy 

lys argA 
thr serB 

4.8 

6.8 
0.7 

20 

37 
29 
4.6 

28 
2.5 
5 

6.8 

24 
1.2 

10 
18 

0.1 
17 

9.1 BLATT and UMBARGER 
(1972) 

20 } KEMPER (1974) 

27 LANGLEY and GUUT 
4.9 

(1 974) 

18 SCHMIECER and BACKHAUS 

61 

50 KRAJEWSKA-GRYNKIEWICZ, 

(1976) 

3.7 WILD et al. (1974) 

WALCZAK and KLOPO- 

ts4 i 
TOWSKI (1971) 

14 KRAJEWSKA-GRYNKIEWICZ 
and KLOPOTOWSKI 
(1979) 

5 1 OZEKI (1 959) 
2.6 SANDERSON and SAEED 

(1972) 

and CUNNINCHAN 
(1 968) 

35 STUTTARD (1972) 

38 1 
37 7 EISENSTARK, EISENSTARK 

0.1 

L ( N )  x 105 = 

1.75 

1.55 
1 .a9 
1.38 

1.20 
1.18 
1.60 

0.98 
1.88 
1.02 

1.65 

1.10 
1.92 

1.25 
1.27 

2.00 
1.30 

0.004 

8.7 10.8 

2.0 1.62 
4.5 2.3 
2.8 3.0 

1.61 1.68 
1.17 1.25 
2.0 1.38 

0.57 0.34 

0.13 0.02 
40 63 

5.1 5.4 

0.81 0.56 
39 56 

0.69 0.31 
1.23 1.06 

150 280 
1.35 1.21 

680 28 

9.2 

1.32 
1.42 
3.3 

1.87 
1.15 
0.93 

0.17 
70 
<0.003 

5.1 

0.34 
60 

0.15 
0.87 

380 
0.92 

c0.2 

Determination of chromosomal positions of markers, transducing particle 
ends and lengths of deletions or insertions 

trp-cysB-pyrF region: SCHMIEGER and BACKHAUS ( I  976) measured cotrans- 
duction frequencies of trpA, cysB and pyrF markers and obtained a set of six 
values (Table 3). They also determined the respective cotransduction frequen- 
cies for the phage P22 mutant with increased transduction ability (HT mutant). 
Significant differences were observed between the two sets of cotransduction 
data. They were accounted for on the basis of different sites of cuts on host 
DNA. The measurements made it possible to apply the cotransduction model 
to calculate distances between the markers and to determine positions of trans- 
ducing particle ends and particle weights. 

Let us formulate the problem in mathematical terms. There are eight un- 
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TABLE 3 

Cotransduction frequencies and their computed counterparts for the trp-cysB-pyrF region 

Cotransduction frequency (%) 

Markers 
Wild-type phage (H5) 

HT mutant phage 
(HT 1 2/4) 

trpA cysB 29.0 45.6 40.6 27.8 
28.6 42.0 42.5 31.4 

cysB PYTF 27.8 61.4 53.7 70.2 
26.1 61.2 57.3 72.0 

trpA PYVF 4.6 18.3 25.9 25.7 
5.3 18.2 24.3 22.6 

~ ~~ ~~ ~ ~~~~ 

Experimental data are taken from SCHMIEGER and BACKHAUS (1976). The donor strain was SU687. 
Theoretical values (italicized) were computed according to equations (1) and (2). cA and cs, index A 
or B indicates the selected marker. 

known quantities; namely, trpA-cysB and cysB-pyrF distances, positions of trans- 
ducing particle ends for the wild-type phage (one variable for each of the two 
particle classes) and for the HT mutant (also two variables) and particle weights 
(one variable for each phage). On the other hand, the region is described by 
1 2 experimentally determined cotransduction frequencies. Each of them gen- 
erates one equation. Thus, we get a system of 12 equations with eight unknown 
quantities similar to system (A3)-(A8) (APPENDIX 1). The system was solved 
numerically. 

