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ABSTRACT 
While the genetic  consequences of inbreeding and small population size are of fundamental 

importance in  many areas of  biology,  empirical research on  these phenomena has proceeded in the 
absence of a well-developed  statistical  methodology. The usual approach is to compare observed 
means and variances with the expectations of Wright’s neutral, additive  genetic  model for quantitative 
characters. If the observations  deviate  from the expectations more than can  be accounted for by 
sampling  variance of the parameter estimates, the null  hypothesis is routinely rejected in favor of 
alternatives invoking  evolutionary  forces  such as  selection or nonadditive gene action. This is a biased 
procedure because  it treats sequential  samples from the same  populations as independent, and because 
it ignores the fact that the expectations of the neutral additive genetic model will rarely  be  realized 
when  only a finite number of lines are studied. Even  when genes are perfectly additive and neutral, 
the variation among the properties of founder populations, the random development of linkage 
disequilibrium  within  lines, and the variance in inbreeding between  lines reduce the likelihood that 
Wright’s expectations will be realized in  any particular set of  lines. Under most experimental designs, 
these  sources of variation are much too large to be ignored. Formulas are presented for the variance- 
covariance structure of the realized  within- and between-line  variance under the neutral additive 
genetic model. These results are then used to develop  statistical  tests for detecting the operation of 
selection and/or inbreeding depression in  small populations. A number of recommendations are made 
for the optimal  design of experiments on drift and inbreeding, and  a method is suggested for the 
correction of data for general environmental effects.  In general, it appears that we  can best understand 
the response of populations to inbreeding and finite population size  by studying a very large number 
(>loo) of self-fertilizing or full-sib  mated  lines in parallel with one or more stable control populations. 

T HE genetic  consequences of inbreeding  and small 
population size are  of importance  in  many  areas 

of biology. Population  bottlenecks,  through  their in- 
fluence  on  random  genetic  drift  within loci and link- 
age disequilibrium  between loci, are  thought to play 
a major  role  in  the  speciation  process  (MAYR  1963; 
TEMPLETON 1980;  but  see BARTON and CHARLES- 
WORTH 1984). The deleterious  consequences of in- 
breeding  are believed to be involved  in the evolution 
of the  mating systems of many  plants  and  animals 
(CHARLESWORTH and CHARLESWORTH 1987).  In- 
breeding  depression is also  a  serious concern  in selec- 
tive  breeding  programs (FALCONER 198l),  in the 
maintenance of endangered species C SOUL^ 1986),  and 
in the  protection of human welfare (CAVALLI-SFORZA 
and BODMER 197 1). Finally, the  genetic stability of 
control lines is an implicit  assumption  in  many  exper- 
iments  in  population  genetics  (HILL 1972a-d), and 
uniformity  of  genetic  stock is an essential requirement 
for many  areas of biomedical  research (FESTING 
1979). 

There is therefore a need  for a  statistical theory  for 
the analysis of  the dynamics of quantitative  characters 
in  finite  populations. T h e  expectations  are  already 
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well-understood for the case of  additive  gene  action 
(WRIGHT 1951).  Under  these  circumstances,  and  in 
the  absence  of  selection,  the  expected within- and 
between-population  genetic variances, u&,(O)( 1 - F )  
and 2u&,(O)F, are  proportional  to  the  genetic  variation 
in the base population, u&,(O), and to the  expected 
degree of inbreeding, F.  Although  the  within-popu- 
lation  variance  declines to zero and the betweenpo- 
pulation  variance  builds up  to 2u&,(O), the  expected 
mean  phenotype  over all populations  remains  stable 
in  time. 

ROBERTSON (1 952) showed that  the situation is 
more complicated  with  dominance. T h e  presence  of 
rare recessive  alleles  can  cause an initial  inflation of 
the  genetic  variation within  populations and can  alter 
the  rate  of  divergence  of  population  means.  The 
limiting  values of the within- and between-population 
genetic  variances due  to variation  in the base  popula- 
tion  are  the  same  as in the case of  additivity,  but  there 
is an overall  change  in  the  mean  genotypic  value 
caused by inbreeding  depression. Similar  complica- 
tions  arise if there  are epistatic interactions  between 
loci (HILL 1982; GOODNIGHT 1987). 

In  contrast  to  the  considerable  attention  that has 
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been given to  the expected dynamics of neutral  quan- 
titative characters, studies on  the variation around  the 
expectations are relatively rare (BULMER 1976,  1980; 
AVERY and HILL 1977,  1979; WEIR, AVERY and HILL 
1980;  COCKERHAM and WEIR 1983;  LYNCH and HILL 
1986). The theory  developed in these  papers is essen- 
tial for evaluating the consistency of observational 
data with expected  patterns,  but has had  remarkably 
little influence on  the design and analysis  of empirical 
studies. Observed increases in the genetic variance 
within inbred  populations are generally attributed  to 
the dominance effect described by ROBERTSON (RAS- 
MUSON 1952;  BRYANT, MCCOMMAS and COMBS 1986) 
although such changes are also  possible  with additive 
genes in populations with linked loci and/or variable 
pedigree  structure. Many published studies on in- 
breeding depression exist in  which there was inade- 
quate  or  no control and  no  attention given to  the 
nonindependence of sequential samples or  the impor- 
tance of genetic drift. 

In this paper,  methods are developed  that allow 
tests of the null hypothesis that observed  genetic 
changes in  small populations are consistent with a 
neutral  additive  gene system. The general  approach 
will be to assume that L independent  replicate lines, 
each with expected effective size Ne, are isolated from 
a base population with additive  genetic variance uh(0). 
The mean phenotypes, and  the additive genetic vari- 
ance within and between lines, are  then  monitored 
over t = 0,K generations. These have expected values 
of jig(t), Z&(t), and gi(t)  respectively, but when only a 
finite  number of lines is observed, the realized values 
p(t) ,  u&(t), and ui( t )  will vary around  the expectations 
from  experiment  to  experiment. Due to imperfections 
in the estimation procedure,  the observations i ( t ) ,  
Vgw(t),  and Vi( t )  will also deviate  from the  true realized 
values somewhat. The main focus here is on variation 
in the realization of the process of random genetic 
drift rather  than  on  the variance of parameter esti- 
mates caused by sampling error  on  the  part of the 
investigator. The first source of variation (realization 
variance) is a  function of population genetic structure 
and,  for a  fixed system of mating, is largely beyond 
the control of the investigator, while the second (sam- 
pling variance) can at least be minimized by the use 
of large sample sizes. Expressions for  the sampling 
variance of population  parameters are readily avail- 
able in textbooks of quantitative genetics, and  the two 
sources of error can be  treated as independent  and 
additive. T o  simplify the presentation,  a balanced 
experimental design will be assumed throughout. 

CORRECTING FOR ENVIRONMENTAL  TRENDS 

A potential  source of error in the analysis of unse- 
lected lines is the presence of general  environmental 
effects that cause the genotypic mean and/or variance 

to shift between generations. Even in the most care- 
fully designed laboratory  experiments, there  are many 
uncontrolled sources of variation,  including uncon- 
scious shifts in the behavior of the investigator, and 
these may obscure the genetic  interpretation of phe- 
notypic observations in many different ways. For ex- 
ample, a directional  environmental trend  that influ- 
ences all individuals in the same manner can lead to 
the  erroneous conclusion that  directional selection or 
inbreeding depression is operating. If genotype X 
environment  interaction is present,  the mean pheno- 
types of different lines will vary in response to general 
environmental effects, and in extreme situations, the 
direction of response may differ between lines. Fi- 
nally, if the sensitivity to environmental effects in- 
creases with inbreeding  (LERNER  1954; FALCONER 
198 l), genotype X environment  interaction can in- 
flate the  apparent  rate of divergence of mean pheno- 
types. 

While many empirical studies on  random  drift  and 
inbreeding lack controls, those that have employed 
them  often suggest parallel trends between controls 
and experimental lines. WRIGHT’S (1 977)  inbreeding 
experiments with guinea pigs are especially dramatic 
in this respect. Clear evidence for  the development of 
genotype X environment  interaction with inbreeding 
has arisen in experiments with corn  (OBILANA and 
HALLAUER  1974; BARTUAL and HALLAUER  1976) and 
with Tribolium (BRAY, BELL and KING 1962). Thus, 
the need  for  controls and a  technique  for utilizing the 
information they provide is very real. 

In the case  of selection experiments,  the usual ap- 
proach to removing  general  environmental effects has 
been to  subtract  the mean of a  contemporaneous 
control  from the mean of the selected population. An 
implicit assumption of this treatment is that  both  the 
control and selected populations  respond in the same 
manner  to  general  environmental effects; i . e . ,  there is 
no genotype x environment  interaction.  Moreover, 
as HILL  (1972b) has pointed out, this procedure ac- 
tually can obscure the genetic response of the selected 
population if the control  mean is subject to substantial 
sampling error. An alternative  approach, suggested 
by MUIR (1 986a,  b), is to  treat  the control line($ as a 
covariate. This has the advantage of allowing for 
genotype X environment  interaction of an  arbitrary 
level. 

