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ABSTRACT 
There is some empirical  evidence  that a fetus with an HLA antigen  not  present in its mother has 

a higher  survival  than a fetus sharing antigens with its mother. We have developed  both  single 
locus and two-locus theoretical models to examine this mode of selection.  First,  this  immunologically 
based  model appears to have  the  potential to maintain many alleles at a single locus and to result 
in an excess of heterozygotes when selection is strong. Second, substantial  gametic  disequilibrium is 
maintained  between  alleles at two loci for this selection mode when recombination is that  observed 
between  HLA loci A ,  B,  and DR. Overall, it appears  that this mode of selection has  the  potential to 
strongly affect genetic  variation in the HLA region. 

T HE  major histocompatibility complex  (MHC) 
loci in mammals are  among  the most poly- 

morphic loci known.  For  example, the HLA (human 
leukocyte  antigen) loci A and B have about 15 and 
30 alleles, respectively, in many Caucasian popula- 
tions  (ALBERT,  BAUER and MAYR 1984). In addition, 
the frequencies of these alleles are  more even than 
expected  from  neutrality  (HEDRICK  and THOMSON 
1983; HEDRICK et al. 1986; KLITZ et al. 1986), an ob- 
servation  consistent with the hypothesis that some 
form  of balancing selection is important in maintain- 
ing variation at these loci. Furthermore,  there is 
substantial statistical association of alleles at  different 
HLA loci, gametic  disequilibrium, more  than ex- 
pected from neutrality (HEDRICK  and THOMSON 1986) 
and having  a pattern of disequilibria consistent with 
selection in the HLA  region (KLITZ and THOMSON 
1987). 

One possible mode of balancing selection at  the 
HLA loci that was proposed two decades  ago  (CLARKE 
and KIRBY 1966;  WARBURTON 1968) involves mater- 
nal-fetal interaction that results in a net heterozygote 
advantage.  This hypothesis suggests that a  fetus with 
an  antigen  not  present in its mother may have a 
higher survival than a  fetus  sharing  antigens with its 
mother.  In  other words, if the fetus is antigenically 
incompatible with the  mother, i e . ,  the  mother would 
reject  a skin graft  from  an individual of the fetal 
genotype  (considering only the MHC loci), then  the 
fetus would have higher viability. Although this is a 
controversial  hypothesis (e .g . ,  MCLAREN  1975;  GILL 
1983), there is some  recent  evidence  from  humans 
that couples  having  a history of spontaneous  abor- 
tions are  more likely to share  antigens  at HLA loci 
than  control  couples,  an  observation  consistent with 
this model  (summarized by THOMAS et al. 1985). 
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Previously, CLARKE  and KIRBY (1966) and WAR- 
BURTON (1968) showed that this mode of selection 
gives a stable polymorphism for two alleles and 
multiple alleles, respectively [see also HULL (1966)l. 
Here we first  extend  these  findings  for  a single locus, 
giving equilibrium alleIic and genotypic  frequencies 
as well as the mating-type  frequencies. Next we will 
develop two-locus, two-allele theory  and give the 
equilibrium gametic frequencies. It is obvious from 
this theory  that  such  maternal-fetal  interactions  can 
result  in single-locus polymorphism and two-locus 
disequilibrium. Finally, we discuss the potential im- 
portance of this selection mode  for  maintenance of 
genetic variation at HLA loci. 

SINGLE LOCUS 

Let the frequency of allele Ai at  the A locus be pi 
and assume for  the  present  that  the genotypes  occur 
in Hardy-Weinberg  proportions.  Examining  the pos- 
sible mating types and  their  progeny,  there  are  three 
qualitatively different  mating types or maternal-fetal 
combinations.  Table  1 gives the  different types of 
matings when there  are two alleles at  the A locus. 
The first  type of mating, e.g., A I A I  X A I A I ,  occurs 
when the male has no alleles that are  different  from 
the female, i.e., the  parents  share two antigens at 
locus A. As a  result, all progeny have two alleles that 
are present  in  the female. The second type of mating, 
e.g., A l A l  x A I A Z ,  occurs when the male shares  one 
allele with the female  but has one  that is different. 
Therefore, half the progeny from this mating  have 
an allele different  from  the  mother  and half do not. 
Note that  the reciprocal of this mating  type, A I A z  X 
A I A l ,  has different consequences because the male 
has no alleles that  are  not  present in the female. The 
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TABLE I 