The following results were obtained: 
1. The trpA-cysB and cysB-pyrF distances are equal to 17.1 and 6.8 kb, 

respectively. 
2. The solution for the positions of ends and weights of transducing particle 

classes for the wild-type phage is SI = 25 kb, s2 = 12 kb, w1 = 0.83, w2 = 0.17. 
3. Parameters for the H T  phage transducing particle classes are s1 = 33 kb, 

s2 = 20 kb, w 1  = 0.87, wp = 0.13. It is evident that the positions of the ends 
of the HT phage transducing particles can be obtained by shifting the positions 
of the ends (as determined for the wild-type phage) by 8 kb, whereas the 
weights are roughly the same for both solutions. 

The above data are graphically presented in Figure 5 .  
When the distances between markers, positions of transducing particle ends 

and weights had been determined, it was possible to simulate the process of 
cotransduction and compute the theoretical cotransduction frequencies for the 
system according to (1 )  and (2). The computed values (Table 2) were in good 
agreement with experimental data. The difference between theoretical and 
experimental cotransduction frequencies were comparable to the mean error 
of the measurement (about 5% of the value measured; SCHMIEGER and BACK- 
HAUS 1976). Despite the consistency between the experimental results and the 
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FIGURE 5.-Maps of the trpA-cySB-pYrF [(a) and (b)] and aroC-hisT-purF-dhuA (c) regions as 

computed from the model. Distances are shown in lo3 base pair units (kb). Positions of transducing 
particle ends are indicated by arrows. Numbers next to the arrows are the weights of the trans- 
ducing particle classes. Solutions of equations for phage H5 [(a) and (c)]; phage HTI2/4 @). 

theoretical calculations, it is feasible that the changes in cotransduction fre- 
quencies are due to an increased number of transducing particle classes in 
transductions with the H T  phage, in addition to changes in the positions of 
cut sites and weights. 
aroC-hisT-purF-dhuA region: T o  obtain a large set of data for the mathe- 

matical analysis, all possible linkages between the aroC, purF and dhuA markers 
were measured. As donors, two isogenic strains were used, differing only by 
insertion of the TnlO transposon into the gnd gene. Thus, 12 cotransduction 
frequencies (six for each donor) were obtained. They are collected in Table 
4. It  was found that TnlO insertion produced significant, severalfold changes 
of aroC-purF, purF-aroC and purF-dhuA linkages. 

It is assumed further in that the TnlO insertion is between the phage nu- 
clease start sites (which apparently are infrequent on the chromosome; see 
estimation in DISCUSSION) and the region being considered. Therefore, the 
insertion results in a shift of the cut sites in this region by a distance equal to 
the length of TnlO, i.e., 9.2 kb (KLECKNER, ROTH and BOTSTEIN 1977). The 
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TABLE 4 

Cotransdsuction frequencies and their computed counterparts for aroC, purF and dhuA 
markers 

Cotransduction frequency ( W )  for donor strains 
Markers 

~ TK567 (no insertion) TK2760 (TnlO insertion) 
Recipjent 

TR140 aroC purF 5.0 f 0.6 10.8 f 0.7 27.7 f 0.7 38.4 f 1.0 

TK200 purF dhuA 52.2 f 1.0 4.3 rt 0.6 22.2 f 1.0 2.2 f 0.3 

TK221 aroC dhuA 0.5 f 0.2 0.1 f 0.1 1.7 f 0.4 0.3 1 0.1 

strain A B CA CB CA CB 

0.9 9.6 31.4 39.4 

48.0 5.2 1.5 2.8 

0.2 0.3 0.3 0.6 

Computed cotransduction frequencies are italicized. CA and cB, index A or B indicates the selected 
marker. 

insertion should not change the weights, since the likelihood of a nuclease start 
site on a 9.2-kb-long fragment is negligible. 

The system of 12 equations was formulated for cotransduction frequencies 
of the donor with no insertions and the donor with TnIO (gnd) introduced 
(each value of the cotransduction frequency generates one equation). There 
are five unknown quantities in this system; namely, aroC-purF and aroC-dhuA 
distances, positions of transducing particle ends in the wild-type donor and 
weight. The following results were obtained by solving the system of equations 
using the approach outlined in APPENDIX 1: 

1. The aroC-purF and purF-dhuA distances are equal to 19 and 13 kb, 
respectively. 

2. Positions of the transducing particle ends and weights are s1 = 18.5 kb, 
w 1  = 0.96 and sp  = 36 kb, wz = 0.04 (Figure 5). The computed distance 
between particle end and purF is 0.5 kb for the more numerous particle class. 