There  are two important considerations in the 
choice and employment of controls. First, it is essential 
that  the  control line is maintained in such a way that 
phenotypic changes between generations are caused 
solely  by general  environmental effects. This can be 
accomplished by using clonally propagated genotypes, 
highly inbred  strains, or a  large outbred population. 
In  the  latter case, precautions have to be  made  to 
prevent evolution of the mean phenotype by natural 
selection. Second, the control should provide  a  strong 
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signal of the general  environmental  effect, i.e., explain 
a maximum amount of the variance of the mean 
phenotypes of the  experimental line. Since highly 
inbred lines sometimes have enhanced  environmental 
sensitivity, they  might fulfill this  criterion  provided 
their  response to  the  environment is highly correlated 
with that of the  experimental lines (MUIR 1986b). 

Let  the observed  mean of experimental line i in 
generation t be 

Z(t,i) = fig(0) + Q ( t , i )  + eg(t,i) + e,(t,i) (1) 

where Q(t , i )  = the cumulative  change in the mean 
genotypic value up  to  generation t ,  and eg(t,i) and 
e,(t,i) refer  to deviations of the observed  phenotypic 
mean  from [iig(0) + Ag(t, i)]  caused by general and 
special environmental effects, the  latter  including 
measurement  error. For the control line, the mean 
genotypic value is assumed to remain  constant during 
the  experiment, so that 

Z( t ,c )  = Z(C) + eg(t,c) + e,(t,c) (2) 

where i ( c )  is the mean phenotype of the  control av- 
eraged  over  the  entire  experiment. If the control is 
replicated, then  the elements of this equation  refer to 
averages  over all replicates. 

Since the general  environmental effects are  the only 
correlated  components of the  control  and experimen- 
tal line means, a  partial  regression of i(t,i) on i ( t , c )  
provides  a way of factoring  out  the general  environ- 
mental effects, 

; ( t i )  = a(i)  + b’(i)Z(t ,c) + d(i)t  + e(t,i).  (3) 

Because of the sampling error of the  control means, 
b’(i) provides  a slightly biased estimate of the param- 
eter p(i) = u[eg(i),eg(c)/a2[eg(c)]. An unbiased estimator 
is 

where a2[e,(c)] is the sampling variance of the control 
mean within generations, u2[t,eg(c)] is the squared co- 
variance of i ( t , c )  and t ,  and u‘[eg(c)] is the variance of 
control means between  generations in  excess  of the 
sampling variance. This improved  estimator may be 
employed by substituting the observed variance and 
covariance  components. The corrected line means are 
then estimated by 

Z*(t,i) = Z(t,i) - b(i)[Z(t,c) - Z(c)]. (5) 

d ( i )  in Equation  3 is an estimate of the  rate of evolution 
of the  corrected  mean  phenotypes. 

As a  consequence of inbreeding  and  drift,  the rela- 
tive response of an  experimental line to general envi- 
ronmental effects may change  throughout  the course 
of an  experiment, in which case the correction  factor 

would need  to  be  a  function of time. The occurrence 
of such change  could  be  examined with the model 

Z(t,i) = a(i)  + [ b ’ ( i )  + g(i)t]Z(t,c) + d(i)t  + e(t , i) ,  (6) 

g( i )  providing an estimate of the development of gen- 
otype x environment  interaction with time. The use 
of several genetically unique  controls will increase the 
information on general  environmental effects for  ex- 
perimental lines and can be  implemented by the  ad- 
dition of the  appropriate  terms  to  the prevoius for- 
mulas. Whatever the  approach, it is important to 
realize that each  experimental line may develop its 
own unique  response  to  general  environmental effects 
and should be  corrected  independently of  all other 
lines. 

As an  example of the application of the technique 
outlined  above, the results of an  inbreeding experi- 
ment with Drosophila  melanogaster will be  considered. 
Starting  from  a  large base population, KIDWELL and 
KIDWELL (1966)  extracted 20 lines and maintained 
each by single full-sib matings through 20 generations. 
The base population was also maintained throughout 
the  experiment,  and  the progeny of four single pair 
matings from it served as a  control  for each genera- 
tion. An undisclosed number of individuals were as- 
sayed for abdominal bristle number  and body weight 
at irregular  intervals. There is a  general  upward trend 
in bristle number in both  the  control  and  experimen- 
tal lines throughout  the  experiment,  and  the dynamics 
of mean body weight are also roughly  concordant 
between  groups  (Figure 1). Based on this visual com- 
parison, the  authors concluded  that the lines were 
strongly  influenced by general  environmental effects 
but  not by inbreeding  depression. 

A more explicit test of this hypothesis can be  made 
by regressing the means of inbred lines on  the control 
means and  the  inbreeding coefficient. (For small pop- 
ulations, inbreeding depression is expected to scale 
linearly with F ,  not t . )  For bristle number,  the  inter- 
action term of Equation  6 was not significant, but  the 
fitted coefficients for Equation  3 are b’ = 0.50 f 0.25, 
and d = 2.34 f 1.40 (r‘ = 0.85). Thus,  the experi- 
mental lines were influenced by the same environmen- 
tal effects as the  control,  but  on  average, were only 
50% as responsive. Due to insufficient information, 
b ’ could not be  corrected  for sampling bias, but this 
is not  expected to be large. The corrected values of 
the experimental lines, obtained  from  Equation 5,  are 
given in Figure  1. There is an  expected  genetic gain 
of approximately two bristles under complete  inbreed- 
ing. The same analysis applied to body weight again 
indicated  that the  inbred lines were slightly less re- 
sponsive to general  environmental effects than  the 
control (b’ = 0.77 * 0.14). The partial regression on 
F (d  = -9.2 f 34.8) was not significant, consistent 
with the conclusion that  there was no inbreeding 
depression for body weight. Eighty-seven percent of 
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FIGURE 1.-Observed phenotypic means in inbred (closed cir- 
cles) and control (open circles) lines of D. melanogaster, and cor- 
rected values for the inbred lines (stars) obtained by use of Equation 
5. The partial regressions are represented by the solid lines. Data 
are from KIDWELL and KIDWELL ( 1  966). 

the temporal variance of mean body weight in the 
experimental lines was accounted for by variation in 
the  controls. 

In  addition to  their  influence on mean  phenotypes, 
general  environmental effects may also cause spu- 
rious,  temporal  fluctuations in the components of 
variance. In principle, the  procedures  outlined above 
can be  extended  to  the  correction of variance com- 
ponents.  However, since the sampling error of vari- 
ances tends to be very large, reliable corrections of 
this sort will require  large sample sizes. 

At least  in the case  of plants, there may be  a way of 
avoiding all  of the above statistical procedures.  Pro- 
vided they are kept cool and  dry, seeds can usually be 
stored  for many years. This allows one  to grow mem- 
bers of  all generations in a  randomized design simul- 
taneously (RUSSELL, SPRAGUE and  PENNY  1963; HAL- 
LAUER and SEARS  1973;  CORNELIUS and DUDLEY 
1974). Even  in this case, however, special precautions 
need  to  be  taken to ensure  that  phenotypic expression 
is not influenced significantly by the  duration of seed 
storage or by properties of the seed that may be 
conditioned by general  environmental effects experi- 
enced by the maternal  plant. 

DIVERGENCE OF MEAN PHENOTYPES 

As outlined in the  introduction,  a simple prediction 
of population  genetic  theory is that  the  divergence of 

mean genotypic values among  populations is propor- 
tional to  the  degree of inbreeding within populations. 
This result is expected only for  neutral  quantitative 
traits with a  purely  additive  genetic basis, and even 
then, it begins to break  down with the accumulation 
of new mutations (CHAKRABORTY and NEI 1982; 
LYNCH  and  HILL  1986).  There  are  more subtle as- 
sumptions embedded in the theory as well, including 
the condition that  the mode of gene action remains 
stable with a  change in genetic  background. Even  in 
the ideal case, the realized between-line variance will 
be  distributed around  the expectation 2a&(O)F(t). 
Therefore, in order  to evaluate the consistency of 
observations with the  neutral,  additive  gene  theory,  a 
statistical description of the between-line variance is 
required. 

The usual protocol in genetic  drift  experiments is 
to maintain several independent lines under  the same 
experimental  conditions and with the same mating 
system. Let each line be  initiated simultaneously with 
Nm males and Nf females randomly  extracted  from  the 
same base population. Each generation  and within 
each line, N ,  males are mated  randomly to Nf/Nm 
females, and n offspring are measured  from each full- 
sib family. The phenotype of the kth offspring of the 
mating  between male i and female j may be  repre- 
sented as 

where gmi and 0, are  the additive genetic values of the 
parents, ( A g , , , i k  + Ag3k)/2  is the deviation of the off- 
spring  from  the  midparent additive genetic value 
caused by segregation, c, is the common  environmen- 
tal effect of female j ,  and egk is the special environ- 
mental  effect. (Common environmental effects above 
those caused by maternal  environment  occur some- 
times, but  here they are assumed to be  unimportant.) 

