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ABSTRACT 
Recent studies indicate that polymorphic genetic markers are potentially helpful in  resolving 

genealogical relationships among individuals in a  natural population. Genetic data provide oppor- 
tunities for paternity exclusion  when genotypic incompatibilities are observed among individuals, 
and  the  present investigation examines the resolving  power of genetic markers in unambiguous 
positive determination of paternity. Under the assumption that  the  mother  for each offspring in a 
population is unambiguously known, an analytical expression for  the fraction of  males excluded 
from paternity is derived for  the case where males and females may  be derived from two different 
gene pools. This theoretical formulation can also be used  to predict the fraction of births for each 
of  which  all but  one male can be excluded from paternity. We show that even when the average 
probability of exclusion approaches unity, a substantial fraction of births yield  equivocal mother- 
father-offspring  determinations. The number of  loci needed to increase the frequency of unambig- 
uous determinations to a high level is beyond the scope of current electrophoretic studies in most 
species. Applications of this theory to electrophoretic data  on Chamaelirium  luteum (L.) shows that in 
2255 offspring derived from 273 males and 70 females,  only 57 triplets could be  unequivocally 
determined with eight polymorphic protein loci, even though  the average combined exclusionary 
power of these loci  was 73%. The distribution of potentially compatible male parents, based on 
multilocus genotypes, was reasonably well predicted from  the allele frequency data available for 
these loci. We demonstrate  that genetic paternity analysis  in natural populations cannot be  reliably 
based on exclusionary principles alone. In  order to measure the  reproductive contributions of 
individuals in natural populations, more elaborate likelihood principles must be deployed. 

T HE determination of parentage of individuals 
from genetic data has  become an increasingly 

interesting activity  in population biology,  since it is 
of immediate importance to the study of mating 
behavior and genetic dispersal (SMITH and ADAMS 
1983; ELLSTRAND and MARSHALL 1985; HAMRICK and 
SCHNABEL  1985; MEACHER 1986; STANTON 1986) as 
well  as to the management of  captive animal popu- 
lations (MCCRACKEN and BRADBURY 1977; FOLTZ and 
HOOGLAND  1981; HANKEN and SHERMAN 1981). In 
many applications, assignment of maternal parentage 
for each individual is straight-forward (e.g. ,  mother- 
child pairing can be observed directly  without  much 
difficulty), so that  parentage analysis reduces to the 
question of paternity determination.  In this sense, 
the problem is reminiscent of human paternity anal- 
ysis, whose logic is well understood, though not 
without controversey (e .g . ,  see WALKER 1983; AICKIN 
1984). 

When genetic data  are available from mother-child- 
putative father trios, the likelihood  of paternity can 
be determined with inferential procedures of  ge- 
nealogical structure (THOMPSON 1975, 1976a,b; 

Genetics 118: 527-536 (March, 1988). 

MEAGHER and THOMPSON 1986). This has  been stan- 
dard practice in medicolegal context for nearly 50 yr 
(ESSEN-MOLLER 1938), but has  recently been criticized 
on grounds that: (1 )  it  can  sometimes result in 
erroneous paternity assignment (MAJUMDER and NEI 
1983), and (2) the resulting probability statement is 
alleged not to  have a sound statistical  basis (LI and 
CHAKRAVARTI  1985). Responses  to both criticisms  can 
be found in the  literature (e.g., VALENTIN 1984; 
ELSTON 1986; MICKEY, GJERTSON and TERASAKI 1986; 
THOMPSON 1986). With  genetic data, incompatibility 
of parent-child marker genotypes is nearly always 
conclusive proof of nonpaternity. Thus,  an alterna- 
tive procedure  for assignment of paternity has 
evolved, where the likelihood of paternity is derived 
from  the exclusionary data alone, without regard to 
the actual genotypic configuration of the male parent 
involved  in a paternity dispute (CHAKRAVARTI and 
LI 1983). 

If one adopts genetic exclusion criteria as the 
primary means of paternity identification, an obvious 
strategic requirement is to evaluate the efficacy  of 
biochemical markers of  varying  allele frequencies 
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with reference to their utility  in the assignment of 
paternity. The behavior  of  genetic  exclusion proba- 
bilities under varying  allele frequencies and  number 
of  alleles  has  been  extensively explored in the case 
where males and females are drawn from  the same 
population and  share common  allele frequencies (e.g., 
CHAKRABORTY and SCHULL 1976; CHAKRABORTY and 
FERRELL 1982; MEAGHER and THOMPSON 1986). 

In a well-defined, finite gene pool, as  in the case 
of a captive population, where both males and females 
are enumerable, it is not unrealistic  to  assume that 
the genotypic configurations of both parental gene 
pools are known  without error.  In  other words, it 
can be  assumed that  the multi-locus  genotypes for 
all  males and females  in the population are known, 
for any particular battery of  genetic  loci employed. 
MEAGHER (1986) has  discussed situations of  this  type. 
It is quite possible that some  genetic  loci  will  show 
allele frequency differences between the two  sexes, 
and this may  have a substantial effect on  the efficacy 
of the biochemical markers used. Moreover,  such a 
sex difference has  implications for  the evaluation  of 
exclusionary  power,  as well  as for  the determination 
of the likelihood  of paternity in any particular case. 