Based on the results presented above, the theoretical values of linkages were 
computed according to equations (1) and (2). The computed linkages (Table 
4) generally fit well to experimental ones, except for purF-dhuA linkage in the 
strain with TnIO insertion. Nevertheless, the fit is worse than that obtained 
for the trp-cysB-pyrF region. Therefore, somewhat larger errors than before 
are expected for the distances between markers, positions of the transducing 
particle ends and weights. The relative error is estimated to be about &15% 
of a given distance. Thus, aroC-purF distance is 19 +. 3 kb and purF-dhuA 
distance is 13 & 2 kb. 

Effect of distant deletions and insertions on cotransduction linkages 

KRAJEWSKA-GRYNKIEWICZ and KLOPOTOWSKI (1 979) observed strong 
changes of purF-aroC and aroC-PurF linkages caused by his operon deletions 
or by insertions located between the his operon and dhuA gene. The authors 
interpreted their results as being due to alterations in composition of trans- 
ducing particle classes in the aroC-purF region. Knowledge of the characteris- 
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FIGURE 6.--Simulation of effects of deletions or insertions on the aroC-purF cotransduction 

frequency. Ends of two transducing particle classes are assumed to be shifted due to deletions or 
insertions. Point 0 on the abscissa (no deletion or insertion) corresponds to the background of 
TK567 strain. 

tics of the region (see previous section) allowed us to simulate changes of 
contransduction frequency caused by a deletion or, equivalently, a shift of the 
transducing particle ends. The curves for aroC-purF and PurF-aroC linkages 
computed from (1)  and (2) are presented in Figure 6. Point 0 on the x-axis 
represents the donor strain with no chromosomal rearrangement (Table 4). If 
the deletion or insertion length is known, one can determine the expected 
cotransduction frequencies from results given in Figure 6, and vice versa, if 
cotransduction frequencies are known, the deletion or insertion length can be 
estimated. We can test the method using an insertion of known length, F factor 
HfrK5 (94.5 kb; OHTSUBO and OHTSUBO 19'77), which increases the purF-aroC 
linkage to 39.4% (KRAJEWSKA-GRYNKIEWICZ and KLOPOTOWSKI 1979). Dis- 
tance of 92.5 kb is equivalent in this approach to 12.5 kb, since the difference 
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between them is equal to the multiple phage DNA length. The expected value 
as read from Figure 6 for an insertion length of 12.5 kb is close to the 
experimental value and is equal to 33%. 

Let us consider now the effect of deletions on the purF-aroC and aroC-purF 
linkages. The conclusions drawn from theoretical considerations (Figure 6) are 
compared with the experimental results (KRAJEWSKA-GRYNKIEWICZ and KLO- 
POTOWSKI 1979) and are presented below. 

Prediction Experiment 
~~~ ~ ~ 

Deletions up to 19 kb decrease purF- 
aroC linkage. Deletions 5- to 19-kb 
long given similar and low linkage 
values. 

Deletions 20- to 40-kb long strongly 
increase (up to 45%) purF-aroC 
linkage 

purF-aroC cotransducibility is greater 
than aroC-purF linkage value for 
small deletions. Proportions become 
reverse as deletion length increases. 

~~~ ~ 

Nine of eleven deletions tested de- 
crease purF-aroC linkage. Excep- 
tions are his-57 (see below) and his- 
645. Long deletions (more than six 
genes deleted) give values of co- 
transduction frequencies of 4-7%. 

his-57 deletion gives purF-aroC link- 
age of 32.4%. 

For two small deletions (his-129, his- 
15?) and two longer ones (his-203, 
his-712) purF-aroC linkage is 
greater than aroC-purF. For two 
long deletions (his-640, his-538) the 
reverse is true. The data are avail- 
able for seven deletions. Excep- 
tional behavior of his-645 is noted. 