Because  of sampling error of the  founder pheno- 
types, the initial variance of line mean phenotypes has 
the expectation 

Zi'(0) = 
ZL(0) + a: + 6,' 

N m  + Nf ' 

assuming that  none of the  cofounders are full-sibs, 
where a: and a: represent  the variance of common 
and special environmental effects. In  the following 
generations, the means are based on nNf measures, 
and account must be  taken of the genetic and com- 
mon-environment covariance between full-sibs as well 
as  of the segregational variance within full-sib families 
(HILL 1972~).  Letting Ne = 4NmNf/(Nm + Nf), F ( t )  = 1 
- [ 1 - (1/2Ne)]', and gi(0) = G&(O)/(N,,, + Nf), the 
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expected variance of  mean  phenotypes for t 2 1 is 

Z ( t )  = [3j(O) + 23&(O)F(t)] 

The first term in this formula, which represents  the 
true dispersion of line means, is cumulative over  gen- 
erations, while the remaining  terms  refer to  the vari- 
ance due solely to  finite sample size within lines. 
Because of the genetic  continuity of populations in 
time, there is an  expected covariance between the 
mean phenotypes in the same line in subsequent  gen- 
erations, 

G;(O,t)  = Gi(0) for t > 0, (10) 

3i(t,t') = Gj(0) + 23,(O)F(t) 

for 1 < t < t ' .  (11) 

It can be seen from  the preceding  formulas  that the 
contribution of the segregational and special environ- 
mental effects variance to  the variance of mean phe- 
notypes is inversely proportional  to  the  total sample 
size (nlvf), whereas the  contribution of common envi- 
ronmental effects is inversely proportional  to  the  num- 
ber of full-sib families (Nf).  In  genetic  experiments, it 
is desirable to remove  these sources of variation in 
order  to obtain an estimate of  the variance of mean 
genotypic values unbiased by sampling error. Nor- 
mally, this can be accomplished by manipulating  the 
mean squares of a nested analysis of variance. The 
within- and between-family components of variance 
can be isolated from  the genetic variance between 
lines by letting Vi(t )  = [MSI;,,, - MSfam(line#nNf be the 
estimate of ai(t) .  A slight problem arises if the lines 
consist of single families, as in the case  of selfing and 
full-sib mating, since the common  environmental ef- 
fects variance cannot  be  partitioned  from  the variance 
of genotypic means. This problem can be  eliminated 
by temporarily  expanding each line into S families 
prior to analysis and substituting S for Nf in the 
expression for Vi(t )  (LYNCH 1984). 

Since the  number of lines, L ,  employed in experi- 
ments is usually rather small, it is of practical impor- 
tance to have expressions for  the sampling variances 
and covariances of the realized variances of line 
means. Starting  from  the same base population, sup- 
pose that  an  infinite  number of divergence  experi- 
ments, identical in  all respects except the realization 
of the  drift process, could  be run. At time t ,  each 
experiment will have developed  a level of between- 
line genetic  variance, &t). Variation will arise among 
the u$(t) because of variation in the within-population 
genetic variance among  the  founder populations, var- 
iance in inbreeding  that develops among  the lines, 
and  the observation of a  finite number of lines. More- 

over, since the line means are a  function of their past 
history, the between-line variances for any particular 
experiment will be correlated in time. With finite 
sample sizes,  it is also necessary to account  for the 
genetic and environmental variance within and be- 
tween families and  the covariance between the cu- 
mulative drift variance and  the segregation variance. 

Expressions for  the variance and covariance of be- 
tween-line variance can be obtained by assuming that 
measurements have been taken on a scale on which 
the genetic and environmental effects are normally 
and independently  distributed. In  that case, the ex- 
pected variance of  a variance component is twice the 
expected variance squared divided by the sample size 
minus one,  and  approximate expectations for u"[aT(t)] 
and u[u?(t), u?(t')] can be  obtained by Taylor  expan- 
sion (APPENDIX). 

Equations A1-A3 have been written so that  the 
variance and covariance due  to finite sample size are 
described by the  terms within the large brackets. For 
t 2 1, these  terms decline to zero as the sample size 
within lines (nNf) increases. The earlier  terms in the 
formulas describe  the variance and covariance of the 
true between-line genetic variance, and  for a given 
effective population size, can be reduced only by 
increasing the  number of lines. Thus, ignoring  the 
variance of inbreeding,  the  squared coefficient of 
variation of ui( t )  can be seen to be on the  order of 2/ 
( L  - l) ,  and  depending  on  the variation in inbreeding 
and environmental effects, it can be considerably 
greater.  This implies that studies of phenotypic diver- 
gence  need to be very large to be statistically reliable. 
For  example, if  it is desirable to  reduce  the  standard 
error of the between-line variance to  10% of the 
expectation,  approximately 200 lines would need  to 
be sampled (400 and 300 in the case  of selfing and 
full-sib  lines). 

Of  additional  concern is the variation among esti- 
mates of G i ( t )  caused by variation in inbreeding (WEIR, 
AVERY and HILL  1980; COCKERHAM and WEIR 1983). 
Under most mating schemes, some individuals mate 
by chance with closer relatives than do others.  This 
results in variation in F among  members of the same 
population, and because of sampling, accumulates as 
between-population variance in average  inbreeding. 
Variance in inbreeding is of  special interest because it 
cannot usually be  estimated  from empirical data. De- 
tailed pedigree  records may be possible under some 
experimental  protocols, but uncertainties  regarding 
paternity are common.  Moreover, the linkage rela- 
tionships of constituent loci, which influence u2 F ,  are 
unknown  for virtually all quantitative  characters. 

Ignoring  the variance among  founder means, the 
squared coefficient of variation of &t) is {2[1 + ( N ,  
+ Nf)-'] + [fl?(t)/F2(t)])/(L - 1). Thus, roughly speak- 
ing,  the variation in inbreeding between lines is of 
potential  concern if &(t) /F*( t )  is of the  order of 0.2 
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TABLE 1 

Values of the  squared coefficient of variation of mean line inbreeding, a$(t)/F*(t) 

Free  recombination 0.1 Morgan  chromosome 

Generation 2 4 8 16 32 2 4 8 16 32 

N =  1 MS 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.00 0.00 0.00 

N = 2  MS 0.03 0.02 0.00 0.00 0.00 0.08 0.09 0.03 0.00 0.00 
ME, DR,  DH 0.00 0.00 0.00 0.00 0.00 0.45 0.28 0.18 0.14 0.09 

N = 4  MS 0.02 0.02 0.01 0.00 0.00 0.05 0.10  0.09 0.03 0.00 
ME 0.06  0.02 0.00 0.00 0.00 0.22 0.19 0.14 0.05 0.01 
DR 0.14 0.03 0.01 0.00 0.00 0.38 0.22 0.14  0.05 0.01 
DH 0.54 0.08 0.02 0.00 0.00 1.02  0.34  0.17  0.06  0.01 

N =  16 MS 0.01 0.01 0.01 0.00 0.00 0.01 0.04 0.07 0.09  0.06 
ME 0.01  0.01 0.00 0.00  0.11 0.07 0.10 0.10  0.07 
DR 0.11 0.02 0.01 0.00 0.00 0.11 0.09 0.11 0.10 0.07 
DH 1.00 0.14 0.04  0.01 0.00 1.44  0.36  0.19 0.13 0.08 

N = 6 4  MS 0.00 0.00 0.00 0.00 0.00 0.00 0.01  0.03 0.04 0.05 
ME 0.00 0.00 0.00 0.04  0.05 0.06 
DR 0.00 0.00 0.00 0.04 0.05  0.06 
DH 0.60  0.20 0.04 0.01 0.00 1.00 0.50  0.16  0.09  0.07 

~ 

Obtained from data in Table 111 of WEIR, AVERY and HILL  (1980). Mating is random in  all four mating schemes: MS = ideal monoecious 
population including random selfing, ME = monoecy  with selfing excluded, DR = dioecy  with each offspring produced by a random pairing 
of male and female gametes, sex ratio assumed to be 1: 1, DH = monogamous, dioecious population. In the case of a 0.1 Morgan chromosome, 
the loci are assumed to be randomly distributed. Slight errors  due  to rounding may be present. Values under MS were obtained by  use  of 
Equation 27 Of WEIR and COCKERHAM (1  969). 

or more. Since the variance in inbreeding is a  function 
of several high-order identity-by-descent measures 
(WEIR and COCKERHAM 1969), its computation is not 
a simple matter.  Fortunately, WEIR,  AVERY and HILL 
(1980) have published values of &(t) for  a  range of 
mating systems and population sizes. These  are con- 
verted  to estimates of uj ( t ) /F2( t )  in Table  1. 

For freely recombining loci, the variance in in- 
breeding is zero under those mating schemes in  which 
the  pedigree  structure is fixed [obligate self-fertiliza- 
tion, full-sib mating,  the special  systems  of mating of 
WRIGHT (1 92 l), and  the circular systems  of mating of 
KIMURA and CROW (1963)l  and is of minor  impor- 
tance when there is random  pairing of gametes. How- 
ever, if the sexes are separate  and matings are mono- 
gamous, ui( t ) /F2(t)  can be  large  enough to be of 
concern in the first 2-4 generations. Linkage inflates 
the variance in inbreeding  under all systems  of mating 
by causing positive correlations in identity by descent 
at loci  in the same individual. But even if most pairs 
of  loci are very tightly linked, &t) can be  considered 
to be of negligible significance after  6 or so genera- 
tions have passed. I f  lines are maintained by self- 
fertilization or full-sib mating there is little reason for 
concern with akt)  in any generation. 