There  are many  aspects  of paternity evaluation 
that may  be influenced by differing allele frequencies 
among males and females. In this paper, our objective 
is to provide analytical  solutions for two questions. 
(1) Given a mother-offspring (M, 0) pair, what 
fraction of the adult males  of the population can  be 
excluded from paternity? (2) In what fraction of the 
births that occur in the population, can  all but one 
male  be excluded from paternity, ie., in what fraction 
of the offspring can the pedigree relationship of the 
mother-father-offspring trio be  unequivocally  estab- 
lished? From a strategic standpoint, the second ques- 
tion can be generalized to consider the probability 
distribution of the  number of non-excluded males 
for every mother-offspring pair in any  given popu- 
lation of finite size. 

MEAGHER (1986) discussed the implications  of the 
answers  to these questions  in the context of  ambig- 
uous determination of paternity and their relevance 
to the  extent  and spread of  genes  in a well-defined 
geographical area. The analytical  solutions presented 
in  this paper are based on  the logic described in 
CHAKRABORTY, SHAW and  SCHULL 1974; CHAKRA- 
BORTY, FERRELL and  SCHULL 1979), with the  gener- 
alization that  the allele frequencies are  different in 
the male and female gene pools  of the population. 
Since the  number of  biochemical markers showing a 
high degree of  polymorphism is rather limited  in 
most  practical situations (e .g . ,  MEAGHER 1986), we 
shall  also address a useful strategic question. (3) 
Which  combination  of  genetic markers will provide 
optimum information regarding  the expected pro- 
portion of offspring with unambiguous paternity? 

It may  be noted that some  of these questions had 
been addressed in the context of human paternity 
analysis, but most often such  analysis either consid- 
ered equal allele frequencies in the two parental gene 
pools, or  are based on average exclusion  probability 
afforded by a mother-child pair, and thus disregards 
the variation  of  exclusion  probability  over different 
genotypic combinations  of the mother-child pairs 
observed in a natural population (CHAKRABORTY, 
FERRELL and SCHULL 1979; SELVIN 1980; CHAKRA- 
BORTY and  FERRELL, 1982, 1983; SMOUSE and  CHAK- 
RABORTY 1986). The following  mathematical treat- 
ment is proposed to  circumvent  these  limitations, and 
furthermore it is applicable  when the potential par- 
ents are drawn from finite populations of  known 
size. Thus, even though the questions addressed here 
are not novel in parentage analysis,  to our knowledge, 
an analytical treatment of these issues  with unequal 
allele frequencies in finite populations of  mates  has 
not been presented before. 

MATERIALS  AND METHODS 

Although the loci employed to examine genetic variation 
may exhibit dominance relationships among alleles (such 
as  blood groups, or histocompatibility antigens), and al- 
though some loci are sex-linked, we shall consider only 
autosomal codominant loci for  the  purpose of this paper, 
since we shall employ only this type of loci in the application 
to  follow.  Because  of the finiteness of the population, the 
observed allele frequencies in the two sexes may not be the 
same (see MEAGHER 1986), and we shall therefore  present 
all computations with unequal allele frequencies for  the 
two sex groups. 

Exclusion probability: Let P I ,  p 2 ,  . . . , p k  and q1, q 2 ,  
. . . , q k  be the allele frequencies of k codominant alleles at 
an autosomal locus  (say, the Ith locus) in males and females, 
respectively. The exclusion  probability ( P E J  for such a 
system will have  values  given by (CHAKRABORTY  and FERRELL 
1982): 

f(  1 - pi)' with probabilitypi[ 1 - qi + $1 

One can thus obtain k(k  + 1)/2 different values of the 
exclusion  probability for  a codominant, k-allele system, 
depending  upon  the observed (M, 0) genotypic pair (see 
Table  1  for  a three-allele example). The average exclusion 
probability for such a system  is  given by 

k 

E(PEl)  = 2 p i  . (1 - PS)' * (1 - Qi + q?)  
i= 1 

k 

+ X 2 qiqj . ( p ,  + p i )  * (1 - P C  - Pj)' * X =  1 

= 1 - 2a20 + a30 + 3(alla21 - a321 
- Z ( d 1  - a22), (2) 

where arS = xi=l pi . qi ,  for r,  s = 0, 1, 2, 3. This 
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TABLE 1 

Expected  frequencies of mother-offspring pairs and their  probabilities of genetic exclusion of male genotypes for an autosomal locus 
with three alleles 

(A) Expected  population  frequencies of (M, 0) pairs  under  random  mating: 3 alleles 