The agreement of the predictions based on the model with the experimental 
evidence confirms the usefulness of the model and justifies an attempt to 
estimate the length of some his operon deletions. By comparing the relative 
changes of linkage values caused by deletions (KRAJEWSKA-GRYNKIEWICZ and 
KLOPOTOWSKI 1979) with the theoretical predictions (Figure 6) we get lengths 
of less than 10 kb for his-203 and his-712 deletions, 10-20 kb for his-538 and 
his-640 deletions and 30-40 kb for his-57 deletion. 

The aroC-purF and purF-aroC linkages were also measured (K.  KRAJEWSKA- 
GRYNKIEWICZ and T. KLOPOTOWSKI, unpublished results) for a donor strain in 
which the pi-dhu-1 duplication is introduced. The values were 32.6% & 1.5% 
and 26.6% & 1.0%, respectively, for TK566 X TR140 cross. On the basis of 
the model (Figure 6), the length of 12 & 4 kb was assigned to this insertion. 

DISCUSSION 

The model we propose in this paper for the generalized transduction allows 
one to determine how the relationship between cotransduction frequency and 
distance depends on the degree of randomness of the relevant transducing 



MODEL FOR GENERALIZED TRANSDUCTION 65 1 

particle population. The degree of randomness is expressed in our calculations 
as number of cuts, N ,  per unit chromosome length corresponding to the length 
of one transducing particle. On the basis of our deductions and published data 
we estimated the average value of N for the phage P22-Salmonella typhimurium 
transduction system as being equal to 2 .  Because series of cuts during bacterial 
chromosome fragmentation by phage-coded nuclease system reach regions that 
are distant by 5-10% of the chromosome length from a nuclease starting site 
(KRAJEWSKA-GRYNKIEWICZ and KLOPOTOWSKI 1979) and transducing particles 
comprise 1% of the chromosome, the number of P22  nuclease starting sites 
should be about 20-40 per chromosome of S.  typhimurium. 

The model is based on the generally accepted mechanism of transducing 
particle formation (CHELALA and MARGOLIN 1974; SUSSKIND and BOTSTEIN 
1978) and the assumption that the probability of recombinational transfer of 
a pair of markers from a transducing particle to the chromosome is propor- 
tional to the product of distances between the markers and the respective ends 
of the transducing particle [relationship (2)]. The same assumption was made 
by Wu (1966) and KEMPER (1974). Adequacy of the assumption is indicated 
by a degree of additivity of distances calculated from cotransduction frequen- 
cies on the basis of their equations (BACHMANN 1983; SANDERSON and ROTH 
1983). 

Equations ( 1 )  and ( 2 )  show that cotransduction frequency depends not only 
on the degree of randomness of transducing fragment population but also on 
the weights of its constituents. The term “weight” represents the fraction of a 
transducing particle class among all those that carry a given marker. There is 
a certain probability for each class that the marker will be recombined into 
the recipient chromosome. Therefore, the frequency of cotransduction is in- 
fluenced by the transducing fragment composition. Numerical values of 
weights are usually unknown. However, it was shown that the transduction 
analysis of cerdin chromosome regions can be programmed to provide data 
for calculating weights of characterized classes of transducing fragments. It 
should also be noted that ENOMOTO ( 1  967) experimentally determined pro- 
portions of transducing fragments, the ends of which are located between two 
given markers, and introduced a notion close to the definition of weight. 

The results obtained in this study allow one to recommend a more precise 
procedure for estimating the distances between genetic markers from P22  
transduction data in S .  typhimurium. When the cotransduction frequency of a 
given pair of markers can be determined by using only one of them for 
selection, the expected distance should be read from APPENDIX 2 under N = 
2 .  The function is also displayed in Figure 4. For example, when c = 0.6, one 
reads that ( t )  = 0 . 2 1  k 0.08. The value of t equal to 1 corresponds to a 
distance that is about the length of a P22  transducing particle or phage P 2 2  
DNA (SUSSKIND and BOTSTEIN 1978). If one assumes that the length is 41 kb, 
or approximately 1 %  of S.  gphimurium chromosome, one distance unit is equal 
to one map unit in this organism (SANDERSON and ROTH 1983). 