The preceding  theory leads to several recommen- 
dations  for the design and analysis  of experiments on 
the consequences of  small population size for  the 
between-population variance. First, if at all possible, 
one  or  more  contemporaneous  control lines should 
be  maintained so that  the  estimated mean phenotypes 
of the experimental lines can be  adjusted  for  general 
environmental effects. Second,  effort should be made 

" 

to remove the contribution of common (maternal) 
environmental effects and  other sources of within- 
population variance from  the estimates of ui( t ) .  Even 
when such corrections can be  made,  a  great deal of 
confidence should  not  be placed on  the results of the 
first couple of generations of inbreeding. Thereafter, 
the sampling variance of the between-line variance 
under  the assumption of the  neutral  additive  gene 
model may be  taken to be approximately 

the variance due  to  the estimation procedure. 
For fixed resources  that allow the monitoring of 

N,L individuals/generation,  the efficiency of estima- 
tion of 5 i ( t )  is maximized by making the lines  as  small 
as possible-selfing in the case  of self-compatible spe- 
cies, full-sib mating in the case  of dioecy. Both extreme 
forms of mating have additional advantages. First, any 
desired  amount of inbreeding is attained in a mini- 
mum amount of time. Second,  except in the case of 
extremely  strong linkage, the variance in inbreeding 
among lines can be  ignored in  all generations.  If it is 
desirable to study the effects of different  population 
sizes, the maximum avoidance of inbreeding schemes 
of WRIGHT (1921) or  the circular designs of KIMURA 
and CROW (1963)  are recommended since they elim- 
inate most of the variation in inbreeding. These, 
however, have the side effect of at least doubling  the 
effective population size relative to  the actual popu- 
lation size and of postponing the generation in  which 
inbreeding begins. 

LANDE'S test for the  selective  divergence of mean 
phenotypes: As a test for  natural selection, LANDE 
(1977) suggested the use  of the statistic B = V&t) / [ t vp /  

2V&(0)(4F2(t)[l + (N, + Nf)"] + (N, + NJ)") plus 
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Ne] where vp is the average  observed  additive  genetic 
variance within lines over t time  units of isolation. 
The numerator  and  denominator of 0 are estimates 
of the observed and expected between-line variance 
under  the hypothesis of neutral,  additive  genes (as- 
suming t < Ne). LANDE  argued  that,  for a  normal 
sampling distribution of population means, 0 will be 
F-distributed under  the null hypothesis of random 
genetic drift.  In  terms of quantities  described  above, 
application of Fisher’s F test to this statistic assumes 
that  the  numerator is x‘-distributed with expectation 
25&(O)F(t) and variance 2[25&(0)F(t>l2/(L - 1). Equa- 
tion A2 indicates that this is asymptotically true  for 
large  populations  provided the between-line variance 
in inbreeding is negligible. However,  for very  small 
populations, which are often employed in genetic  drift 
experiments,  the variance of V&t) is greater  than  that 
expected under a x‘ distribution-at least twice as 
great in the case of self-fertilization, and  at least 1.5 
times as great with full-sib mating. Thus, when ( N ,  + 
NJ is very small or when substantial variation in in- 
breeding is likely to have occurred,  the  treatment of 
0 as Fisher’s F may cause a substantial probability of 
inadvertantly  rejecting the null hypothesis of neutral, 
additive genes. BRYANT, COMBS and MCCOMMAS 
(1986) relied on LANDE’S test to reject this hypothesis 
after  putting  populations of houseflies through single- 
generation  bottlenecks of 2 to 16 pairs. For the above 
reasons, and because of nonindependence  and possi- 
ble nonnormality of the  characters they studied, the 
confidence level of their  rejection has perhaps been 
overstated. 

REGRESSIONS  INVOLVING  PARAMETER 
ESTIMATES 

It is common procedure  to regress the phenotypic 
means of populations on time to test for  the  operation 
of stabilizing or directional selection (CHARLESWORTH 
1984; MANLY 1985). Even when environmental 
trends can be  ruled  out, such a  treatment of data 
raises certain difficulties )in small populations since 
drift can give rise to directional  changes in mean 
phenotypes within individual lines. Standard statistical 
tests for  the significance of a regression coefficient are 
inappropriate  for two reasons: the mean phenotypes 
estimated  from the same line at different times are 
not  independent,  and  the sampling variances of the 
means decline in time as a  consequence of the loss of 
genetic  variation within finite  populations.  HILL 
(1972a, b) has dealt with the first difficulty in the 
context of regressions of selection response on selec- 
tion differential, but as pointed out by FELSENSTEIN 
(1985), the problem of nonindependence is almost 
always ignored in evolutionary analyses. 

Suppose the mean  phenotype pooled over L lines 
has been  evaluated  over (k + 1 )  consecutive genera- 

- 
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Generations ( k )  

FIGURE 2.-Minimum sampling variance for the regression of 
phenotypic means on generation number for  a neutral quantitative 
character in a finite population, shown for increasing numbers of 
consecutive generations.  Note that regression analysis requires that 
k 2 2. Measurement error of the means is assumed to be negligible. 
The actual, expected sampling variance is obtained by multiplying 
the plotted values by G&(O)/N,L. Results are given for ideal 
monoecious populations and  for full-sib mating. 

tions. The standard least-squares expression for  the 
regression coefficient is 

k k 

bit = [q t )  - .](t - :)/E ( t  - t)’ (12) 
c=o C=O 

where i is the mean phenotype  averaged  over all lines 
and generations. The expected value of bit is zero 
under  the assumption of neutral  additive genes. The 
expected sampling variance of bit may be  written as 

.;(t,t’)/L ( 1  3) 

under  the assumption that  the sampling variance of 
the  grand mean (i) is negligible. Substitution of Equa- 
tions 9-1 l shows that  the sampling variance of bit is 
attributable  to  four causes: the  genetic variance 
among initial line means, the variance and covariance 
of genotypic means resulting  from  drift, the sampling 
variance of means due to segregational  variance, and 
the sampling variance of means due  to environmental 
effects. While Equation 13 applies to  the special  case 
in  which means are available for k + 1 consecutive 
generations, the  entire approach can be generalized 
to situations in  which means are missing for some 
generations. This requires only that  the  proper vari- 
ance  and covariance expressions be  substituted  for the 
;:(t,t’) in Equation 13. 

Figure 2 illustrates the relationship of a‘(&) to the 
experimental  duration (k) for ideal monoecious pop- 
ulations as well as for full-sib mating (Ne = 2.5) com- 
puted with Equation 13. The terms  describing meas- 
urement error  are assumed to be negligible, and  the 
first generation in the regression is taken to be the 
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FIGURE 3,”Standard  error for  the regression coefficient b;, 
under  the assumption of bivariate normality and  independent sam- 
pling relative to the true expectation. Results are given for ideal 
monoecious populations of three effective sizes and  for full-sib 
mating. 

offspring of the  founders so that  the large sampling 
variance of the  founder means can be avoided.  In  that 
case, a2(b;,) is directly proportional to  the genetic 
variation in the base population and inversely propor- 
tional to N,L. When means are available for only the 
first three generations (k = 2), a2(bi,) is not less than 
3Z&(0)/NeL. With increasing numbers of generations, 
it declines exponentially. By dividing the plotted val- 
ues by NeL and taking the  square  root, it is possible to 
gain some appreciation of the magnitude of regression 
coefficients that  are compatible with random  genetic 
drift. For example, when data  are available for 10 
generations  for  a single full-sib mated line, a*(b;,)/ 
a&(O) 0.67/2.5 = 0.27. The standard  error of bit in 
units of initial genetic  standard deviations is therefore 
at least 0.5. Since the  presence of environmental 
variation and finite sample size can cause further 
error, in this case a regression coefficient within the 
range * Zgw(0) certainly would be  compatible with a 
neutral hypothesis. 

I t  is instructive to examine the bias  in the sampling 
variance that would arise if one were to rely on the 
standard  expression, &*(bit) = Z:(1 - p2)/(k + 1 ) ~ :  
which is obtained under  the assumption of independ- 
ent sampling and bivariate normality. Under  the  neu- 
tral hypothesis, the expected  correlation p between 
i ( t )  and t is zero, and for k + 1 consecutive samples, 
( k  + 1)a: = k(k + l ) ( k  + 2)/12. The sampling variance 
of the means over the  experiment, Z:, can be ex- 
pressed in terms of Equations 9- 1 1. 

Ratios of the  standard  errors, &(bit) /a(bi t ) ,  for  the 

case  in  which measurement error is negligible and 
consecutive means are available starting with the off- 
spring of the  founders,  are given in Figure 3. The 
bias  in the  traditional  estimator of the  standard  error 
of a regression coefficient is clearly too  large to be 
ignored. Initially, a(bi,) is on  the  order of  twice &(bit), 
and this factor increases severalfold with increasing 
numbers of generations. 

Tests for inbreeding  depression: While the  proce- 
dures  outlined  above  provide  a means of evaluating 
whether  a  temporal  sequence of mean phenotypes is 
consistent with the  neutral  additive  gene hypothesis, 
a  rejection of the null hypothesis should not  be mis- 
construed as acceptance of the hypothesis of natural 
selection. When nonadditive  interactions exist within 
and/or between loci, inbreeding can cause a shift in 
mean phenotypes in the absence of counterbalancing 
selection. The most common  experimental design em- 
ployed in the  detection of inbreeding depression is to 
subject a series of isolated lines to a  regular  program 
of inbreeding. The consecutive line means are  then 
regressed on  the  expected  inbreeding coefficient, 

k k 

b s  = [Z(t )  - Z][F( t )  - F ] / C  [F( t )  - F]’ (14) 
t=O t=O 

where F is the mean expected  inbreeding coefficient 
over the  experiment. Such an analysis suffers from 
the same difficulties noted previously. The mean phe- 
notypes obtained  from consecutive samples of the 
same line are not  independent.  Moreover,  the distri- 
bution of F ( t )  is highly skewed, eventually piling up 
at values very  close to one. 