Maternal  genotypes 
Offspring 
genoty Pes A I A I  A1A2 

A I A I  PI6 PlQlP' P l Q l Q S  0 0 0 

A1Az P2Qf Q142(Pl + P 2 )  P2Q1QS P l d  P m 4 3  0 
AlAs  P S Q :  PSQIQ2 Q I Q S ( P l  + P S I  0 PlQ2Q3 P lP% 

AzAr 0 P2QlP2 0 P2QZ P 2 W 3  0 
AzAs 0 P 3 W 2  P2914S P3Q2 42Qs(P2 + P S I  P 2 4  

AsA3 0 0 P S Q N S  0 Ps424s P343 

AlA3 A2A2  A2A3  AsA3 

(B) Exclusion  probabilities  for different (M, 0) pairs: 3 alleles 

Maternal  genotypes 
Offspring 
genotypes A I A I   A I A P   A l A s  A2A2  A2A3 AsAs 

A I A I  (1 - p1Y (1 - P I ) '  (1 - P d 2  
AlA2 (1 - p2I2  (1 - p l  - p 2 Y  (1 - P A 2  (1 - P d 2  (1 - P I ) '  

APAP (1 - P d 2  (1 - P d 2  (1 - P2)' 

&A3 (1 - P S Y  (1 - P2)' (1 - P S T  (1 - p 2  - ps)' (1 - P 2 Y  

ASAS (1 - P S I 2  (1 - PS)' (1 - PS)' 

AlA3 (1 - P S I 2  (1 - P S Y  (1 - P I  - p 3 Y  11 - p1Y (1 - PI)' 

Note: Exclusion probabilities are not  computed for incompatible (M, 0) pairs. The value off, is the frequency of the ith allele of the 
paternal gene pool, and  the value of qi is the frequency of the  ith allele in the maternal  gene pool. 

represents  the most general expression of the average 
exclusion probability for  a  codominant multiallelic  locus, 
where males and females are from  different gene pools, 
shown  explicitly for  the first time here.  This general 
formula reduces to the equation 11-B of CHAKRAVARTI  and 
LI (1983) when p i  = qi, for all i; ax., when the male and 
female parents are drawn  from  the same gene pool. This 
special  case had also been discussed by SELVIN (1980), who 
did not reduce his expression to similar algebraic closed 
form. 

When several such systems are employed for paternity 
analysis, the combined probability of  exclusion [ P E ( C ) ]  is 
given by 

L 

PE(C) = 1 - n (1 - PEL) ,  (3) 
I =  1 

where PEL is the exclusionary probability afforded by the 
Zth system (BOYD 1954; CHAKRABORTY,  SHAW  and  SCHULL 
1974). 

In Equation 3, the specific  value  of PEl can be that of 
the average of all mother-offspring genotypic pairs or that 
of a specific (M, 0) pair.  Furthermore, since PEL can take 
different values for  different (M, 0) genotypic pairs (Table 
1 ,  Equation l ) ,  there will be a probability distribution of 
observed P E ( C )  values for all (M, 0) pairs with any given 
battery of genetic markers. Such a distribution can be 
numerically evaluated using Equations 1 and 3, and can 
be contrasted with the observed distribution of P E ( C )  values 
in a given situation, as we shall see later. The use  of 
Equation 3 thus provides an expected proportion of 
excluded males for  the specific  loci used (giving the esti- 
mated effectiveness of the choice of genetic loci). 

Proportion of offspring  with  unambiguous  paternity: In 
a finite, closed population with N males, one of the N males 
is obviously the actual biological father of each offspring. 
Paternity can be unambiguously established if  all  males but 

one  are excluded on  the basis  of genotypic information. 
CHAKRABORTY, FERRELL and SCHULL (1979) provided a 
theoretical solution for this  probability in the process  of 
solving a more general problem. Their treatment, however, 
depends  on equality of  allele frequencies in males and 
females, and used the average exclusion probability. We 
shall relax these two conditions in  the following way. Let 
P E ( C )  denote  the combined  probability  of  exclusion (Equa- 
tion 3) for  a given (M, 0) pair and  a choice of genetic loci. 
Since one of the N males  is the  true biological father,  the 
probability that all ( N  - 1) non-fathers will be excluded 
from paternity is given by [PE(C)IN- ' ,  using Equation 2 
of CHAKRABORTY, FERRELL and SCHULL (1979). This  for- 
mulation, however, is dependent  on  the probability of 
exclusion afforded by the particular (M, 0) pair, which  will 
vary from  pair to pair. Therefore, we need to evaluate the 
expectation of [PE(C)IN-' for each genotypic pair in the 
population. 

Let N be the  number of  males  (possible fathers) in the 
population, as before. Let R be the total number of births 
with  which we are concerned. Denote the (M, 0) pair for 
the  ith  birth (i = 1, 2, . . . , R )  by (M, O),, so that  the 
probability of  exclusion for  the  ith  birth may be denoted 
by PE(i) (evaluated by Equation 2 and combined for all 
systems by Equation 3). For the ith birth,  the probability 
that only one male will remain nonexcluded (unambiguous 
paternity) is given by 

mi = [PE(i)lN-'. (4) 

Now, let us introduce  a sequence of indicator variables {Xi ; 
i = 1, . . . , R }  defined by 

1, if the  ith  birth has  only one male nonexcluded, 

0, otherwise (5) 
x i =  [ i.e., the  father is unambiguously determined 
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The variable X = I Xi, will indicate the total number 
of births for which the paternity determinations are 
unequivocal. 