Frequencies  of  different  mating types and their  progeny  when  there are two alleles 

Progeny 

Female Male mating A I A I  A IAZ  AzAz 
No. of antigens 

shared 
Frequency of 

AIAI x AIAI 2 Pf p': (1 - s) 
x A h  1 2pfp2 pfpe (1 - 5 )  pfp2 (1) 
X A2A2 0 p:p1 P:pH (1) 

third  type of mating, e.g., A l A l  X AzA2 ,  occurs  when 
both alleles in the male are  different  from those in 
the female. In this case, all progeny have an allele 
that is different  from  the  mother. 

Equilibrium allelic frequencies: Let us now  cal- 
culate the expected  change  in allelic frequency and 
the equilibrium allelic frequency from  the  frequen- 
cies given for  the progeny in Table 1. Notice that all 
the progeny of a  mating of a male with  two antigens 
shared with a  female have a fitness of 1 - s and all 
the progeny of a  mating with no  shared  antigens 
have  a fitness of 1 .  For  a  mating in  which the male 
shares only one of his antigens with the female, half 
the  progeny have a fitness of 1 and half 1 - s. 

Using these fitnesses and  summing  the  three  prog- 
eny  columns  in Table 1, then 

- 
w = 1 - s(1 - p l p 2 )  (la) 

and 

p : ( l  - s )  + % f i l P 2 ( 2  - s) - P l W  
A P I  = - 

W (1b) 
= s p l ( 1  - p l )  (% - Pl) /W.  

The only stable, polymorphic  equilibrium  occurs 
when P I S  = %. 

If we carry out  the same approach  for  three alleles, 
then 

- w = 1 - s(1 - p l p 2  - p l p S  - p Z p 3  - 3p1pnpd  (2a) 

and 

APi = sp i [ ( l  - p i )  (% - p i )  - ~ P ~ P z P ~ ] / W *  (2b) 

The only stable, polymorphic  equilibrium  occurs here 
when the  term in brackets is zero for all three alleles. 
Therefore,  at equilibrium 

(1 - p l )  (Y2 - p l )  = ( 1  - p 2 )  (Y2 - p 2 )  

p :  - %p1 - P A P 2  - %) = 0 

which is the  quadratic 

with solutions 

p 1 e  = 3/4 * ( p 2  - V4). 

Therefore, p l e  = p 2 ,  or 3/4 - p z e .  This holds for 
all alleles and given that 2pi = 1 ,  then all p i  = Y3. 

For k alleles 

and 

Using the same logic as above, then p i ,  = l / k ,  i.e., all 
alleles have the same  equilibrium  frequency  that is 
equal  to  the reciprocal of the  number of alleles. 

We can also demonstrate  that  a new allele can 
always invade  a given set of alleles. Let us  define 
from (3b) 

Q l )  = A P l / s p l .  ( 4 4  

If h(0) > 0, then A I  can always invade.  For two  alleles 

h(0) = 1/ [2(1  - s ) ]  > 0 (4b) 

h(0) = 1/{2[1 - s (1  - p n p s ) ] )  > 0,  (44 

for  three alleles 

and  for  four alleles 

> 0. (4d) 

Similarly, it can be shown that h(0) > 0 for any 
number of alleles. 

As an illustration of the  effect of this selection 
mode on allelic frequency,  Figure 1 gives the  change 
in the frequency of allele A I  when it is below the 
equilibrium  frequency for 2 ,  4,  and 8 alleles. Here 
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FIGURE 1.-Expected change in frequency for A I ,  when the 
frequency of all other alleles is (1 - p l ) / ( k  - 1) and s = 0.2. 
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FIGURE 2.-Equilibrium heterozygosity for different  numbers 
of alleles when s = 0.1 or 0.5 (solid  lines) and when there  are 
Hardy-Weinberg  proportions (broken line). 

the frequency of  all the  other alleles is assumed  to 
be (1 - pl)/(k - 1) and s = 0.2. The change in 
allelic frequency is positive  between 0 and ple and 
declines  in magnitude as the  number of  alleles 
increases. 

