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ABSTRACT 
Evolution  of mutation rate controlled by a neutral modifier is studied for a locus  with  two  alleles 

under temporally fluctuating selection  pressure. A general formula is derived to calculate the 
evolutionarily  stable  mutation rate in an infinitely large haploid population, and following  results 
are obtained. (I) For  any fluctuation, periodic or random: (1) if the recombination rate r per generation 
between the modifier and the main  locus  is 0, pa is the same  as the optimal  mutation rate pop which 
maximizes the long-term geometric average of population  fitness; and (2) for any r ,  if the strength s 
of selection per generation is  very large, bm is equal  to the reciprocal of the average number T of 
generations (duration time) during which one allele is persistently  favored than the other. (11) For a 
periodic fluctuation in the limit  of  small s and r ,  p e s s ~  is a function of ST and rT with properties: (1) for 
a given ST, perr7 decreases with increasing rT; (2) for ST d 1, P-T is almost independent of ST, and 
depends on rT as pcLeu~ = 1.6 for rT << 1 and p e m ~  k 6 / r ~  for rT >> 1 ; and (3) for ST B 1, and for a given 
rr ,  p e s r ~  decreases with increasing ST to a certain minimum  less than 1, and then increases to 1 
asymptotically  in the limit  of  large ST. (HI) For a fluctuation consisting  of  multiple Fourier components 
@e.,  sine wave components), the component with the longest period is the most effective in determining 
pes (low passjlter effect). (IV) When the cost c of preventing mutation is positive, the modifier is non- 
neutral, and pes becomes larger than in the case of neutral modifier under the same  selection pressure 
acting at the main locus. The value  of c which  makes equal to clop of the neutral modifier case  is 
calculated. It is argued that this  value  gives a critical cost  such that, so long as the actual cost exceeds 
this  value, the evolution rate at the main  locus  must  be  smaller than its  mutation rate pes. 

I N a constant  environment,  mutation is deleterious 
since  it  brings  about a mutational  load to the 

population by producing  unfit alleles from a common 
one which is often  best  fit to the  environment. Theo- 
retical  studies of mutation rate modifier  dynamics 
conclude  that  the  rate  should evolve toward zero (for 
example, LIEBERMAN and FELDMAN 1986).  In a  fluc- 
tuating  environment,  however,  the  rate  can  evolve 
toward a nonzero level since  mutation is advantageous 
as  long  as it provides  genetic  variation necessary for a 
population to adapt  to  the  changing  environment. 

This  idea was put  forward by STURTEVANT (1  937), 
and was quantitatively  studied by KIMURA (1960, 
1967). KIMURA proposed  that  mutation  rate  would 
evolve toward a rate which  minimizes the  sum of the 
mutation  load L, and  the  substitution load Le. LEVINS 
(1967)  further  developed this idea by calculating the 
optimal  mutation  rate pop which  maximizes the long- 
term  geometric  average  of  population  fitness  for a 
model  that explicitly incorporated a fluctuating  envi- 
ronment.  Recently, ISHII and MATSUDA (1 985)  proved 
that  the  optimal  mutation  rate pop is equal to the 
evolution  rate v which is defined  as  the  rate of mutant 
substitutions  that  have  occurred  along  the  phylogenic 
line  leading to the  present  organisms. 
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However, all of these  papers implicitly assumed  that 
the  mutation  rate is adjusted  through  group selection. 
So, their  conclusions  need to be compared  with  those 
of  modifier  theories  in which the  mutation  rate 
evolves through individual  selection. This is because 
a population which is best  fit  with respect to group 
selection  can  sometimes be unstable  against the inva- 
sion of a mutant  modifier  through  individual selec- 
tion. 

LEIGH (1970,  1973)  studied for the first  time a 
mutation  modifier  model  in  fluctuating  environment. 
For a special case of  very  strong  selection, he showed 
that a nonzero  optimal level is realized by neutral 
modifiers  in an asexual  population. He further  argued 
that  in a  sexual  population  selection  would  adjust  the 
mutation  rate  toward  zero,  but  did  not explicitly cal- 
culate  the level of mutation  rate  attained by modifiers. 
GILLESPIE (1981)  studied a modifier  model similar to 
LEIGH’S but  in a  rapidly  fluctuating  environment 
which  can be analyzed by a  diffusion  model. In  a  case 
of  very loosely linked  modifiers, he  found  that, de- 
pending  on  the model  parameters, selection on  mu- 
tation  rates will operate  toward  three goals: the high- 
est  possible rate,  the lowest possible rate, or an  inter- 
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mediate  rate. This result is qualitatively different  from 
LEIGH’S. 