The probability distribution of X can then be  worked 
out with'a  probability generating function approach  (FELLER 
1968); i .e.,  

Prob. ( X  = r )  
R 

= Coefficient oft' in n [(l - P, )  + nTTlt], (6) 

for some arbitrary variable t ( -  1 < t < 1). The expectation 
and variance of X are given by 

z =  I 

R 

E(X) = x TTT, ( 7 4  
i =  I 

and 
R 

V(X) = Tj(1 - Ti), (7b) 
i =  1 

respectively.  Because  of the asymmetry of the distribution 
of X ,  these two expressions are, however, not very useful 
for any inferential purposes in practice. Nevertheless, for 
a completeness of the analysis  of  this distribution they are 
noteworthy. 

The probability function of X ,  represented by Equation 
6, is not computationally attractive. However, it is easy  to 
evaluate such functions by the  approach suggested by 
CHAKRABoRTY and SCHULL (1976), sequentially adding each 
birth (i = 1 ,  2, . . . , R ) .  

This formulation also  yields an analytically  closed expres- 
sion for  the expected proportion of births, for each of 
which the paternity determination is conclusive  (see APPEN- 

DIX for  a proof). This is precisely the ( N  - 1)-th moment 
of P E ( C ) ,  which can be obtained from  the fact that  the 
distributions of PEI  for 1 = 1, 2, . . . , L (Equation 2) are 
mutually independent,  and is given by 

where the rth moment of { 1 - PEL}  can  be evaluated from 
Equation 2 as 

where a,,@(l) = x psqp ,  in which p,'s and q i s  are the allele 
frequencies at  the Ith  locus  in  males and females, 
respectively. 

Thus, to determine  the expected proportions of births 
in the population for which the paternity can  be determined 
unambiguously, it is not necessary to enumerate all extant 
(M, 0) pairs for  the multilocus genotypic combinations. 
The allele frequencies at each locus provide this informa- 
tion, as long as  we assume that  the male and female gametes 
unite at  random to form  the  offspring genotypes, and  that 
the different loci employed are independent. 

In field  surveys  of natural populations, it is possible to 
enumerate  the distribution of the  number of  genetically 
possible male parents  for all extant (M, 0) pairs (see e.g., 

MEACHER 1986), which  may  be contrasted with the above 
expectation for such observations. For example, if we 
survey the genotypes of all N male parents of the popula- 
tion, the probability that m (0 < m < N )  males (one of 
whom  is the  true  father) will not be excluded is given by 

form = 1, 2 , .  . . , N - 1. (10) 

Since P E ( C )  varies for  different (M, O)i pairs, the ex- 
pected distribution can be obtained by taking the expec- 
tation of (10) over  all (M, 0) pairs. Thus, the probability 
of m genotypically  possible  male parents is given by 

(" ; 1) E{[1  - PE(c)]"-L [ P E ( C ) ] N - m }  
(1 1) 

= (" ; 1 )  ;g (m ; 1) ( -  1)" E{[PE(C)]N-"+", 

where the last term can be obtained using Equations 8 and 
9 (see APPENDIX for proof). 

APPLICATION 

Biochemical markers in Chamaelirium luteum (L.): 
MEACHER (1986) assayed  biochemical  polymorphism 
at  eight  genetic loci (PGI, PGM, GOT2,  GOT3,  TP12, 
TPIs ,  GDH and MPI) from 70 females  and 273 males 
from a natural  population of C. luteum (L.) from 
Orange County,  North  Carolina.  These  polymorph- 
isms  were  used  in an analysis of statistical likelihoods 
of paternity (THOMPSON 1976a,b) for 2255 offspring 
seed  sampled  from  known  maternal  genotypes. 

We shall  use  these  same  data  to  show  that  in  spite 
of the  appreciable  average  exclusionary  power  of 
such a battery of genetic  markers,  conclusive  deter- 
mination of paternity  cannot  be  resolved by exclu- 
sionary  analysis  alone. Table 1 of MEAGHER  (1986) 
gives the allele frequencies  at  each  of  these  eight loci 
in  the  parental (male and female) populations. Before 
considering  these  data for the  present analysis, we 
note  that  there are two  typographical  errors  in  Table 
1 of MEACHER (1986): (1). Female allele frequencies 
are based on a sample of 70 individuals, and (2) the 
fourth allele of the  MPI locus  has a frequency  of 
0.007  among  females.  The  eight loci were  shown  to 
segregate  independently of each  other,  and for two 
systems (PGM and  TPIs),  the allele  frequencies dif- 
fered significantly  in the two  sexes. In  another two 
systems (TP13 and MPI),  the  paternal  gene pool 
contains  alleles  that  are  absent  from  the  maternal 
gene  pool,  and  one system  (TPIB)  exhibits poly- 
morphism  only in the  paternal  gene pool. These  data 
are ideal  to  illustrate  computations  of  the  exclusion 
probabilities for  the case  with unequal allele frequen- 
cies in  the two  parental gene pools.  Use  of  Equations 
1 and 2, along  with  the allele frequency  data of 
MEACHER  (1986;  Table 1) gives the locus-specific 
exclusionary  chances  presented  in  Table 2. In this 
table, we present  the average exclusion  probability 
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TABLE 2 