Genotypic  frequencies: Let us relax the assump- 
tion that  the genotypes occur in Hardy-Weinberg 
proportions. If we let Pij be the frequency of the 
genotype with  alleles i and j ,  then  for two  alleles, the 
frequencies of the genotypes after selection are 

Pi1 = (1  - S)P:/Z 

Pi2 = ( 2 ~ 1 ~ 2  - v2sP12)h 

Pi2 = (1 - S)P$/iii 

where 
- 
w = 1 - sp: - sp$ - % sP12. 

If we assume that  the population is at equilibrium, 
then Pi2 = P I 2  = P1ze and 

P 1 2 e = ( 2 p l e p 2 e -  %sP12e)/(l -sp:e-sp%e- %SP12e). 

Setting PI, = pze = Y2, the equilibrium frequencies 
for these alleles, and  rearranging this equation, we 
get the  quadratic 

SP:ze - 2P12e + 1 = 0. 
and solving for P12= we find 

P12e  = 
1 - (1 - s)1/2 

S (64  

The equilibrium frequencies of the homozygotes are 
then 

Pile = P 1 2 e  = Y2(1 - P12c) .  

For three alleles,  using the same approach 

P 1 2 e  = [2p1#2e - Y2~P12e( l  - p ~ e ) l G  
where 

w = 1 - s(p:e + p % e  + p2se) - %s[P12e(l - pse) 

+ P l S e ( 1  - p 2 e )  + P 2 ~ e ( l  - P l e ) l *  
After setting ple = p2e = p3, = Y', this  becomes 

SP:ze - P1ze + Y9 = 0 

and 

P1ze = [ 1 - (1 - Y$+S)1'*]/2S. (6b) 

Repeating the same approach for  four  and five  alleles, 
it is apparent  that  for k alleles 

2 4 
SP:2e - - k -  1 + k2(k  - 1) 

= o  

and 

All other heterozygotes  have the same frequency at 
equilibrium. The total  heterozygosity for k alleles is 
then 

H =  P i je  
K(k - 1) 

2 
and  the equilibrium frequency of the homozygotes 
is 

Pile = ( l / k )  (1 - H ) .  (7b) 

Figure 2 gives the equilibrium heterozygosity after 
selection for  different numbers of  alleles  when s = 
0.1 and s = 0.5. As a comparison, the  Hardy- 
Weinberg proportion of heterozygotes, (k - l ) /k ,  is 
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also given in Figure 2 .  When s = 0.5, there is a 
substantial excess  of heterozygotes for all numbers 
of alleles. For  example, when there  are five alleles, 
the observed heterozygosity is 0.877 while the  Hardy- 
Weinberg heterozygosity is 0.8. When s = 0.1, there 
is much smaller excess, e.g., with  five alleles, the 
observed heterozygosity is 0.8125. 

Mating  type  frequencies: First, assuming  Hardy- 
Weinberg  proportions, let us calculate the frequency 
of the  different types of matings for  different  num- 
bers of alleles. For two alleles, the frequency of 
matings  where two antigens are  shared is 

M 2  = p :  + p ;  + 2pplps + 2p1p2 + 2p1p; 
2 

= 2 p f  + 4pp:pz 
i =  1 

For k alleles, the same  approach gives 

k k k  

M 2  = x p f  + 4 2  2 p f p f .  (84 
i =  1 i<j 

The frequency of a  mating in which one  antigen is 
shared, given that  there  are two alleles, is 

M I  = 2pBp2 + +1p% + 2p?p2 + 2p1p% 

= 4 p l p * ( p :  + p z ) .  
For k alleles, this becomes 

k 

M I  = 2 2 P S ( 1  - p i )  + 2 x C P i p j  
i =  1 i<j 

X [ 1 - 2Pipj - ( 1  - p i  - pi )*] .  (8b) 

Finally, for  the  frequency of matings in which there 
are  no  shared antigens with  two  alleles is 

M o  = 2p:Pz. 