The sampling variance of b;F under  the  neutral 
additive model can be  computed by use  of the proce- 
dures outlined  above.  Figure 4 provides the results 
for  the special  case  in  which environmental sources of 
variance are of negligible importance  and  the analysis 
begins with the  founder ( F  = 0) generation. When 
viewed as a  function of the expected  inbreeding in 
the final experimental  generation, a*(b;F) depends 
very little on  the effective population size. However, 
with larger Ne,  it takes longer  to  reach  a given degree 
of inbreeding,  and  hence in early generations  the 
results from selfed or full-sib mated lines are much 
more reliable than those from  larger lines. The sam- 
pling variance of b i F  is very high if the cumulative 
inbreeding is less than 0.25, and diminishes to a min- 
imum of approximately 2.3Z&(O)/L once  inbreeding 
has proceeded beyond F = 0.9. Thus, relatively large 
departures  from  the  expectation b i F  = 0 can arise in 
inbreeding  experiments even in the absence of domi- 
nance.  Suppose,  for  example,  that full-sib mating is 
performed  on  10 lines for 10 generations ( F  = 0.86). 
The sampling variance of b;F is then approximately 
Z&,(0)/4. An observed l b i p l  5 Zgw(0) clearly would be 
consistent with an additive  gene  model. 
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FIGURE 4.--Sampling variance of the regression of mean phe- 

notype on the  expected  inbreeding  coefficient under the assump- 
tion of neutral, additive gene  action.  The major curve applies to 
full-sib mating and all cases of monoecy  except  selfing. The plotted 
values are minimum estimates as they do not include variance from 
environmental variation or finite sample size. F(k)  is the expected 
level of inbreeding in the final generation of an experiment. The 
actual, expected sampling variance is obtained by multiplying the 
plotted values by Z&,(O)/L. 

It is again useful to consider the bias that is incurred 
by using the  standard expression for  the variance of a 
regression coefficient as has been done in existing 
studies. Using the  approach  outlined  above  and fo- 
cusing on the special  case  in  which environmental 
sources of variance can safely be ignored, it is seen in 
Figure 5 that  the bias depends primarily on the  du- 
ration of the  experiment  and very little on population 
size. The usual standard error, G(biF), always under- 
estimates the  preferred measure abiF.  The bias in- 
creases with the experimental duration, asymptoting 
at &,/ab,  = 0.25 beyond 20 generations. 

As a  rough check of the validity of conclusions on 
inbreeding depression derived  from regression analy- 
sis, the statistic J = Ib;~I/2[6v,(o)/L]”, where 4 rep- 
resents the plotted values in Figure 4, may be useful. 
IfJ exceeds one,  the  observed regression coefficient 
deviates from  zero by more  than two estimated  stand- 
ard  errors,  and  one is justified in suspecting the pres- 
ence of inbreeding  depression.  Of  course, the  true 
standard error of b;F cannot  be known  with certainty 
since the  additive  genetic variance in the base popu- 
lation is an  estimate. The expectation of [6V,(O)/L]” 
will also be less than  the  true  standard  error of biF 
since measurement error has been  ignored,  but  the 
bias should  be small if the  number of families and 
offspring within families assayed is large. 

Estimates of biF/V$(O) are given for several species 
and characters in Table 2. Not all of the  reported 
experiments were designed like the scenario  pre- 
sented previously. However, almost all  of the values 
of b;F/V$(O) are in  excess of one  and  three exceed 

0- 
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Generat ions ( k  1 
FIGURE  5,”Ratio of the standard error of b s  based on normal 

regression theory relative to the expectation under random genetic 
drift. The upper curve applies to dioecious and monoecious popu- 
lations with Ne > 1. 

five. Most  of the  data sets to which the J statistic may 
be  applied are in strong  agreement with the  inbreed- 
ing depression hypothesis. For  example,  for yield  in 
corn, L = 248, 6 = 2.1, and biF/Vg(O) = -3.27, 
yielding J = 17.8. However, it is questionable whether 
there is inbreeding depression for  thorax  length in 
Drosophila (J = 0.9), offspring  number in Tribolium ( J  
= 1.2), and  internode  length in barley (J = 0.2). 

The magnitude of inbreeding depression suggested 
by Table 2 is fully compatible with a Mendelian model 
without epistatic interactions.  For single loci, l b i F I /  

i?,(O) > 1 will arise with complete  dominance when 
recessive alleles have frequency c0 .3 ,  and with over- 
dominance, this condition is met over  a  broad  range 
of gene  frequencies  (Figure 6). In  theory,  there is no 
upper  bound  to lbiFl/i?p(0) since in the case  of over- 
dominance there is  always a  gene  frequency at which 
there is no additive  genetic  variation, all  of it appear- 
ing in the  dominance  component. 

In closing this section, another popular  method of 
testing  for  inbreeding depression should be men- 
tioned.  Frequently, the mean phenotypes  from  a sin- 
gle generation of a  control and contemporaneous 
inbred  population are compared by use  of a  standard 
t test or analysis  of variance. This  procedure seems 
indefensible since the expected variance of an  inbred 
population exceeds that of the control.  Moreover,  the 
differences  that can arise between control and  inbred 
line means as a  consequence of random  drift as op- 
posed to  inbreeding depression are  ignored. 

A simple modification of the t test takes these  prob- 
lems into  account. Suppose that n offspring are mon- 
itored  from each of L independent  random-mated 
mothers and  from L independent consanguineously 
mated  mothers, all derived  from the same base pop- 
ulation. Under  the null model of neutral  additive  gene 
action,  the  difference between the mean phenotypes 
of the two types of progeny ( A i )  has zero  expectation. 
The observed  difference must be evaluated against 
the  standard  error of the difference caused by sam- 



800 M. Lynch 

TABLE 2 

Results from various inbreeding experiments involving the regression, bZh of mean phenotype on expected inbreeding coefficient 

Species Character Ref. L Ne F(k) b s  6;FlV&(O) 

Mouse Litter size 1 , 2  10-6 2.5 0.63 -5.10 -3.64 
3 20 2.5-32 0.95 -3.86 -2.74 

3-week  weight (9) 3 20 2.5-32 0.95 -2.54 -3.25 
8-week  weight (g) 3 20 2.5-32 0.95 -4.94 -2.63 
Postweaning gain (9) 3 20 2.5-32 0.95 -2.18 -1.77 

Sheep Clean fleece weight  (Ib) 4 - - 0.28 -4.4 -6.07 
Staple length (cm) 4 - - 0.28 -1.2 - 1  .so 
Body  weight  (Ib) 4 - - 0.28 -29.1 -6.29 

D. melanogaster Wing length (pm) 5 20 2.5-12 0.98  -34.8  -1.77 
6 10 2.5-4 0.75 -52.0 -1.82 

Thorax length (pm) 6 10 2.5-4 0.75 -16.8 -1.02 
Abdominal bristle number 7 20-17 2.5 0.99 +1.82 +1.08 

T. castaneum Offspring number 8 48 10-100 0.64 -2.56 -0.66 
Barley Internode length 9 7  1 0.99 -2.36 -0.29 
Corn Plant height (cm) 10 248  1 0.99 -48.0 -3.73 

11,12 60 1-2.5 0.94 -55.4 -3.21 
Ear height (cm) 10 248 1 0.99 -30.0 -2.83 

11,12 60 1-2.5 0.94 -26.9 -1.69 
Ear-leaf width (cm) IO 248 1 0.99 - I  .34 -1.38 
Ear length (cm) 10 248  1 0.99 -4.40  -3.69 
Ear diameter (cm) 10 248  1 0.99 -10.08 -5.10 
Kernel depth (mm) 10 248  1 0.99 -6.47 -4.69 
Yield (g/ha) 10 248 1 0.99 -44.9 -3.27 
Days to silking 10 248 1 0.99 +4.6 +1.19 

L = number of lines, Ne = effective population size  (in some cases several treatments were utilized), F(k) = maximum level  of inbreeding 
at the  end of the  experiment, Vg(0)  = additive genetic standard deviation in the base population. The work  with sheep did not involve 
discrete lines, but utilized members of a large population at various levels of inbreeding. 

References: 1) BOWMAN and FALCONER (1960), 2) ROBERTS (1960), 3) EISEN and HANRAHAN (1974), 4) MORLEY (1 954), 5) TANTAWY and 
REEVE (1956), 6 )  TANTAWY (1957), 7) KIDWELL and KIDWELL (1966), 8) RICH etal. (1984), 9) BATEMAN and MATHER (1951).  10) HALLAUER 
and SEARS (1973), 11) CORNELIUS and DUDLEY (1974), 12) CORNELIUS (1972). 

> 
Gene Frequency, q 

FIGURE 6,"Expected standardized inbreeding depression 
caused by a single diallelic  locus  with various dominance coefficients 
( d )  and gene frequencies (4). Following standard  theory (FALCONER 
1981) and letting the  three genotypic values at a locus  be 2a,  (1 + 
d)a, and 0, it can be shown that E(6iF) = 2pqad and g&(O) = 2pqa2 
[1 + - pH2. 

pling. Using Equation 9, it can be shown that  the 
sampling variance is 

(3/4);&(0) + 2a: 
n 

when the  inbred  progeny  are  acquired by self-fertil- 
ization, and 

when they are acquired by full-sib mating. 
These formulas are difficult to implement unless 

one has information  on the components of variance 
in the base population.  If, however, a single offspring 
is monitored  from each family, then n = 1,  and  the 
preceding expressions become 

a:; = +[2G:(O) + (3/4);&(0)] 
1 

L 

where Z:(O)  is the phenotypic variance in the random- 
bred population. Since the  additive genetic variance 
is  less than  the  phenotypic variance, these two quan- 
tities can be no  greater  than (1 1/4)2:(0)/L and  (171 
8)Z:(O)/L, respectively. 