Locus-specific paternity exclusion probabilities ( P E )  and  their  ranges for C. luteum (L.), as  surveyed by MEAGHER (1986) 

Probability of exclusion (PE)b  

Average Minimum Maximum Most  likely 

Locus” alleles PE Rank 
No. of 

PE Rank f’ PE Rank f PE Rank f 

PGI 4 0.347 (1) 0.040 ( I )  0.121 0.880  (5) 0.059 0.176 (2) 0.440 
PGM 3 0.215 (3) 0.010 (2) 0.132 0.812 (7) 0.096 0.065 (3) 0.620 
GOT2 2 0.071 (6) 0.0 (7)  0.079 0.839 (6) 0.077 0.007 (6) 0.844 
GOT3 2 0.009 (7) 0.0 (8) 0.007 0.982 (4) 0.009 8.1 X l O - 5  (7) 0.984 
TPI2 2 0.007 (8) 4.9 X l O - 5  (4)  0.993 0.986 (3) 0.007 4.9 X 1O-5  (8) 0.993 
TPIs 3 0.082 (5) 1.6 X l O - 5  (5) 0.014 0.992 (2) 0.004 0.008 (5) 0.897 
GDH 2 0.112 (4) 0.0 (6) 0.137 0.716 (8) 0.133 0.024 (4) 0.730 
MPI 5 0.287 (2) 0.008 (3)  0.180 0.996 ( 1 )  0.002 0.270 ( 1 )  0.361 

Combinedd 0.728 0.056 2.9 X lo-* 1 .o 2.9 X 10-14 0.459 0.053 

D The abbreviations for loci are: phosphoglucose isomerase (PGI), phosphoglucomutase (PGM), glutamate oxaloacetate transaminase 
(two loci: GOT2 and  COTS), triose phosphate isomerase (two  loci: TPI2 and  TPIs), glutamate  dehydrogenase  (GDH), and mannose-6- 
phosphate isomerase (MPI). ’ The P E  values were computed by using Equation 1 for each possible (M, 0) genotypic pair, along with the relative frequencies of such 
(M, 0) pairs in the population (represented as f). The average PE was computed for each system using Equation 2. 

c f is the population frequency of (M, 0) pairs yielding the respective PE values. Numbers in parentheses are rankings of loci,  based 
on respective PE values. 

d Combined values of PE were computed by using Equation 3, substituting the average, min, max, and most  likely PE values for each 
locus. The frequencies for these respective combined PE values are obtained by multiplying the locus-specific relative frequencies of the 
respective (M, 0) pairs which  yields these values. 

(PEL) for each system, as well as the  maximum, 
minimum,  and most likely values of PEL for  particular 
(M, 0) pairs,  along with the relative frequencies with 
which such PEL values might  occur in a random (M, 
0) pair  drawn  from  the  population. 

Several observations may be made  from this table. 
First, the average  exclusionary  power depends  upon 
the  number of alleles as well as the allele frequencies. 
A system with more alleles may not always provide 
better  average exclusionary power, as is evident in 
the case of  the MPI locus, which exhibits five allelic 
variants but which has less average exclusionary 
power than  the PGI system, which has four segre- 
gating alleles in the  population. Second, the  ranking 
of the loci  with respect to  the  average exclusion 
probability (shown in  parentheses  in  Table 2) is not 
necessarily the same as  that of the most likely, max- 
imum,  or  minimum values of PEL. Third, since for a 
two-allelic locus, no male can  be  excluded  when  both 
mother  and  offspring  are heterozygous ( P E L  = 0) ,  
the choice of loci for which the average exclusionary 
power is maximum may lead to  a  substantial fre- 
quency of (M, 0) pairs for which such loci will be 
completely uninformative with respect  to an exclu- 
sionary  event. In  fact, the LOD score  computations 
of paternity (GURTLER 1956; MEAGHER 1986) will  also 
be  uninformative  for such loci when M and 0 are 
both  heterozygous. 

Equation 3 may be  applied  to  these PEI values to 
examine  the  exclusionary  power  of  various combi- 
nations of biochemical loci. In Figure 1, we perform 
this in  a  graphic  fashion. The loci are combined in 

1.0- ....................................................................... ........ ........ ........... Upper 95% ......... 
0.8 - 

Average 

a 

P ........................................................................... n. 

.e‘ 

........ 
0.2 - ....... Lower 5% ........ 