For k alleles, this becomes 

k 

M o  = 2 p 3 1  - p J 2  
i =  1 

+ 2 2  x pip i ( l  - p i  - p j ) 2 .  ( 8 ~ )  
i<j 

Figure 3 gives the  proportions of the  different 
mating types expected for  different  numbers of 
alleles using  expressions @a),  (8b),  and (8c) when all 
p i  = l/k. When there  are five alleles or less, the most 
common  mating  type is M 1, i e . ,  when there is one 
allele shared.  When  there  are  more  than five alleles, 
the  mating types in which there  are  no  shared alleles 
is most common,  reaching  a  frequency of over  80 
percent when there  are 20 alleles. Remember that 
selection occurs  against  fetuses  from  mating types 

2 5  10 15 I 
k 

FIGURE 3.-Proportions of the mating types, M , ,  where i is the 
number of alleles the male and  the female share, and k is the 
number of alleles in the population. 

M 1  and M 2  so that as M O  becomes more  common, 
the potential for selection is less. 

TWO LOCI 

Assume that  a second locus B has alleles B 1  and 
B2 with frequencies 41 and q2 and that  gametes A I A 2 ,  
AIBz ,   A2B1 ,  and AZBZ have frequencies xl, X Z ,  xg, 
and x4, respectively. Let c be the  rate of recombination 
between the two  loci, D = x1 - p l y 1 ,  a  measure of 
gametic disequilibrium between the loci, and Gij be 
the frequency of the genotype  composed of gametes 
i and j ,  e.g., G 13 is the frequency of genotype AIB I 
AzB I .  

Let us extend selection to  include  both loci. Because 
there  are 100 mating types and 10 progeny types we 
will only describe  the case  in  which the female is a 
double homozygote, A I B IIA I B I , a single heterozy- 
gote, A I B I I A I B z ,  or a  double  heterozygote, A I B I I  
A2B2 (all the  other seven female  genotypes fit into 
one of these  categories). As a further  shorthand, we 
will just give the male gamete rather  than  the com- 
plete male genotype.  Table 2 gives the twelve differ- 
ent categories with the  number of antigens  shared 
between the female and  the male gamete. For ex- 
ample, in the first row when a  female A I B I I A I B I  
receives a male gamete A r B  1 ,  i e .  both  antigens in 
the male are in the female, all progeny are A I B I I  
A I B l  and  share alleles  with the  mother  at  both loci 
so that we can  designate the fitness in general  as WAB 

or specifically as 1 - t. In  the second row, one allele 
in  the male gamete is shared with the  female  geno- 
type, A I ,  and  one is not, B Z ,  making the fitness W A  

or 1 - s. As we will see below, it is useful to use the 
right-hand fitness parameterization given in Table 2 .  

Using these fitness values, the genotype  frequen- 
cies after selection (after loss from maternal-fetal 



Maternal-Fetal  Interactions 209 

TABLE 2 

Examples of the  three  female  genotypes; single homozygote, single  heterozygote,  and  double  heterozygote,  the  number of antigens 
male  gametes share with  them  and  the possible progeny  genotypes  and  their  fitness 

Progeny 

Female Male antigens  shared  Genotypes Fitness 
No. of 

AIBIIAIBI  X A I B I  2 AIBIIAIBI  WAB 1 - f 
x AIBZ 1 AIBIIAIBz WA 1 - s  
x AzBl 1 AIBIIAzBI WB 1 - s  
X AzAz 0 AIBIIAzBz 1 1  

AIBIIAIBz X AlBl 2 AIBIIAIBI ,   AIBzIAIBI  
x AIBZ 2 AIBIIAIBz,   AIBzIAIBz 
x AZBI 1 AIBIIAzBI,  AIBzIAzBI 
x AzBz 1 AIBIIAzBz,  AIBZIAZBZ 