In this paper we study a  population genetic model 
of mutation rate modifiers in an infinitely large  hap- 
loid population. We derive  a  formula by which we can 
calculate the evolutionarily stable mutation rate pess 
which is to be realized as an evolutionary  consequence. 
We examine how pess depends  on  the  strength  and 
duration of periodically fluctuating selection and  the 
recombination between the modifier and  the main 
locus. We find that selection would generally adjust 
pess at a  nonzero level even in the weak selection limit 
or by unlinked modifiers. We  discuss  possible differ- 
ences of peSs between a  periodic  environment and a 
random  one. Finally, we calculate the effect of non- 
neutral modifiers for  a case  of positive cost of pre- 
venting  mutation,  and discuss its implication on  the 
molecular evolution rate  at  the main locus. 

MODIFIER  MODEL 

We consider  a two-locus model of mutation rate 
modifiers in a haploid population of effectively infi- 
nitely large size. The main locus  with two alleles A 
and a is under a  fluctuating selection such that  the 
relative fitnesses of A and a in the tth  generation  are 
1 + s(t) and 1 - s(t), respectively. The selection coef- 
ficient s(t)  fluctuates through time with the average 0 .  
The modifier locus  with  two alleles B and b controls 
the mutation rate between A and a at  the main locus 
as p and p’ for B and b,  respectively. The recombina- 
tion rate between the modifier and  the main  locus is 
r per  generation. The modifier alleles are selectively 
neutral so that  the fitness of a  genome  does  not 
depend  on  them. 

Consider a  population which is made  up of only B- 
carrying genomes. We introduce  a small fraction of 
mutant modifier b carrying genomes with a  different 
mutation rate p’ into it, and ask if the  mutant modifier 
increases in the  population or not. If no mutant mod- 
ifier b in a given set of modifiers can increase in the 
population,  the  resident modifier B is said to  be evo- 
lutionarily stable (MAYNARD SMITH and PRICE 1973), 
and we call the mutation rate p caused by B an 
evolutionarily stable mutation  rate peSs. As a conse- 
quence of repeated  introduction of  new modifiers, we 
expect that  the mutation rate would evolve toward 
P C S S .  

We can analyze the elimination of an  introduced b 
modifier by a following linear dynamical system model 
since b carrying genomes can be assumed to remain 
rare in the  population throughout  the course. let Nl( t )  
and N2(t )  be, respectively, the  numbers of A b  carrying 
genomes and ab carrying  ones in the population at 
time t .  Then,  the corresponding  numbers at  the next 

time t + 1 are obtained in three steps as follows. First, 
genic selection amplifies them as 

N ;  = (1 + s(t))N&), N4 = (1 - s(t))Np(t). 

Next,  mutation with rate p’ modifies them as 

N;‘ = (1 - p’)Nl + p‘N4,  

N; = p ’ N i  + (1 - p ’ ) N 4 .  

Finally, recombination completes the change in one 
generation as 

Nl(t  + 1) = {(l - r )  + rx1(t))N;’ + rxl(t)N;,  

NB(t + 1) = rx2(t)N;’ + ((1 - r) + rxp(t))N!. 

Here, xl(t) and ~ ( t )  are, respectively, the frequencies 
of A and a among B carrying genomes just  before 
recombination takes place. Recombination with b car- 
rying genomes is neglected since they are  rare in the 
population. 

Combining  above three steps, we obtain the num- 
bers of b carrying genomes at time t + 1  from those 
at time t as 

where  2 X 2 matrix M(t)  is given by 

M(t)  = I“ - rxz( t )  - (1 - r)p’l{l + s(t))  
bxe( t )  + (1 - +’){1 + s(t))  

1 
(2) 

h ( t )  + (1 - r)p’l{l - s(t)l 
{ 1 - rx$) - (1 - r )p ’ ) (  1 - s ( t ) )  . 

In order  to apply (1)  and  (2)  to study the  ultimate 
fate of b carrying  genomes, we must first know values 
of frequencies xl ( t )  and ~ ( t )  = 1 - xl ( t )  of A and a 
among B carrying genomes at each time t. When  the 
population consists  of only B genomes,  their  time 
change is due  to fluctuating selection and mutation 
with rate p, and is given by 

This applies also after  the  introduction of b carrying 
genomes as long as they remain rare in the population, 
because recombination with them can be  neglected. 