..”* 
t.*** 

0.0 I I I 1 , I I 
1 2 3 4 5 6 7 a 

NUMBER OF LOCI 

FIGURE 1.-The 90% confidence limits of paternity exclusion 
probabilities (dashed lines) for C. luteum (L.), obtained by sequentially 
adding the 8 loci (according to rankings of their average PE values 
shown in Table 2). 

this graph in a  sequential manner, picking the best 
system (that with rank 1,  from single-locus analysis), 
the best pair  of loci (ranked 1 and 2)) the best triplet 
(ranked 1, 2 and 3), and so on, to all eight loci. The 
uppermost dashed line of Figure 1 represents  the 
approximate  upper 95% values of PE(C)  for  the 
specific choice of  combinations  of loci, according to 
the  ranking of average P E ( C ) ,  while the lowest dashed 
line is the lower 5% values of P E ( C ) .  The middle 
solid line is the trajectory of the average PE(C)  values 
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FIGURE 2.-Frequency distributions of the numbers of geneti- 
cally possible male parents for 2255 (M, 0) pairs in c. luteum (L). 
Panel (a) gives the observed distribution, (b) the expected distri- 
bution for  the 2255 (M, 0) pairs based on their actual genotypes, 
z n d  (c) the expected distribution for all  possible (M, 0) pairs, 
based on allele frequency data. 

as the loci are combined in order of the rank of the 
average PEl values. This  figure indicates that  there 
is a wide range of  possible  exclusion  probabilities for 
(M, 0) pairs in the population, even  when the genetic 
loci are optimally chosen for paternity analysis. Fur- 
thermore, it shows that even for  a battery of genetic 
loci that has a high exclusionary  power on average, 
there remain a considerable proportion of (M, 0) 
pairs for which  very  few  males  can  be excluded. 

As these computations are based on  the theoretical 
expectations of P E ( C )  values for specific  (M, 0) pairs, 
it is worthwhile to compare how these expectations 
tally  with observations. Figure 2a performs this  task, 
where the observed proportions of excluded males 
for 2255 (M, 0) genotypic pairs assayed by MEAGHER 
(1986) are plotted; these can  be compared with the 
distribution of P E ( C )  computed for the actual geno- 
types  of these same (M, 0) pairs (Figure 2, b  and c). 
This graph shows that when each mother-offspring- 
putative father trio is scored for each  of the eight 
genetic loci considered here,  there  are 57% (M, 0) 
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pairs for which  less than 10% of the males can be 
excluded from paternity (the expected proportion of 
such (M, 0) pairs based on allele frequency data is 
63%). This clearly demonstrates that exclusionary 
criteria alone cannot fully  resolve the problem  of 
paternity assignment. We might add that this feature 
is not unique to the present data,  and  a high fre- 
quency  of nonresolving cases  will remain even if the 
battery of genetic markers were extended to enhance 
the average probability  of  exclusion  to a value ap- 
proaching unity, as  suggested by the confidence belt 
of Figure 1. 

Unambiguous  determination of paternity  and dis- 
tribution of number of excluded males  in  population 
of finite size: MEAGHER (1986) earlier evaluated the 
empirical distribution of the  number of  genetically 
possible  male parents for 575 seeds, collected from 
this natural population of C .  luteum, where the seeds 
and their maternal parents could either be assigned 
to particular males  with high probability by LOD 
score  analysis or by excluding all but one male  in the 
population. For the remaining 1680 seeds, paternity 
assignments was not possible,  because the LOD score 
values are not very discriminatory. Equations 10 and 
11 enable us  to compare the emprical distribution of 
potential male parents for all  2255  seeds  with their 
expectations, based on allele frequency counts in this 
population. 

In addition to the observed distribution of the 
numbers of  genetically  possible  male parents for all 
2255 mother-offspring pairs (Figure 2a), in the other 
two panels of Figure 2 we plotted the expected 
distribution for these same (M, 0) pairs (panel b), 
and finally the expected distribution for all  possible 
(M, 0) combinations, given the  reported allele fre- 
quencies (panel c). It is clear that even though the 
average exclusion  probability  in  this  case is quite high 
(73%), in a large majority  of  cases  (219812255 = 
97.5%), paternity determination by exclusion criteria 
alone is ambiguous. Therefore, this figure also  estab- 
lishes that unambiguous assignment of paternity in 
a  natural population is not generally  feasible,  based 
solely on exclusionary  events. 

DISCUSSION AND CONCLUSION 

In terms of the basic  objectives  of  this paper,  the 
above considerations clearly  show that  the  number 
of  genetically  possible  male parents for any  given (M, 
0) pair represents a substantial fraction of the head- 
count of  available  males  in the population, even  when 
the average exclusion  probability afforded by the (M, 
0) pairs is high. As a consequence of  this observation, 
we  may also conclude that if we rely  completely on 
exclusionary events, paternity can  be  unambiguously 
assigned for only a small proportion of births. 