More precise estimation of map distance is feasible when cotransduction 
frequencies of a given pair of markers can be determined by using each of 
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them for selecting recombinants. In this case the expected distance should be 
read from APPENDIX 3. For example, if CA = 0.5 and cB = 0.7, the expected 
distance between A and B taken from Table 3 is (t) = 0.19 & 0.04. 

The comparison of distance estimates obtained from WU’S equation (N = m) 
and from the proposed method shows that the former overestimates the dis- 
tance for small c ( ~  < 0.03). The difference is up to 30% of the mean for N = 
2. For c > 0.03, Wu’s method gives the distances too short by up to 30% of 
the computed mean for N = 2. If KEMPER’S equation is used, the discrepancies 
are even greater. 

Further increase of accuracy of distance estimation is possible provided that 
more cotransduction data are available. The presented method of analysis was 
applied to two regions of the S.  typhimurium chromosome (trp-cysB-pyrF and 
aroC-hisT-purF-dhuA regions). We used data from transductions mediated with 
wild-type P22 phages and an H T  mutant, and with donor strains harboring 
different deletions or insertions at distant sites. Determination of the charac- 
teristics of these regions allowed another application of the method. The 
lengths of two trp and five his deletions and one insertion were estimated. It 
was also possible to define quantitatively the total deletion or insertion length 
between the nuclease starting site and trp operon in one strain relative to the 
other strain. Such chromosomal changes can be silent and may not noticeably 
change the phenotype of the strains. 

Perhaps one generalization is noteworthy here. It was found that, for all 
phages and regions considered, computed weights for two transducing particle 
classes were strongly differentiated. The weights of more numerous classes 
were fourfold to 25-fold greater than that of the other class. The results of 
ENOMOTO (1 967) on composition of transducing fragments in fluAZZ-HI-flaK 
region located on unit 41 of S. typhimurium map (SANDERSON and ROTH 
1983)--i.e. close to the trp operon (unit 34) and purF gene (unit 49)-show 
that 94% of transducing particles active in transduction had ends located be- 
tween HI andflaK genes, and only 6% between FlaAIZ and HI genes. These 
results indicate again a strong differentiation in weights. OZEKI (1 959) sug- 
gested that only one particle class is active in transduction of purl or guaA 
markers (unit 54 of the linkage map). This may be an exceptional situation, 
because usually more than one particle class is active in transduction of a given 
marker (PEARCE and STOCKER 1965; ROTH and HARTMAN 1965; KEMPER 
1974), or again, a strong differentiation of weights did not allow the detection 
of more than one transducing particle class. The above data support the idea 
presented and applied in this paper of taking into account two transducing 
particle classes. Even if the third class existed, its weight should be small 
(perhaps of order and the class would not influence the cotransduction 
frequencies observed. 

It has to be noted that the efficiency of the transduction of markers by P22, 
which can vary by three orders of magnitude depending on the region of the 
chromosome, does not play a role in the model. This is because the cotrans- 
duction frequency depends in the model on the relative composition of trans- 
ducing particles (weights) and not on their number. Other factors, however, 
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such as the presence of hot spots for recombination in relevant regions and 
chi sites can certainly affect the accuracy of predictions. 

The present approach can be helpful in the quantitative characterization of 
phage mutant strains with increased or decreased transduction ability (HT and 
LT mutants, respectively). An interesting feature of some H T  mutants is that 
they give different cotransduction linkage for a given pair of markers (CHE- 
LALA and MARGOLIN 1976; SCHMIECER and BACKHAUS 1976) due to altered 
recognition of starting sites by the phage nuclease system. One H T  mutant 
(HT 12/4) was analyzed in this paper. The cotransduction data were available 
for the trp-cysB-purF region. The data allowed us to conclude that the HT 12/4 
starting site producing the most numerous particle class active in transduction 
of the cysB marker is different from the wild-type phage site. A decrease of 
recognition specificity ( i . e . ,  equalization of weights of transducing particle 
classes) was not noted for the mutant phage. 

Although this paper deals with the phage P22-S. typhimurium system, the 
approach is valid for other generalized transduction phages with affinity to 
other bacterial species, and, in particular, phage P1 of E. coli. 