WAB 1 - f 
WAB 1 - t 
WB 1 - 3  

WA 1 - s  

A I B I I A z B ~  X AlBl  2 A I B I I A I B I ,   A z B z I A I B I ,   A I B Z ~ A I B I ,   A z B I I A I B I  WAB 1 - t 
X AIBZ 2 AIBIIAIBz,   AzBzIAIBz,   AIBzIAIBz,   AzBIIAIBz WAB 1 - t 
x AZBI 2 AIBIIAzBI ,   AZBZ~AZBI,   AIBzIAzBI ,   AzBIIAzBI  WAS 1 - t 
x AzBz 2 AIBIIAzBz,  AzBIIAzBz,  AIBz&Bz,  AzBzIAzBz WAB 1 - t 

~~~~~ ~ ~ 

interaction) are then Let us first consider the situation in  which there is 
no recombination, c = 0, because we can obtain some 
analytical results for this  case.  With c = 0, the G i 1  = (XI - c D ) ~ ( ~  - t)E 

Gi2  = ((XI - cD) [ ~ 2 ( l  - sq2 - t q 1 )  + cD(1 - t)] genotypic frequencies become 

+ (x2 + CD) [ X l ( l  - sq1 - 4 2 )  
Gi1 = x:(l - t)E 

- cD( 1 - t)]}/Eii 

G h 2  = (x2 + c D ) ~ ( ~  - t)E 

Cis = {(XI - cD) [ ~ s ( l  - sp2 - t p l )  + cD(1 - t)] 

+ (x3 + CD) [ X l ( l  - sp1 - tp2) 

- cD( 1 - t)]}/Eii 

Gbs = ((x2 + cD) [ ~ s ( l  - SXI - S X ~  - h 2 )  

+ cD(1 - t)] + (x3 + CD) 
x [ x p (  1 - SXI - sx4 - txs) + cD(1 - t ) ] }E 

G i 4  = {(XI - cD) [Xq( l  - S X ~  - S X ~  - & I )  (10) 

- cD(1 - t)] + (x4 - CD) 
x [ X I (  1 - sx2 - sx3 - a,) - cD( 1 - t)]}/Eii 

G h 4  = ((x2 + cD) [ X q ( l  - p 2 ~  - p ~ t )  - cD(1 - t)] 

+ (x4 - CD) [x2(1 - sp1 - t p 2 )  

+ cD( 1 - t)]}E 

Ghs = (XQ + c D ) ~ ( ~  - t)E 

G 5 4  = ((x3 + cD) [X4( 1 - sq2 - tq1) - cD(1 - t)] 

+ (x4 - CD) [xs(l - sQ1 - 4 2 )  

+ cD(1 - t ) ] }E  

G i 4  = (x4 - c D ) ~ ( ~  - t ) f i  

where W is the mean fitness, ie., the sum  of  all the 
right-hand expressions above excluding 5. 

Gi2  = ~ 1 ~ 2 ( 2  - s - t)E 

Gh2 = x$(l  - t)E 

G i 3  = xlxs(2 - s - t)E 

G6s = x 2 ~ 3 [ 2  - 2x1s  - 2x45  - ~ 2 t  - ~ 3 t ] E  

G i 4  = X1X4[2  - 2~x2 - 2~x3 - x l t  - ~ 4 t ] E  
(1 1) 

G 6 4  = XpXq(2 - s - t)E 

Ggs = ~ g ( 1  - t)E 

G54 = XsX4(2 - s - t)E 

G L 4  = x:(l - t)E. 

The frequency of gamete A l B l  after selection is 

X; = G;1 + %(Giz + Gis + G i 4 )  

so that 

Ex;  = x:(l - t )  + %X1X2(2 - s - t )  

+ %x,xs(2 - s - 1 )  

+ 1/2X1x4(2 - 2SX2 - 2sx3 - x l t  - X4.f). 

This expression simplifies to 

5x;  = %x,(2 - s - t )  + %x:(, - t )  

+ 5'2Je,X4[S(XI + x 4 )  - (s - t )  ( x p  + XS)]. 
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The expressions for  the  other gametes are 
- 
wxh = 5/2x2(2 - s - t )  + &%(s - t )  

+ %x2x3[s(x2 + x3) - (s - t )  (x1 + x411 
- 
wx; = % x g ( 2  - s - t )  + 5/23C$(s - t )  

f %x2x3[s(x2 + x.3) - (s - t )  (x1 + x4)] 

Z X i  = &4(2 - S - t )  f Y2X$(S - t )  

+ %x1x4[s(x1 + x4) - (s - t )  (x2 + X 3 ) l  

and  the mean fitness is 
- w = 1 - %(s + t )  + %[(x1 - x4)2 

+ (x2 - x3l21 (s - t )  

+ (2s - t )  [XIX4(XI + x4) + x2x3(x2 + X 3 ) l .  

Because of the symmetry of the selection model, 
we can  assume x1 = x4 and x2 = x3. Furthermore, 
at equilibrium P I  = p 2  = q1 = q 2  = Y2 so that x 1  
= Y4 + D and x2 = Y4 - D making x2 = Y2 

- XI. With these  substitutions, then 
" 

wx; = &1(2 - s - t )  + x 3 2 s  - t ) x 1 .  

The first solution of this expression is 

x 1  = 0 with D = - Y4. 

Furthermore, assuming that x1 # 0, then 
- w = 1 - %(s + t )  + xq(2s - t )  

x32s - t )  = (2s - t )  2(x9 + x;). 

x: = 2 x 9  + 2(% - x 4 3  

so that by substitution 

Assuming  that 2s # t ,  then 

and 

(4x1 - 1) (2x1 - 1) = 0. 

The solutions of this expression are  then 

x1 = '/2 with D = '/4 
x1 = '/4 with D = 0. 

Using standard stability techniques (e.g., FELDMAN, 