Thus, a conservative test for  inbreeding depression 
based on a single generation of consanguineous mat- 
ing can be  performed as follows. Subject L females to 
random  mating and L different females to consangui- 
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neous  mating, and  from each of these families measure 
a single random offspring. Then compute  the statistic 

where V,(O) is the observed  phenotypic variance of 
random-bred  progeny  and 4 = 11/4 with self-fertiliz- 
ation and  17/8 with  full-sib mating.  Provided the 
character is approximately normally distributed, t may 
be  treated as t-distributed with L - 1  degrees of 
freedom.  Suppose,  for  example,  that the  experiment 
consisted of 10  inbred  and  10  random-bred families. 
Rejection of the null hypothesis of no  inbreeding 
depresson at  the 95% level then requires  that t >  2 .26.  
For self-fertilization and full-sib mating, A i  would 
have to exceed 1.2 and 1.0 phenotypic  standard  de- 
viations respectively for this criterion  to  be  met. 

In the case of self-compatible plants that  produce 
multiple flowers, the construction of diallels can fur- 
ther increase the power of a  short-term test of inbreed- 
ing  depression. Pairs of parent plants ( A  and B )  can 
be used to  produce two reciprocal outcrosses ( A  X B 
and B X A) and two inbreds ( A  X A and B X B ) .  In 
this case, A i  is the difference between the mean phe- 
notypes of offspring  from the two types of mating. An 
advantage of this approach is that it eliminates the 
contribution of maternal effects and  parent sampling 
to ui-. If n of each progeny type are obtained  from 
each of L pairs of parents, 

Even  with n = 1, this quantity is  less than Gz(O)/L. 
Thus, a very conservative test for  inbreeding  depres- 
sion using diallels is to maximize L,  measuring one of 
each of the  four types of progeny per  parent  pair,  and 
then  to employ Equation 16 with 4 = 1. 

Analysis of the  between-line variance: Regression 
analysis can be  applied profitably to temporal  data on 

FIGURE 7.-The sampling vari- 
ance of the regression of V i ( t )  on F ( t )  
as a function of the effective popula- 
tion  size (left), and  the sampling var- 
iance of the intercept as a function of 
k /N.  (right), where k is the final gen- 
eration in the regression. The sam- 
pling variances under a particular ex- 
perimental setting are obtained by 
multiplying the plotted values by 
u&(O)/(L - 1). The results are for 
ideal monecious populations. 
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variances as well as on means. The regression of the 
between-population variance on  the cumulative in- 
breeding ( b ~ p ) ,  for example, is a useful test of drift 
theory since its expectation is  2GL(O) for  additive 
genes. The intercept of such a regression (a )  is also of 
interest since, in the case  of neutrality, it provides a 
pooled estimate of the between-line variance attrib- 
utable to factors other  than  drift (measurement error). 
Following the  procedures  outlined  above, 

U2(bViF) = 1 I k  e [F(t)  - F 1 2 )  c c (E[F( t )  
-2 k k 

t=O -0 1’=0 

- F]E[F( t ’ )  - F]u[uj(t),uj(t’)] + E[F(t)  

- Vi]E[Vi(t’) - V&J[F(t) ,F(t’)]] ,  

(17) 
- F]E[Vi(t’) - V&[F(t),uz(t’)] + E[V&t) 

n k k  

where Vi is the mean between-line variance over  an 
experiment of k + 1 consecutive generations, u[F(t), 
uj( t ’ ) ]  = 2u&(O)X‘”‘u~(t)/(L - l),  and u[F(t),F(t’)] = 
X*”‘&t)/(L - 1) with t I t ’ .  The variance of bvf has 
been derived under  the assumption that  the variance 
of Vi is of negligible significance and ignores the 
variance of Vi(t)  due  to measurement error.  There- 
fore, Equations 17  and  18 give lower bounds on  the 
sampling variances of the regresson parameters  under 
the assumption of neutrality. 

The solution of Equation 17 indicates that u2(bvf) 
increases approximately twofold with the  duration of 
the  experiment,  although it is essentially stable for k 
L 4 provided most pairs of  loci are unlinked (Figure 
7). For  large k, the  standard error  of bviF is no less 
than 3.8;&,(0)/(L - 1)” for self-fertilizing lines and 
2&G&(O)/(L - 1)”  for  large Ne. For small Ne and k/ 
Ne < 2, the  standard  error of the  intercept is no less 



802 M. Lynch 

"0 0.05 0.10 0 I5 0.20 

3001 / / I  

2 5 4  I' % I 
300 

........ 

0 0.08 0.16 0.24  0.32  0.40 

1 

0 002 004 0.06 0.08 0.10 

lnbreedtng Coefflcient, F 

FIGURE 8.-Observed levels of  between-line  variance for pupal 
weight for Tribolium populations  at  four effective sizes (RICH et  al. 
1984) as a function of the  expected level of inbreeding (solid points). 
Solid lines are  the  expected regressions under  the  neutral, additive 
genetic hypothesis; dashed lines are conservative  90% confidence 
limits; and  dotted lines are  the least-squares  regressions. 

than 0.9Z&(0).[k/Ne(L - l)]'*. With increasing k/N,, 
.*(a) gradually approaches  a value on  the  order of 
.*(bv;F). 

As an  example of the application of the  preceding 
formulas, the results of a  large  drift  experiment with 
laboratory  cultures of Tribolium castaneum (RICH et al. 
1984) will be examined. The authors followed 12 
replicate populations at  four  population sizes (1 : 1 sex 
ratio,  random  mating)  over 20 consecutive genera- 
tions. Each generation,  the mean pupal weight (pg) of 
each population was obtained  from  a bulk sample of 
100  random individuals. The additive  genetic vari- 
ance was estimated to be  460 in the base population. 
The observed Vi(t )  are plotted as a  function of F(t)  in 
Figure 8 ,  along with the expected  divergence 920F(t) 
(solid lines). Any interpretation of the results of this 
study is weakened by the lack  of a  control. The 
authors  argued  that  the downward trend in Vi(t )  in 
the last  few generations of three of the  four  treatments 
was due  to  the suppression of random  drift  and  the 
operation of stabilizing selection. However,  the same 
result could have arisen as a response to a shift in the 
laboratory  environment  that influenced the expres- 
sion  of variation. 

The dashed lines in Figure 8 give the limits of the 
between-line variance beyond which there is a less 
than 5% chance  for  the realization of the  drift process 
in either  direction. Since these bounds are based on a 
x* distribution, which underestimates  the dispersion 
somewhat, and also ignore  measurement error, they 
may be regarded as conservative confidence limits. 
Nevertheless, almost all of the observations, with the 

TABLE 3 

Least-squares estimates of the regression coefficients and 
intercepts for the  data in Figure 8 

IV, bv,, u ( b V l f )  a .(a) 

10 148 412 109 154 
20  222 402 91 87 
50  312 396 21 3 8 

100 292  394 28 19 

The standard  errors were obtained  from Equations  17 and  18 
under  the assumption of unlinked loci. 

exception of the late generations  at N,  = 10 and 20, 
lie within these limits. There  are substantially more 
observations below (54) than above (26)  the  expecta- 
tion, possibly because the  additive genetic variance in 
the base population was overestimated somewhat. 

The least-squares regressions of the  data  are given 
by the  dotted lines  in the  figure. The slope of each 
regression is  less than  the  expected  920,  but all are 
within 2 SE of the  expectation  (Table 3). The inter- 
cepts are all above the expectation of zero,  perhaps 
due  to measurement error,  but  are well within 2 SE of 
it. Thus, this fairly conservative analysis indicates that 
the observed patterns, even in the absence of a con- 
trol,  are consistent with a hypothesis of random  drift 
of neutral,  additive genes. There is a significant prob- 
ability that  the  observed delines in V&t) late in the 
experiment  arose by chance.  In the case  of the two 
smallest effective population sizes the chances of V&t) 
returning toward  the  expectation  late in the  experi- 
ment were small since the lines must have already 
become fixed at many  loci. 

STATISTICAL  PROPERTIES OF T H E   W I T H I N -  
POPULATION  GENETIC  VARIANCE 

As in the case  of the between-line variance, there 
are several reasons why the realized dynamics of the 
within-line variance may depart substantially from  the 
expectation even when the assumptions of neutrality 
and additivity are met: variation in the genetic vari- 
ance  among  founder  populations, variance in inbreed- 
ing, deviations from  Hardy-Weinberg  equilibrium, 
and linkage disequilibrium. Although substantial the- 
oretical progress  on these matters has been made 
(AVERY  and  HILL  1977,  1979;  BULMER  1976,  1980), 
the existing work relies on several simplifying assump- 
tions in the  interest of analytical tractability: a base 
population in linkage equilibrium,  no variance in  in- 
breeding between populations, and t < 2N,. Since the 
latter two assumptions will often be violated in empir- 
ical studies, it is necessary to relax them. The follow- 
ing analysis will focus on unlinked loci, since for most 
organisms the majority of pairs of  loci are expected 
to be on  different chromosomes. 