According to (l) ,  the long-term increase rate 

X = Iim { N ( ~ ) / N ( o ) ) ” ~  

of the  total  number N(t) = N l ( t )  + NZ(t) of b carrying 
genomes is determined by the multiplication of  ma- 
trices {M(t);  t = 0 ,  l ,  2, . . .). Since the matrix M(t)  
in (2)  depends  not only on p‘ but also on p through 
xi ( t )  determined by (3), the  rate X is a  function of both 
p’ and p, say X(p’, p). Then, in order  that p be stable 

i- 
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against the  introduction of modifier alleles with a 
slightly different p’, X(p’, p) must be smaller than 
X(p, p). This gives 

A(p) = [ W p ’ ,  p)/d~’l~,=~ = 0 ( 4 4  

together with 

A@’) P 0 for p P p’ (4b) 

as the condition  for p to be  an evolutionarily stable 
mutation rate pess. 

The long-term increase rate X is equal to  the long- 
term  geometric  average lim{G(t - I)G(t - 2) . * . 

t“tm 

G(O)}l’I of 

G(t)  = [{l + S(t)Wl(t)  + (1 - S(t)IN2(t)l/N(t) 

since N(t )  = G(t - l)G(t - 2) - . zZ(O)N(O) accord- 
ing  to (1)-(2). Here, G(t)  is the average fitness of a 
subpopulation of b carrying genomes. It is a  function 
of not only p’ but also p as long  as M(t)  in (2)  depends 
on p. In a  particular case where the modifier locus is 
completely linked with the main locus (r = 0) ,  M(t )  
does  not  depend on p, hence X is independent  of p 
and is equal to  the long-term  geometric  average of 
population fitness for  the case of a  homogeneous 
modifier locus with mutation rate i’. Therefore we 
can conclude by (4)  that for  completely linked modijiers, 
pes, is the same as the optimal  mutation  rate pop which 
maximizes the long-term  geometric  average of popu- 
lation fitness. 

However, in general cases, some recombination may 
occur each generation  between  the  modifier  and  the 
main locus ( r  > 0). Then  the optimal mutation rate 
pop may not  be  attained as a  consequence of natural 
selection. In order  to study more clearly what happens 
in this case, we concentrate in the following on the 
periodically fluctuating  environment with a  finite 
period T.  Possible differences in results between  a 
periodic  environment  and  a  random  one will be dis- 
cussed later. 

In a  periodic  environment with period T ,  the selec- 
tion coefficient s(t) is a  periodic  sequence with period 
T. Then, since the  periodic  transformation (3) with 
period  T has been exerted for  a  long  time,  time 
sequences of x l ( t )  and xp( t )  must have converged 
to periodic  ones with the same period  T by the time 
of introduction of b carrying  genomes,’ and remain 
so as  long as b carrying  genomes are  rare in the popu- 
lation. The periodic  sequence of x l ( t )  is obtained 
by solving simultaneous equations (3) for t = 0, 1, 
2 , . ”  , T - 1 under a  boundary  condition x l ( T )  = 
XI(0). 

Since we now  know that time sequences of x l ( t )  and 

’ The convergence to periodic sequences with period T can be proved by 
noting that apparently nonlinear transformation (3) of the frequency xl(t) is 

but with r = 0 and p’ replaced by p. 
related to a periodic linear transformation of genome numbers like (1)-(2) 

x2(t) are periodic with period T, we see that  the  time 
sequence of matrix M(t)  in (2) is also periodic with the 
same period T .  Thus,  the iteration of (1) is much 
simplified as 

where M T  is a  constant  matrix given by 

M T  = M(T - 1)M(T - 2) . . * M(2)M(l)M(O). (6)  

According to ( 5 ) ,  the long-term increase rate X of 
numbers of b carrying  genomes is given by the Tth 
root of the greatest eigenvalue of matrix MT. There- 
fore, pes, is determined by (4) if we use this eigenvalue 
as X@‘, p). Although analytical solution of (4) is limited 
to specially simple cases, its numerical solution is easy 
for any periodic selection and recombination rate r as 
is explained in APPENDIX A. 