Two issues  may  be  raised by  way  of objection, 



Exclusion of Paternity 533 

y = .01 + . 8 5 X  
N = 2255 

. ’. 

EXPECTED INCLUSION P R O B A B I L I T Y  

FIGURE 3.-Regression  analysis of observed  and expected pro- 
portions of genetically  possible  male  parents in C. luteum (L). The 
data used are the same presented in  panels (a) and (b) of Figure 
2. 

relative to the use  of the  data  for these analyses. First, 
the theory discussed here  depends heavily on  the 
assumptions that  the  offspring genotypes are formed 
by random union of  male and female gametes with 
respect to all  loci employed, and  that  the males are 
all unrelated, so that  the probabilities for each male 
can be assumed to be independent  and identically 
distributed. Second, the eight-locus analysis examined 
here does not reflect the situation where the average 
probability  of  exclusion can be much higher than 
73%.’ As we shall see below, these points do not 
change any  of our conclusions  in a qualitative way. 

Random  union  of  gametes and independence  of 
male  genotypes: The theory developed here assumes 
random union of gametes from  the male and female 
gene pools  to form  the  offspring genotypes. As we 
considered samples  of seeds collected from this pop- 
ulation, this may not be the case in reality, if there 
are any  selective factors involved in the polymorph- 
isms  of the loci used. Furthermore,  the assumption 
of independence of  male genotypes may not hold if 
there is a genealogical structure in the population. 
To see the effect of departures  from these two 
assumptions, we performed a regression analysis  of 
the  number of  genotypically  possible  male parents 
for all  of the 2255 seeds (observed versus expected). 
If the two assumptions mentioned above are correct, 
such a regression is expected to be linear through 
the origin with a slope  of  unity. 

In the present regression analysis (Figure 3), the 
overall fit was quite good (F1,2253 = 16702; P < 
O.OOOl), suggesting a very tight linear relationship 

between observed and expected inclusion  probabili- 
ties (1 - P E ( C ) ) .  The amount of variance explained 
by the linear regression is 89%. The intercept (a = 
0.013 k 0.002), although significantly different  from 
zero, was nevertheless very small and is probably 
more an artifact of the large sample, and holds  little 
biological  significance. The slope of the regression ( b  
= 0.851 2 0.007) was significantly and convincingly 
less than unity, indicating that expected exclusion 
probabilities are  an optimistic view  of the  degree of 
resolution afforded to a given battery of  genetic  loci 
under  natural conditions. 

A slope  of  less than unity is probably a reflection 
of the underlying genealogical structure of the pop- 
ulation. It has been shown elsewhere that if there 
are genealogical relationships among  the potential 
mates in the population, exclusion  probabilities will 
be smaller than  that used in our calculations (MAC- 
CLUER  and  SCHULL 1963; SALMON and BROCTEUR 
1978). The reliability  of  exclusionary events for  un- 
ambiguous assignment of paternity will  be even 
smaller than  that predicted by our theory, which 
should thus be  viewed  as a “best  case” result. 

There  are some clear “outliers” in Figure 3, that 
can be easily explained. The outliers above the regres- 
sion line all come from 5 maternal sibships,  which 
provide (M, 0) genotypic pairs having exclusion 
power much worse than  the expected. The scattered 
outliers below the line are  from two maternal sibships 
whose  exclusionary  powers are better than  the ex- 
pected probability  of  exclusion. 

Number  of loci needed to  attain  reasonable  value 
for  exclusion  of  all-but-one  male  from  paternity: 
The analysis considered here uses a battery of eight 
loci yielding an average probability  of  exclusion  of 
73%. One generally  aims at developing a battery of 
loci  with much higher average exclusion  probability. 
Consider the probability  of excluding all-but-one 
male  in a situation where each of L loci  provides the 
same exclusion probability, PE. In a population of N 
potential fathers,  the probability that all-but-one male 
will be excluded can be extracted from Equation (3), 
and is seen to be 

PEN-1 = [ l  - ( 1  - PE)LIN- l .  (13) 

Figure 4 plots  this function, where each of the L loci 
are taken to be biallelic, codominant, and with  allele 
frequencies p and 1 - p .  Note that  for maximally 
informative two-allele  loci ( p  = 0.5), we need at least 
50 such ideal loci to exclude all-but-one male from 
paternity with  probability larger than 0.99, given N 
= 273. For  less efficient loci ( p  # 0.5), the  number 
of  loci needed is much larger. 

To draw analogy  with our illustration with C. 
luteum, we can take multiples of the same eight-locus 
systems to evaluate PEN- I ,  to determine when  this 
probability exceeds 0.99. We  would  have  to at least 
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FIGURE 4.-Probability of unequivocal assignment of paternity, 
as a function of  number of equivalent genetic markers. The solid 
circles represent  the replicates of the set of eight loci surveyed for 
C. luteum (L). The solid lines are  for sets of bi-allelic  loci  with allele 
frequencies p and (1 - p ) ,  where p values are given in the figure. 

triple  the  number of available markers  to  make this 
strategy work (as shown by the dark circles in  Figure 
4). It is not feasible with traditional  electrophoresis 
to  detect  much  additional allozymic variation, since 
the eight  polymorphic loci used here were chosen as 
a  result of an intensive survey involving more  than 
25 enzyme systems. 