As first pointed  out by BULMER (1 976), the domi- 
nant  source of variance of &t) is the  random devel- 
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opment of linkage disequilibrium that inevitably de- 
velops in finite  populations, even for unlinked loci. 
From AVERY and HILL ( 1  977), with two alleles/locus, 

n n  

a2[a&(t)l = 4 C C a,2a;[qio(l - qio)qjo(l 
i=l j=1  

- qjo)]($qt + 2 4 ,  - [I - F(t)12)/L (19) 

where q,o is the initial gene  frequency at  the  ith locus, 

Bqt = E(D$t)/[qio(l - qio)qjo(l - qjo)], and D$t is the 
squared linkage disequilibrium between loci i and j .  
An analytical expression is available for &it in CROW 
and KIMURA (1970), whereas Oiir = 0. The two-locus 
expectations, $qf and Q,, are  independent of gene 
frequencies and can be  evaluated by use of the mo- 
ment-generating  matrix of HILL and ROBERTSON 
( 1  968), which applies to systems  of invariant  inbreed- 
ing. T o  accommodate variance in inbreeding,  a  Tay- 
lor expansion was performed  on  the  elements of the 
matrix,  letting a2(N,) = &1)/4F(l). 

Obviously, Equation 19 is a rather complicated 
function,  but  great simplification can be  gained fol- 
lowing the logic  of AVERY and HILL (1977). First, 
note  that  the  squared  expectation of the within-pop- 
dation variance is 

$tjt = E [ q i t (  1 - q t t ) q I t (  1 - qjt)]/[qio( 1 - qio)qjo( 1 - q jo ) ] ,  

n n  

g&(t) = 4 C C a?a,2[qio(1 - qi0)qjO 
r = l  , = I  

Second,  note that  the fraction of terms in Equations 
19 and 20 attributable  to pairs of  loci is (n  - l)/n, so 
that with large  numbers of loci the  contribution of 
single-locus terms becomes diminishingly small. Thus, 
the  squared coefficient of variation is 

This function is plotted  for ideal monoecious popula- 
tions and  for full-sib mating in Figure 9. The pre- 
dicted variance is that which is expected within a  large 
progeny group. 

For populations of effective sizes of 4 or  greater, r 
4/3NeL from  the very outset of an  experiment.  The 

same conclusion was reached by AVERY and HILL 
(1977), showing that  for unlinked loci, their results 
hold very well even for  large t /Nc and  are influenced 
only negligibly by variance in inbreeding. The results 
of BULMER (1980), obtained in a  different  manner, 
suggest r may be closer to 5/3NeL, but this discrep- 
ancy has little bearing on  the following conclusions. 
For smaller populations, the variance in &(t) caused 
by linkage is somewhat larger. With full-sib mating r 
rises from 0.5/L to 0.8/L by 10 generations of in- 
breeding,  at which point it would be very difficult to 
acquire  accurate estimates of a&(t) since inbreeding 
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FIGURE 9.-The sguared coefficient of variation of the within- 
population genetic variance multiplied by N e t ,  considering only the 
variation caused by linkage disequilibrium. The panel on the left 
refers to a large progeny group  after  the  denoted generations of 
inbreeding;  the panel on  the right refers to the situation after  the 
progeny group has been mated randomly for  a single generation. 

has proceeded to 90%. With self-fertilization, r in- 
creases from 2.0/L to 6.3/L at five generations of 
inbreeding. 

Since linkage disequilibrium is a  transient  phenom- 
enon,  the sampling variance of u&(t) can be  reduced 
substantially by expanding and randomly mating 
within each line prior  to analysis. The improvement 
in accuracy can be  determined by recomputing $ol 
and Oyt from the  moment-generating matrix after al- 
lowing for  an  additional  generation with (1/2N,) = 0. 
The results of a single generation of such treatment 
are shown in Figure 9, where it can be seem that r is 
reduced  to between 50% and 25% of  its previous 
value if the loci are unlinked. 

Several other sources of variation of a&(t) exist. 
First, there is the variance in the initial within-line 
variance caused by a  finite  number of founders. If the 
lines are established with independent  members of the 
base population,  then a'[a&(O)] = 2g&(0)/L(Nm + Nr) 
assuming normally distributed  breeding values. This 
initial variation is propagated  through all subsequent 
generations as 2[1 - F(t)l22&(O)/L(Nrn + Nf) ,  giving a 
squared coefficient of variation of 2/LN,  for monoe- 
cious populations. 

BULMER ( 1  980) has pointed  out  that deviations from 
Hardy-Weinberg equilibria within and between loci 
are  an additional  source of variation of a&(t). How- 
ever, if a substantial number of individuals in a  prog- 
eny group  are evaluated, this source of variation can 
safely be  ignored. BULMER (1980) also notes that 
variation in the  "true" genetic variance is caused by 
the  propagation of random variation in heterozygosity 
of individual loci. This is the variance attributable  to 
the single locus terms  that were ignored in the  deri- 
vation of Equation 2 1 .  A simple statement in terms of 
observable parameters is not possible here since the 
variance of heterozygosity is a  function of gene  fre- 
quencies. If, however, gene effects and frequencies 
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are assumed to be  uncorrelated, it  follows that  the 
variance of the  “true” genetic variance is inversely 
related to  the  number of loci. Thus, if there  are a 
large  number of independent loci, this additional 
source of variation is likely to be small relative to  the 
sources described above. 

Finally, it should  be  noted that  the previous deri- 
vations have been performed  under  the assumption 
of unlinked loci and a base population in linkage 
equilibrium. Linkage will cause greater variation than 
that  noted  above,  but  for most chromosomal systems 
the inflation is expected to be fairly small, most  likely 
less than 50% (AVERY  and HILL  1977). Linkage dis- 
equilibrium in the base population causes additional 
problems  not only for  the variance of u&(t) but also 
for its expectation. Z&,(t) will no longer  change in 
proportion  to  the  inbreeding coefficient and may  ac- 
tually increase if there is substantial negative disequi- 
librium initially. AVERY and HILL  (1977) have pointed 
out  that with unlinked loci, the values  in Figure  9 are 
reached in  3-4 generations  regardless of the initial 
state of the  population. 

Summing  up all  of the sources of variation of u&(t), 
it can be seen that only a  rough  statement can be 
made as to  the efficiency of an experimental design. 
For lines with effective sizes  of four or  greater,  the 
squared coefficient of variation of u&,(t) is at least (41 
3NeL) + (2/NeL). The coefficient of variation is there- 
fore  on  the  order of 2 / m .  Therefore, if it is desir- 
able to keep the  standard error  at a level  of 10% of 
the expectation, the design must be such that NeL = 
400; e.g., 100 lines of Ne = 4,  or 25 of Ne = 16. With 
full-sib mating,  the coefficient of variation of u&(t) is 
expected to be of the  order  for  the first 10 
generations. Therefore,  for  the same level  of accu- 
racy, 200 lines would need  to  be  evaluated. Finally, 
for self-fertilizing lines, the coefficient of variation is 
expected to average more  than  over  the first 
five generations of inbreeding, so at least 700 lines 
would need to be  monitored. These guidelines are  on 
the conservative side as they do not  include the addi- 
tional, and usually substantial, variation due  to  the 
deviation of the  measurement Vp( t )  from  the  popu- 
lation parameter u&(t). 

In  evaluating  the overall dynamics of observational 
estimates of u&(t) account also needs to be  taken of 
the fact that  subsequent observations are not  inde- 
pendent of each other. Much, but not all, of the 
covariance between observations in the same popula- 
tion is caused by the slow decay of linkage disequili- 
brium. Both AVERY  and  HILL  (1977)  and BULMER 
(1980) have considered this problem, and  from the. 
former it can be deduced  that  for unlinked loci, the 
covariance between u&(t) and u&(t’) is close to 
22-t’+t[  1 - F(t’)]u&(0)/3NeL. Such covariance would 
need  to be incorporated  into tests of the significance 
and linearity of the decline of u&(t) with F ( t ) .  How- 
ever, in light of the  rough  nature of the expressions 

for  the variances and covariances of the u&(t), no 
further  attempt  to  develop  the regression theory will 
be made  here. 

The preceding results emphasize that  the variance 
of the realization of the  drift process [the dispersion 
of u&(t) around Z&(t)] should not  be  ignored in studies 
of the dynamics of additive  genetic variance within 
small populations. Up  to now, however, sampling 
variance [the dispersion of Vp( t )  around u&(t)] has 
been treated  as  the sole error in empirical studies, a 
procedure  that can only falsely encourage  the rejec- 
tion of the  neutral,  additive  gene model. Based on 
this approach, LINTS and BURGOIS (1984)  and 
BRYANT, MCCOMMAS and COMBS (1 986) have fostered 
the idea that bottlenecks cause an inflation of the 
additive  genetic variance within populations. The con- 
clusion of LINTS and BURGOIS (1984) is based on  a 
single line of D. melanogaster of somewhat uncertain 
Ne.  They compared the realized additive genetic var- 
iance, obtained  from selection experiments,  for  ster- 
nopleural bristle number in the bottlenecked popula- 
tion and  “control” lines. No statistical comparison of 
the lines was actually performed,  but even if there 
had been one,  the results would have been question- 
able, since each line was evaluated in a  different 
environment. 