Note  that to obtain pes, by numerically solving (4) is 
quite  different  from  finding pes, based on a  computer 
simulation of modifier competitions. We numerically 
solve (4) by a  routine of bisection using A(p) values 
calculated by multiplying 2 X 2  matrices  T times and 
by solving quadratic  equations. By this method we can 
obtain  the precise value of pes, in a  short  computation 
time  for any model parameters.  Arbitrarily weak  se- 
lection and long  period  T as large as lo’, which are 
practically intractable by computer simulations, are 
no problem to  our  method. 

RESULTS 

Let us consider  a  periodic selection with period  T 
= 27 where s( t )  is given as 

s(t) = 
+s for t = 0, 1, 2, . ., T - 1 
-s for t = T ,  T + 1, . - ,  T - 1. (7) 

Here, s is a positive parameter  to  denote  the  strength 
of selection and T is the  number of generations during 
which the same selection pressure  continues to work. 
We are  interested in  how pes, depends on the  strength 
s and  the  duration T of selection, and  the recombina- 
tion rate r between the modifier and  the main locus. 

Figure 1 shows pes, vs. r for  different T = 1, 2, 3, 4, 
5 ,  10, 25 and s = 0.05,  0.5.  For  a given pair of s and 
T ,  pes, generally decreases monotonically as r increases 
from 0 (complete linkage) to 0.5 (free  recombination). 
However, as long as rT 5 1, the decrease with r is not 
very large:  even  for r = 0.5 and T = 5 (rT = 2.5), pes, 
is more  than 75% of pop which equals pes for r = 0. 
The decrease becomes appreciable only when rT >> 1. 

Several exceptions  from the  monotone  decrease of 
pess with r are seen in Figure 1. First, for T = 1 and  2, 
we see that pess does  not  depend on r. For any value 
of s and r ,  pes, is always found  at 1 for T = 1 and  at 
0.5 for T = 2. This result is confirmed analytically in 
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FIGURE 1.-The ESS mutation rate pes vs. the recombination 
rate r between the modifier and the main loci for a periodic selection 
with a single strong Fourier component (7). Curve is  drawn for a 
given pair of strength s and duration T of selection. Thick lines are 
for s = 0.5 and thin ones for 5 = 0.05. T is chosen from 1 ,  2,  3, 4, 
5, 10 and 25. For T = 3 , 5  and 25, broken lines give the demarcation 
mutation rate which bounds the attractor of the second ESS muta- 
tion rate pea. = 1 not shown in the figure. 

the weak selection limit ST cc 1 (see APPENDIX B) and 
if the  strength of selection is very large s = 1 (see 

Next,  for  odd  numbers of T ,  we see that  there  are 
two pess. The larger  one is always at 1 for any s and r ,  
while the smaller one changes with s and r. So, the 
range [ 0 ,  11 of p is divided into two attractors of each 
pess, and  the  demarcation  mutation rate which sepa- 
rates  them is also shown in Figure l by broken lines. 

We  may not  need worry about pew = 1 for odd T 

case  with T L 3, because its attractor  extends only  in 
a  too  high  region of mutation rate (p  > 0.7) to allow 
a biologically meaningful interpretation.  However, 
pess = 1 and 0.5, respectively, for T = 1 and 2 may be 
interpreted as to suggest that  the  mutation  rate would 
evolve toward the highest possible  level  in such a 
rapidly oscillating environment. 

When s, p and r are small, the behavior of our 
discrete  time model is expected to be  approximated 
reasonably well  by a  continuous  time  model. Then, 

APPENDIX C). 

pess will depend  on  parameters s, T and r in such a way 
that peSs7 is a  function of only ST and rT. This scaling 
rule helps us in presenting the  parameter  dependence 
of pess in an economical way. Moreover,  once  a scaled 
result is obtained by calculations for  parameters which 
are within computer’s ability, it can be used to predict 
results for  extreme  parameters beyond computer’s 
ability. 

Figure 2 shows that this scaling rule actually holds 
with our model. For  a  number of pairs of scaled 
parameters ST and rT, which were taken  from  a  region 

5 ST 5 lo2 and 0 S TT S lo2, we calculated pess 
for  three  different  durations T = 100, 320, and 1 0 0 0 .  
For  a fixed value of Y T ,  the scaled results peS7 as  a 
function of scaled parameter ST lie reasonably well on 
a  curve  notwithstanding  different T’S  were used. 