FRANKLIN  and THOMSON 1974), it can be shown that 
when t 2 0 the equilibrium with D = 0 (expression 
13c), i .e. ,  x1 = x2 = xg = x4 = Y4 is stable if and 
only if s < tl2. The equilibria with D = Y4, i.e., x1 

= x4 = Y2 and x2 = x3 = 0 and D = - Y4, i.e., 
x1 = x4 = 0 and x2 = xg = Yz when t 2 0 are 
stable if and only if s > tl2. 

When t = 2s, then  the expression for Zxi 
becomes 

(x114) (4 - 3t) = (x114) (4 - 3t).  

As a  result, there is a  neutral  curve and whatever the 
initial gametic  frequencies are, they  remain  there. 

TABLE 3 

Recombination level (e) necessary  to  generate  an  equilibrium 
with D # 0 for given  selective  values,  below  these  values, D = 

0 equilibrium is present 

s 1 2 2 s  t = 2 s  t = l - ( l - s ) '  t = 3 / 2 s  l = s  

0.1 - <0.002 <0.008 C0.014 
0.2 - - <0.008 <0.018 <0.031 
0.4 - - <0.047 <0.055 <0.080 

0 -  = Only D = 0 equilibrium present. 

TABLE 4 

Level of disequilibrium D expected for given s and t values for 
the  recombination  amount  between HLA loci A, B, and DR 

t = 312s t = s  

C s = 0.1 s = 0.2 s = 0.4 s = 0.1 s = 0.2 s = 0.4 

0.008 (A-B) 0.0 20.183  20.231 20.162  20.216 20.240 
0.010 (B-DR) 0.0 20.161  20.226 20.131  20.206 20.234 
0.018 (A-DR) 0.0  0.0 20.205 0.0 20.162 k0.221 

Now let us assume that c > 0. In this case, we must 
iterate  the  expressions  for  the  genotypic  frequencies 
given above. Using the results from c = 0 as  a 
background, we can  organize the results, given that 
there is recombination, in a similar manner.  When t 
> 2s ,  then  the only equilibrium  present is D = 0. In 
addition,  when t = 2 s )  the only equilibrium is for D 
= 0, unlike the c = 0 case. If t < 2 s ,  then  there  are 
D # 0 equilibria if the recombination is  low enough. 

Table 3 gives several such cases, including t = 
Y2s and t = s. The middle  column gives the 
multiplicative case, i.e., if wAB = (1 - s)* = 1 - t so 
that t = 1 - (1 - s ) ~ .  For example,  in  the case 
analogous  to multiplicative fitness values and assum- 
ing s = 0.1 (making t = 0.19))  then if c < 0.002 
there  are D # 0 equilibria. The least restrictive 
situation here is when s = t. For example,  when t = 
s = 0.1, then if c < 0.014, there  are D # 0 equilibria. 

How large is the disequilibrium  generated by these 
selection and recombination values? Table  4 gives 
the D values for  the  map distances between the  three 
HLA loci A ,  B ,  and DR. Note that because P I  = q 1  

= Y2, and D = 1/40', where D' is the normalized 
disequilibrium  measure of LEWONTIN (19641, and is 
the  proportion of the maximum  disequilibrium pos- 
sible. For  example, when t = Yzs, s = 0.2, and c 
= 0.008, then D = a0.183 (D' = 20.732). For 
these  parameters which are  not  much  larger  than 
necessary for D # 0 equilibria given c = 0.008, there 
is 73.2 percent of possible disequilibrium generated. 
From  Table 4 and  other simulations, it appears  that 
when the D # 0 equilibrium are present,  then  gen- 
erally the  extent of disequilibrium is large. 
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TABLE 5 

Frequency of mating types in  which  the  male  parent  shares 0, 
1, or 2 alleles with  the  female  parent  for  HLA-A, or -B  in a 

Danish  sample (LARSEN and HANSEN 1987) 

MQ MI M2 

A 0.514 0.452 0.034 
B 0.699 0.288 0.013 

A o r B  0.384 0.422 0.172 

DISCUSSION 

A balancing selection model based on  the immu- 
nological hypothesis developed to explain recurrent 
spontaneous abortion appears to have the potential 