Use of  the restriction fragment  length polymorph- 
isms (RFLPs) may provide  additional  power  in this 
regard, since such  polymorphic DNA markers are 
relatively more  abundant  than  the electrophoretic 
ones (COOPER and SCHMIDTKE 1984). One may argue 
that with enough RFLPs, we could achieve any level 
of  genetic  resolution  desired (Lr and CHAKRAVARTI 
1985). We should  reiterate  here  that  even  when  the 
average probability of exclusion is high,  there will be 
a  substantial  fraction of (M, 0) pairs that will have  a 
low power of exclusion. With a  large  number of DNA 
markers, we will also have loci that  are not  indepen- 
dently  segregating, and will require  a  more  elaborate 
haplotype analysis, the problems with which are  not 
fully resolved (SMOUSE and CHAKRABORTY 1986). In 
addition,  the exclusionary power of RFLPs is also 
limited because of the low heterozygosity of individ- 
ual site-specific polymorphisms and  the necessity of 
construction and hybridization of new probes [see 
e.g., QUINN et al. (1987) and comments by HILL 
(1987)l.  Some of the difficulties attendant to the 
RFLP technology can, however, be  circumvented by 
the use of the hypervariable minisattelite probes 
developed by JEFFREYS, WILSON and THEIN (1985) 
and used successfully in  human, mice, cats, dogs, and 
birds for establishing and/or disproving genealogical 
relationships (JEFFREYS et al. 1987; JEFFREYS and 
MORTON 1987; BURKE and BRUFORD 1987; WETTON 

et al. 1987). The recently  developed variable number 
of  tandem  repeat (VNTR) markers  are also a  prom- 
ising technology in this regard (NAKAMURA et al. 
1987). 

Given that a strictly exclusionary solution to the 
problem of parentage assessment is not  attainable in 
most natural populations, there is need  for an alter- 
native procedure  that optimally apportions total pa- 
ternity in the population among  the  candidate males, 
without the necessity of assigning a  definite  father to 
any particular  mother-offspring  pair. We will show 
in a  subsequent paper (P. E. SMOUSE,  R. CHAKRA- 
BORTY and T. R. MEACHER, unpublished  data) that 
instead of an exclusionary solution, the  standard 
paternity analysis approach  can be adapted  for this 
purpose. Similar procedures have been  explored in 
the context of constructing genealogical relationships 
from genetic  data (see e.g., THOMPSON, 1976a,b; 
MEAGHER and THOMPSON 1986). We will show that 
such an  approach offers  the  opportunity  to model 
reproductive success both as a function of size and 
social dominance of a  candidate male and as a  func- 
tion of the phenotypic,  kinship, and spatial relation- 
ships between mating  partners. 
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APPENDIX 

Derivations of Equations 8 and 9: Note that  from 
Equation 3, we have 

[PE(C)IN"I 
r L - I N -  1 

= 5' (" ') (-I) ' [  fi (1 - P E L )  
, = O  1= 1 I' 

Taking expectations of both sides  of Equation (AI), and 
using the fact that  the L loci are  independent, we have 
Equation 8 of' the text. 

To derive Equation 9, note that  for  the lth locus, 

(1 - PEl)' = ( -  l)'{PEl)t, 
t = O  (3 

in which PE! has a distribution given by Equation 1 ,  where 
pi and qi values represent  the allele frequencies in males 
and females for the lth locus (the suffix 1 is suppressed by 
simplicity  of notation). 

Therefore, 
A 

E [ { P E ~ ) ' I  = (1  - pi)"pi(l - qi + q?)  
i =  1 

Usin the binomial expansions for  ( 1  - pi)*' and (1 - p i  
- p j ' ,  we have 

(1 - p i )2 '  = x (:) ( -  1ypy 
2t 

v = o  
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This, in turn, yields 

Again, if  we use the binomial expansion 

and note  that 

algebraic simplification of (A2) leads to Equation 9 with 
the notation 

k 
a, = 2 pl * 4:. 

i =  I 

Derivations of Equations 10 and 11: In a population 
of N adult males, we assume that  for each birth,  the 

biological father is one of these males. From the genotypic 
combinations of mother-offspring (M, 0) pairs, however, 
not all fathers can be unambiguously determined. If PE(C) 
represents  the probability  of  exclusion obtained for a 
specific  (M, 0) pair, combining information on all L loci, 
the probability that exactly m, (0 < m < N ) ,  males are not 
excluded is given by the binomial expression 

form = 0,  1, 2 , .  . . , N  - 1;  
since one of the N males  is the  true  father. 

However, since PE(C) varies over the  different (M, 0) 
pairs, the probability  of m genotypically  possible  male 
parents  for a large array of offspring in the population is 
given by 

which reduces to Equation 11,  since 