The curve for T-T = 0 (complete linkage) corre- 
sponds exactly to  the  contour line of evolution rate 
v = p of a  continuous  time replicon model under a 
periodic selection corresponding  to our (7) (Figure 3 
of ISHII, MATSUDA and OGITA 1982). This is as it 
should be. According to  the  extended Haldane-Muller 
principle of mutation load &/dp = 1 - u/p (ISHII and 
MATSUDA 1985), v /p  = 1 corresponds to pop which 
maximizes the long-term  average Gz of averaged Mal- 
thusian parameter ( ie . ,  dG/dp = 0). 

Figure 2 shows that  for  a fixed rT, p e s s ~  does  not 
depend  on ST as long as ST 5 1 .  As we further increase 
ST, peSs7 decreases to a  certain minimum less than 1 ,  
and  then increases to 1 asymptotically in the limit of 
large ST. However,  for TT S 1, the asymptotical ap- 
proach of p e s s ~  to 1 from below is not so conspicuous 
as for r~ >> 1 .  

The fact that pess = 1 / ~  for very strong selection has 
been known for completely linked modifier case r = 
0 by LEIGH (1970). Figure 2 shows that it applies also 
for  unlinked modifiers although  the  required ST is the 
greater  for  the  larger TT.  For very strong selection s 
= 1 ,  it can be further shown by our formula (4) that 
pess is  always equal to  the reciprocal of the average 
duration of environment,  whether  the  fluctuation is 
periodic or random (see APPENDIX c). 

The level of pew7 for small ST can be calculated 
analytically by assuming that  for such weak selection 
the frequency of A allele at  the main locus fluctuates 
only near  around 0.5. By a  linear analysis based on 
expansion of A frequencies around 0.5, we obtain in 

1 + e- R-2M ( R + 2M R 1 + e-2M ) 
APPENDIX B. 

1 1 - e-R-2M 1 - e-2M 

-2- 

1 1 - e-2M +- - - =  l o  
2M 1 + e-2M 2 

as the equation to  determine M = peS7 as a  function 
of R = TT for large T .  This gives p e s s ~  = 1 . 6 0 6 1  for t-7 

<< 1,  and p, , ,~  = 6/r7 for TT >> 1.  The result  for ST 5 
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1 in Figure  2  agrees very  well with this analytical 
result. 

Figure  2 also shows that peSs7 for  a  fixed ST mono- 
tonically decreases  as r7 increases from 0. However, 
the decrease is not  large as long as rr 5 1,  and becomes 
appreciable only for r7 > 1. 

The fluctuating selection (7) can be said to be with 
a single strong  Fourier component (i.e., sine wave com- 
ponent) since its frequency  spectrum has a single 
strong peak at  the frequency w = P/ r .  However, there 
remains  a question if the above  result  obtained for 
this specific case really gives us a  good  general  picture 
of pes, in a  fluctuating  environment with a single strong 
Fourier  component.  Although we can not  be very 
conclusive, the answer seems to be yes. For  example, 
we may consider  a purely sine wave fluctuation 

S(t) = S COS(Pt/T + 'P) (8) 
as  a  second  environment. Here, s denotes  the  strength 
of selection, 7 is the  number of generations during 
which one allele is persistently favored  than the  other, 
and 'P is the phase parameter of the  environment. As 
we show  in APPENDIX B, in the weak selection limit 
this environment gives p , , ~  which is nearly equal to 
7r/2 for rr << 1,  and ?r2/2r7 for r7 >> 1. This is 
essentially the same result as explained in the above 
for  the  corresponding  environment (7). Numerical 
solution of (4) for this environment shows that  the 
behavior of p , , ~  for ST > 1 is also similar to  that of 
the  corresponding  environment (7). 

Fluctuation with multiple Fourier components: 
For  a  fluctuation consisting of multiple Fourier com- 

FIGURE 2,"Scaled ESS mutation 
rate p-7 us. scaled selection strength 
ST for different scaled recombination 
rate YT = 0 ,  ~ o - O . ~ ,  1, 10, 
100 under a periodic selection with a 
single strong  Fourier  component as 
in Figure 1. For a given pair of ST 

and YT, p., is calculated for three 
different  durations T = 100,320  and 
1000. Symbol + gives p L . , ~  for T = 
100, symbol - for T = 320. Lines are 
drawn for each fixed YT as to connect 
the results for T = 1000. The broken 
line gives the optimal mutation rate 
pop as pOp7 for a random selection with 
strengths  and average duration r (see 
DISCUSSION). 