We thank J. L. ROSNER for valuable comments during preparation of this manuscript. This 
work was supported by the Polish Academy of Sciences within Project 09.7. 
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APPENDIX 1: A METHOD FOR CALCULATION OF DISTANCES BETWEEN 
MARKERS FROM MULTIPLE POINT CROSSES 

Let us consider a chromosomal region of less than phage DNA length where 
three markers are located. Three markers have been chosen for clarity of 
presentation, but the approach can be easily generalized for a greater number 
of markers. Let A, B and C be point markers with coordinates 1, 1 + t and 
1 + U. Let us assume that there are two classes of transducing particles active 
in transduction of each marker. The particle ends in interval (0, 1) are s1 and 
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s2. The weights (relative numbers of the two classes) are w1 = w and w~ = 
1 - w .  Cotransduction frequency of markers B and C when B is the selected 
marker can be shown to equal 

2 

C wi[l - &,u(si)I[&i,~(si) + t 
i= 1 

siI[S~,t(si) + si - UI 
(AI) cl(t, U, $1, s27 w )  = 2 

w i l t -  S i I ( 1  - I t  - S i I )  
i=l 

Index 1 (c1) indicates that the first marker in a given pair is the selected one, 
index 2 (c2) indicates that the second marker is the selected one. One should 
bear in mind that a simple model of the recombination process is inherent to 
this equation; namely, that the transducing fragment forms first a duplex with 
the complementary region of the chromosome and then two crossovers occur 
at random sites. 

Similarly, when C is the selected marker, 

2 

C wi[l - &,u(si)][L.l(si) + t - $il[fio,Xsi) + si - ~1 
i= 1 

2 W i l U  -si1(1 - IU - S I [ )  

(A2) CZ(4  U ,  Slr s2, w )  = 2 

i=l 

Function do,b is defined as 

1 if a = s i 5 b  
0 if si < a or si > b &z,b(si) = 

Let us consider the situation when each one of three markers can be se- 
lected. Thus, six cotransduction data are available for the following pairs (first 
marker is the selected one): (A, B), (B, A), (B,  C ) ,  (C, B), (A, C) and (C, A). 
Let us denote these values by ai, i = 1, 2, - e ,  6, and compare the computed 
and experimental values. By applying formulas (Al)  and (A2) we get the fol- 
lowing set of six algebraic nonlinear equations: 

Cl(1, t ,  s27 w )  = a1 

CP(1, t ,  S I ,  $2,  w )  = a2 

with five unknown quantities; namely, t, U, sl, s2 and w .  
Sets of nonlinear equations are usually solved numerically through seeking 
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such values of the unknown variables that give the best fit between computed 
and experimental values (here: cotransduction frequencies). The criterion of 
fitness is commonly the minimization of a least-square-type function. In this 
paper the function 

(ai - aymP 2 ) b 

F =  
i= 1 ai 

was applied [u?”P is the computed counterpart of ai; see equations (1) and 
(2)]. Coefficients l/ai were chosen to render contributions of each cotrans- 
ducibility value approximately equal. [The occurrence of transductant col- 
onies is governed by the binomial distribution with cotransduction frequency 
being the probability of success and the number N of colonies tested being 
the number of trials. Standard deviation of the mean c (and the estimate 
of experimental random errors) is U = J c ( l - - c ) / N .  Hence the ratio 

only weakly depends on c if c is much less than 1 ,  

and contributions of each component of function F are approximately equal]. 
A numerical program was developed on the CD 6000 computer to seek the 

approximate solution, defined as the set of t ,  U, SI, s2 and w values, that 
minimizes function F.  Standard minimization subroutine from the CERN com- 
puter program library was used. One should have in mind, however, that 
function F may have not only one but several local minima. The values of 
unknown variables for these minima are recognized by the computer program 
as minimizing function F. One has to be extremely careful to perform the 
computations in such a way as to detect all local minima. The global minimum 
only yields the required solution of (A3)-(A8). 