to maintain a large amount of genetic polymorphism. 
As with  incompatibility  systems  in plants, the ex- 
pected change in allelic frequencies and  the equilib- 
rium allelic frequency decline as the  number of  alleles 
increases. As a result, genetic drift should become a 
stronger influence on allelic frequencies when there 
are more alleles (e.g., WRIGHT 1965). An  excess  of 
heterozygotes is predicted by this  selection mode and 
occurs when there is strong selection.  However,  with 
weaker  selection the genotypes are virtually in Hardy- 
Weinberg proportions. 

There  are three classes  of mating types under this 
scheme, i .e.,  the male parent shares 0, 1, or 2 alleles 
with the female. As shown in Figure 3, the mating 
type with no  shared alleles is most frequent when 
there  are many  alleles  (with a relatively  even distri- 
bution) in the population and  the mating type  with 
two shared alleles  most common when there  are few 
alleles. Table  5 gives the expected frequencies of the 
mating types  based on  the observed  haplotypic fre- 
quencies for HLA-A and B with  12 and 20  alleles, 
respectively,  in a Danish sample (LARSEN and  HANSEN 
1987). Notice that  the  proportion of matings that 
share  no antigens is largest for both loci individually 
and that only a small proportion  share two antigens. 
When both loci are considered simultaneously, 61.6% 
of the matings share  one or more antigens (2.2% 
shared  three or  four antigens). 

Because the DR locus  has  fewer  alleles than A or 
B ,  more matings should share alleles at DR than  at 
A and B .  Higher antigen sharing could, therefore, 
possibly result in more selection from maternal-fetal 
interactions at DR than at A or B .  In fact, it appears 
that  the  rate of recurrent spontaneous abortion is 
higher  for DR than  for A or B (THOMAS et al. 1985), 
consistent with  this prediction. 

In addition, this  selection mode has the potential 
to generate gametic disequilibrium between  alleles at 
HLA  loci.  Given that  the effect of a second  locus is 
less than  that of the first, i.e., t < 2s, then  the known 
linkage between  HLA  loci  can generate disequilib- 
rium. For example, when c = 0.008, the recombi- 

nation level  between A and B ,  and s = t = 0.1, 65% 
of the disequilibrium possible is generated. 

The other model suggested  as an explanation for 
the high rate of recurrent spontaneous abortion in 
couples that  share HLA antigens is the genetic hy- 
pothesis (e.g., SCHACTER, WEITCAMP and JOHNSON 
1984; HEDRICK 1988). This model  assumes that there 
are recessive lethals in the HLA region that may 
become  homozygous  in the progeny of parents that 
share antigens. However, HEDRICK (1988) has sug- 
gested that this  would  seem  to depend  upon high 
disequilibrium between lethals and  a  number of  HLA 
antigens. In addition, such a selection mode would 
not result in stable polymorphism or stable disequi- 
librium at  the HLA  loci. 

There  are a  number of other modes  of  selection, 
including resistance  to pathogens, segregation dis- 
tortion,  and  non-random mating that have been 
suggested to  be important  for major  histocompati- 
bility  complex  loci  [see HEDRICK, THOMSON and KLITZ 
(1987) for  a review].  However, along with the path- 
ogen resistance mode, selection  involving maternal- 
fetal interaction shows the most promise towards 
explaining genetic variation in the HLA region. 
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