More credible, but still difficult to evaluate, are  the 
results of BRYANT, MCCOMMAS and COMBS (1986). 
They  extracted houseflies from  a  large base popula- 
tion and subjected  four replicates to single-generation 
bottlenecks of 2, 8 and 32 individuals. The lines were 
allowed to expand  for 5 generations  to approximately 
2000 flies prior  to analysis. This is fortuitous since, as 
noted  above, such treatment  reduces  the variance of 
u&(t) caused by linkage disequilibrium. The authors 
measured  eight genetically correlated  characters and 
concluded  that several of them  exhibited significant 
increases in additive genetic variance relative to  the 
base population.  These comparisons, however, are 
based entirely on  the variance of Vgw(t) due to esti- 
mation procedure. Even if all  of the variation due  to 
linkage disequilibrium were eliminated by the  exper- 
imental protocol, the variation in u2 ( t )  caused by the 
variation in the initial genetic variance among  the 
founder populations is too substantial to  ignore. The 
coefficient of variation caused by this source of  vari- 
ation  alone, m, is 0.45, 0.25 and 0.12 for  the 
three bottleneck treatments. 

There  are ways of reducing  the  problem of varia- 
tion in the additive genetic variance among  founder 
populations. For example, if Ne families in the base 
population each contribute single individuals to each 
founder  population, the variance in initial additive 
genetic variance among lines  would be  reduced by 
50% relative to  the situation in  which the  founders 
are drawn  randomly  from the base.  If several highly 
inbred lines are available, each founder population 
can be established with identical genetic properties. 

g“ 
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The need  for  inbred lines can be avoided if individuals 
can be multiplied temporarily by vegetative means. 

DISCUSSION 

It has been shown that  for characters with an  addi- 
tive genetic basis, aside from  the  presence of general 
environmental effects and possible operation of evo- 
lutionary forces such as selection and  mutation,  there 
are two causes for  the deviations of quantitative ge- 
netic estimates from  the simple expectations of finite 
population  theory: variation in the realization of the 
driftlinbreeding process and sampling variance re- 
sulting  from the estimation  procedure. Virtually all 
existing empirical studies have considered only the 
latter  source of variation, and hence are biased in the 
direction of falsifying the null hypothesis of neutral 
additive genes. Under most experimental  protocols, 
this bias is much too large to  be  ignored. 

The major sources of the “realization variance” are 
the evaluation of a  finite  number of lines, variance in 
the  genetic  properties of the  founder populations, 
linkage disequilibrium in the base and study popula- 
tions, and variance in inbreeding between lines. Some 
protocols have been suggested to minimize the reali- 
zation variance, but in no case can it be eliminated 
entirely. 

Although the  random  development of linkage dis- 
equilibrium and variance in inbreeding  are difficult 
to observe with quantitative  characters, they are very 
real  problems in the analysis of very small populations. 
Fortunately, if most pairs of loci are unlinked  the 
expected variance of the realized changes in genotypic 
means and variances can still be  described in terms of 
observable quantities  (additive genetic variance in the 
base population, effective population size, and num- 
bers of generations and lines). In cases where  a few 
genes with major effects are linked, the  true realiza- 
tion variances will be even higher  than  those  defined 
above. Other factors will insure  that this is so. First, 
linkage disequilibrium in the base population is  always 
a  problem,  but because it cannot  be easily quantified, 
there is no simple way to  incorporate it into statistical 
procedures. The best way to  guard against this prob- 
lem is to  expand  and randomly  mate the base popu- 
lation for several generations  prior to  the extraction 
of experimental lines. Second, the theory in this paper 
only considers the genetic variation preexisting in the 
base population, and  therefore assumes that new mu- 
tations are  not a significant source of variance. Such 
an assumption is reasonable  for  experiments of short 
duration (say, <6 generations of inbreeding),  but since 
many uncertainties still exist over the  rate of polygenic 
mutation (TURELLI 1984;  LYNCH  1  988),  the  potential 
noise caused by mutation in longer  experiments 
should  not  be  ignored. Expressions for  the variance 
of the realized within- and between-line variance 

caused by mutation are  presented in LYNCH  and  HILL 
(1 986). 

Keeping in mind that  the expressions for  the reali- 
zation variances presented in this paper are on  the 
conservative side and  do  not include the sampling 
variance due  to  the estimation procedure,  their appli- 
cation should  improve the utility of the  neutral  addi- 
tive genetic model as  a null hypothesis in testing  for 
various genetic  properties  and  evolutionary conse- 
quences of small population size. As in  all statistical 
analyses, since the  form of the distributions of realized 
means, variances, and regression coefficients could 
vary substantially from case to case, most  of the sug- 
gested tests should  be  considered to be  approxima- 
tions and  interpretative guides. Since most  of the 
realized variances are expressed in terms of the addi- 
tive genetic variance in the base population,  a  major 
priority in any drift or inbreeding  experiment should 
be to accurately  estimate this parameter  at  the  outset. 
The only way to apply the formulas  for the realization 
variances is to substitute  the observation V,(O) for its 
expectation Z&(O), so if Vp(0)  is an underestimate, the 
standard  errors of parameter estimates will be also. 

In  order  to ease the presentation of some rather 
complicated formulas, the theory in this paper has 
been  developed under  the assumption of a balanced 
experimental design. This, of course, will amost never 
be  true in large  experiments of long duration. Proce- 
dures  for dealing with unbalanced  data sets are com- 
plicated, but  are outlined in  most statistics texts. Use 
of the  relationship  matrix (SORENSEN and KENNEDY 
1983)  although computationally demanding,  should 
allow a  generalization of many of the  procedures 
outlined above to  arbitrary  distributions of family  size 
and  structure. 

Of greater  concern here is the problem as to 
whether lost individuals and/or lines are a biased 
sample of the whole population. In the mouse, for 
example,  pronounced  inbreeding depression usually 
follows the first few generations of full-sib mating, 
and  then  the overall population  appears to recover 
(BOWMAN and FALCONER 1960;  LYNCH  1977; CON- 
NOR and BELLUCCI 1979). This is due  to  the differ- 
ential  extinction and survival of  lines that  do  and  do 
not  exhibit the deleterious effects of inbreeding.  A 
large part of the problem with the mouse is its rela- 
tively  low reproductive capacity. Corn, which clearly 
suffers from  inbreeding depression but has high fe- 
cundity, generally has survivorship of selfed lines  in 
excess  of 99%. On the  other  hand, while experiments 
with high fecundity organisms may have minimal 
problems with selection between lines, by allowing the 
maintenance of “spares,” they inflate the problem of 
selection within lines. 

The utility of the  neutral,  additive  genetic model is 
its simplicity (nondependence on the  gene  frequency 
distribution) and unambiguous  predictions. A confi- 
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dent rejection of this model is tantamount  to  accepting 
that  alternative modes of gene  action  (dominance or 
epistasis) or evolutionary forces (selection or migra- 
tion) are of significant importance. An explicit test of 
any alternative hypothesis would require  the devel- 
opment of statistical methods  comparable to those 
described in this paper  but  tailored to  the specific 
evolutionary scenario. 

Given the  fundamental significance of drift  and 
inbreeding  to so many  issues  in biology and  the wide- 
spread application of the existing theory to practical 
problems,  the lack of large, reliable data sets on the 
subject is striking. Aside from  the excellent data  on 
corn, almost all  of the existing information is from 
laboratory populations of Drosophila,  Tribolium, and 
mice, and  from  human surveys, and these studies are 
less than ideal in many respects. The major conclusion 
of this paper is that if a  confident  understanding of 
the genetic consequences of finite  population size and 
inbreeding depression is desirable,  experimental  anal- 
yses are going to have to involve a  large  number of 
lines (ideally, over loo), monitored  over several gen- 
erations with parallel controls.  In order to evaluate 
how natural selection and  random  genetic  drift  inter- 
act, it will be necessary to  perform  experiments si- 
multaneously at  different  population sizes to allow the 
relative magnitude of the two forces to vary. This 
calls for  an  effort  on  a scale somewhat larger  than 
many population geneticists are used to. T o  put it in 
perspective, however, the necessary investment  for 
such work would be  a  pittance  compared to  the cost 
of sequencing  a  human  genome or building a super- 
collidor. It is not clear that  the benefits would be so 
dwarfed. 

This work was supported by National  Science Foundation  grants 
BSR 83-06072  and BSR 86-00487. Many thanks  to W. G. HILL  for 
helpful comments. 
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APPENDIX 

Approximate expectations for the sampling 
variance and covariance of the between-line 
variance 
For t = 0, 

For nNf>> 1 and t > 0, 

F(t)[l  - F(t  - I ) ]  
NAL - 1 )  I n Ne 

1 

For t' > t ,  

a[a;2(t),  a;2(t')] = a2[a;(o)] + - 4;&(0) 
L- 1 

.I J 2 [  1 + Nm + Nf ]F(t)F(t') + X+%(t), 1 

2 a&( 0) 
+ [ nNF(Nm + Nf)(L - 1 )  

F(t)[l  - F(t' - l ) ]  

+ F(t ' ) [ l  - F(t  - l ) ]  
[ l  -F(t - 1 ) ] [ 1  - F(t' - l ) ]  + 

4nNf 

- X"&(O) 
nNf(L - 1 )  

x-'a;(t) + - 1 )  

- & - l ) ] ]  
4nNf 

where X = 1 - (1/2Ne),   u2[ui(0)]  is the first term of 
equation ( A l ) ,  and &(t) is the  expected variance in 
the cumulative inbreeding  among  replicate lines at 
time t .  

( A 3 )  
2 