- a y P  2 9 compare to 
ai i 

APPENDIX 2 
Expected distance between markers and standard deviation of the estimate as a function of 

cotransduction frequency 
~ ~ ~~~~ 

Cotrans- N = l  N = 2  N = 3  N = 4  N = m  
duction 

0.0 
0.05 
0.1 
0.15 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.667 0.236 
0.633 0.224 
0.600 0.212 
0.567 0.200 
0.533 0.189 
0.467 0.165 
0.400 0.141 
0.333 0.118 
0.267 0.094 
0.200 0.071 
0.133 0.047 
0.067 0.024 
0.000 0.000 

0.750 0.192 
0.644 0.139 
0.553 0.128 
0.491 0.125 
0.441 0.124 
0.373 0.120 
0.307 0.110 
0.257 0.097 
0.206 0.080 
0.154 0.061 
0.103 0.041 
0.052 0.021 
0.000 0.000 

0.800 0.160 
0.627 0.111 
0.535 0.110 
0.474 0.109 
0.424 0.105 
0.355 0.098 
0.294 0.088 
0.239 0.076 
0.187 0.063 
0.138 0.048 
0.092 0.034 
0.046 0.017 
0.000 0.000 

0.833 0.135 
0.619 0.098 
0.531 0.100 
0.472 0.098 
0.424 0.094 
0.346 0.084 
0.286 0.076 
0.228 0.063 
0.178 0.052 
0.131 0.041 
0.085 0.028 
0.042 0.015 
0.000 0.000 

1.000 
0.632 
0.536 
0.469 0.000 
0.415 for 
0.331 all 
0.263 c 
0.206 
0.157 
0.112 
0.072 
0.035 
0.000 
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Distance estimates, standard deviation and probability-density function for crosses with 
mutual substitution of selective and nonselective markers; N = 2 

0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.7 0.9 

CB 

0.05 

0.1 

0.15 

0.2 

0.3 

0.4 

0.5 

0.7 

0.9 

0.66 
0.11 
0.35 
0.63 
0.13 

0.58 
0.14 
3.1 
0.57 
0.15 
1.4 
0.52 
0.14 
0.60 
0.46 
0.13 
0.23 
0.42 
0.08 
0.13 
0.27 
0.04 
0.03 

10 

- 
- 
- 

0.56 
0.13 

0.54 
0.1 1 
6.0 
0.52 
0.12 
3.1 
0.50 
0.13 
1.2 
0.46 
0.11 
0.57 
0.39 
0.09 
0.31 
0.27 
0.04 
0.09 

16 

- 
- 
- 

0.48 
0.10 
6.4 
0.47 
0.10 
4.3 
0.47 
0.11 
1.7 
0.43 
0.10 
0.77 
0.39 
0.08 
0.56 
0.25 
0.06 
0.13 
- 
- 
- 

0.43 
0.1 1 
4.3 
0.42 
0.10 
2.3 
0.40 
0.10 
1.2 
0.36 
0.08 
0.64 
0.25 
0.04 
0.25 
- 
- 
- 

0.35 
0.1 1 
2.4 
0.34 0.29 
0.09 0.10 
1.6 1.9 
0.32 0.28 
0.07 0.08 
1.1 1.4 
0.24 0.22 
0.03 0.04 
0.41 0.61 
0.093 0.093 
0.014 0.014 
0.04 0.09 

0.23 
0.08 
1.4 
0.19 0.13 
0.04 0.04 
0.91 1.4 
0.087 0.074 0.041 
0.013 0.012 0.012 
0.17 0.69 2.6 

The following parameters are given in the table for each pair (cA, cB): expected 
distance between markers (upper number), standard deviation of the estimate (middle 
number) and the value of probability-density function (lower number). Values of cA and 
CS were grouped in classes defined as follows: for CA < 0.1, CB < 0.1 the classes were 
(0.01k f 0.0005, 0.011 f 0.005), k ,  I = 1, 2, . e . ,  10; for other CA and CB the classes 
were (0.05k f 0.025, 0.051 f 0.025), k ,  1 = 3, 4, + ., 20. The computed matrices are 
symmetric with respect to the diagonal; therefore, the data are given only for cB > cA. 
The data are not presented if less than ten sequences SI, S Z ,  e . . ,  SN, t, cA,  CB were 
assigned to the class as indicated by dashes. 

For N = 1, to get the exact values of distance and the probability-density function, 
one should use equations (9) and (lo), respectively. 


