
1a). Appendix: the diffusion model. 
 
We consider the modelled part of the leaf to be a porous medium, comprising a layer of 
thickness h, bounded by an upper and lower surface, Su and Sl. The continuous diffusion 
equation is discretised using the finite volume method (see Eymard et al. 2000). The 
general idea is to write the flux balances of individual “control volumes” and to assign 
one discrete unknown, Ci, to each volume. The fluxes at the boundaries of the volumes 
are then discretised by a centered finite difference method. The model considers 
concentric volumes around a patch centre, with radial coordinates, r and θ and lateral 
surfaces Sr and Sr+dr as shown below.  
 

 
 
We assume the patch to be perfectly  circular and the porous medium to be homogeneous 
in the r and θ directions and use  a “z-averaged” 2-D model that averages A and Ci across 
the leaf thickness (the z dimension). Under these conditions the average concentration, Ci, 
only varies with the radius, so that the treatment is computationally 1 dimensional. Each 
control volume, which is a torus of volume V, is determined by its position at a radius r  
from the patch center and its radial diameter δr. In each volume there are three exchange 
processes: (1) a flux from the atmosphere, through the surfaces Su and Sl that is 
determined as gs

c(Ca – Ci),  where gs
c, the stomatal conductance to CO2, is set to 0 for the 

patched areas; (2) a sink term, the net CO2 assimilation rate, A, which in these constant 
temperature and light conditions is a function of Ci only; (3) a lateral diffusion flux from 

z

h 

Su 

Sl 

Sr 

r

r+δr



Fick´s Law, which depends on the diffusion coefficient for CO2 within the leaf, Dc´ and is 
given by –Dc´∇Ci. The diffusion coefficient within the leaf is reduced from that in free 
air Dc, (= 15.1 mm2 s-1 or 617 µmol m-1 s-1 at 25oC, Monteith 1973) by a  factor φ (the 
“effective porosity” defined by Parkhurst, 1994). In steady state, the fluxes balance the 
sinks so that for any particular control volume, using the z-averaged values of Ci  in the 
expression of the diffusion of the fluxes and source term in the balance equation yields : 
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where n is the outward unit normal vector to Sr ∪ Sr+dr. Note that in the model A must be 
expressed per unit volume, not per area. 
 
Making explicit the areas of Sr, Sr+δr, Su and Sl gives: 
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and : 
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where the underscore indicates a spatial coordinate.  
 
The  volume V of each torus is hπ((r+δr)2-r2), and this and Equations (2) and (3) can be 
substituted into (1) to give: 
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Let N be the number of control volumes needed to represent the modelled part of the leaf. 
The discrete unknowns are the values of the CO2 molar fraction in each of these volumes 
k, k = 1,...,N., denoted Ci

(k)
k=1,...,N. If r is the radius of the interface between control 

volumes k and k+1, the partial derivative ∂Ci /∂r(r) is approximated by (Ci (k+1) – Ci
(k))/δr. 

Equation (4) is discretised for each volume k, k=1,...,N. We assume that the outer 
boundary of the modelled part of the leaf is far enough away from the patch so that the 
lateral diffusion flux can be considered to be zero, so that ∂Ci/∂r(r+δr)  for the last control 
volume is zero. We then obtain a non linear system of equations, the unknowns of which 
are Ci

(k) k=1,...,N. It can be shown that this system has at least one solution (see Gallouët & 
Herbin 2005), which can be obtained as a limit of a sequence constructed by a fixed point 
monotonic method, (see Herbin, 2004). To fit the model to experimental data,  δr was set 
to be equal to the pixel length, which is 0.15 mm.  The program then iterates to find φ, the 



reduction factor for Dc, that produces the minimum root mean square relative error 
between Ci values estimated from the model and Ci calculated along an arbitrary 
horizontal transect across the Fq´/Fm´ image, passing through its centre. 
 
The inputs to the model were typical leaf thickness from leaf sections,  gs

c and Ca from 
the gas exchange measurements during patching, and values for the coefficients a, b and 
c from the hyperbolic function relating A to Ci (A = [(aCi)/(b+Ci)]-c), and the  slope and 
intercept coefficients of the linear regression of 1/Ci on Fm'/Fq', both determined 
measured prior to patching. The model was only used where Ci ≤ 400 µmol mol-1, 
because at higher values, the Fq'/Fm' versus Ci relationship becomes poorly determined 
due to saturation (Fig 1). 
 