IO IO0 

ponents, we are interested in  how pess depends  on  each 
component. As a simplest example, let us consider  a 
two component case where s( t )  is the sum of two 
periodic sequences as are given in (7) respectively with 
strength  and  duration SI, 7 1  and SP, 72. Denoting by 
p& the ESS mutation rate  for a  periodic selection with 
a single strong  Fourier  component of strength si and 
duration 7i, we introduce  the  relative  deviation 6 = 
(pess - pi2)/(pi2 - pi::) of pess from pg. 6 = 1 and 6 = 
0 mean that  the most effective component in deter- 
mining we, is the first and  the second one, respectively. 

Figure 3A shows  how 6 changes as ~ 2 1 . ~ 1  increases 
from 0 to 1. The first component is fixed as s l r l  = 
lo-' with 7 1  = 3 1. The second component is chosen 
to have a fixed duration 7 2  = 3 10. Calculations were 
done  for rT1 = 0, 1 and  10.  It should  be noticed that 
the  strength of the second component  changes  from 
s272 = 0 to as s2/s1 increases from 0 to  1,  and 
three levels of linkage correspond  to rT2 = 0, 10, 100. 
Since s171 << 1 and s272 << 1, pi:! and pi:! are almost 
independent of the selection strength  and are essen- 
tially determined by r71 and r72, respectively. 

As sz/sI increases from 0 to  1, pess always decreases 
monotonically, whether the modifier is linked or not. 
It starts  from pit! (6 = 1) and lies above pi:! (6 > 0). 
The mode of decrease,  however, seems to make a 
change  from sharp transition to  gradual  decrease as 
the modifier becomes more loosely linked with the 
main locus. 

Let us examine the 6 curve for r = 0 in more detail. 
In this case, pi:! 7 1  = 1.53 and pi:?. 7 2  = 1.60.  For  0.28  1 
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FIGURE 3.-A, The ESS mutation rate pes us. 
the relative strength s2/sl of selection for  a 
periodic selection with two strong  Fourier com- 
ponents. The shorter  duration  component is 
fixed as s l ~ l  = lo-’ with T~ = 31. The longer 
duration component has a fixed duration 7 2  = 
310. The ordinate is the relative deviation b = 
bSs - p$?)/(pC!:! - PC!?) of pes from A?, where P% 
is the ESS mutation rate for  a periodic selection 
with a single strong  Fourier  component of 
strength s, and duration 7,. The solid line is for 
the recombination rate r = 0 between the modi- 
fier and  the main  loci, the broken line for m 1  = 
1 ,  and  the dotted line for = 10. B, The low 
pass filter effect on ks for  a periodic selection 
with  two strong  Fourier components us. the rel- 
ative duration 72/71 = 2, 3, 4, 5, 6, 8, 10, 20, 30. 
Calculation is for the case  of completely linked 
modifiers (r = 0). The  shorter duration compo- 
nent is fixed in the same way  as  in A. The 
ordinate and  the abscissa are taken in the same 
way  as  in A. 

A 
1.a 

. 8  

6 
.6 

*4  

.2 

0 

6 

f 
1.0 

.4 

.2 

0 

I 0 

.2 

\ 

d S~/SI 5 0.358, it consists of two branches giving two 
locally stable pess’s. At s2/s1 = 0.281  a  sharp drop of 6 
occurs to  start its lower branch,  and  at s2/sl = 0.358 
another  sharp  drop occurs to  end its upper  branch. 
Since the lower branch of 6 lies  below 6 = 0.05, we 
may  say that  the longer duration  component is mainly 
responsible in determining pes if s2/sl exceeds 0.358. 
Thus,  our result for  the  complete linkage case is in 
accordance with what SASAKI and IWASA (1987)  found 
and named as the low  pass filter effect as for  the 
optimal recombination rate in a  fluctuating  environ- 
ment with multiple  Fourier  components. 

The low  pass filter effect is observed also for  un- 
linked modifiers. For T71 = 1, &?71 = 1.32  and p% 
= 0.483.  Recombination  does  not  reduce pi:? appre- 
ciably, but reduces &! significantly since r ~ 2  = 10 >> 
1. Even  in this case, we see that 6 is  less than  0.05 for 
s2/sl L 0.35.  For rT1 = 10, &?71 = 0.402  and piz?72 = 
0.049. Recombination reduces  both and & sig- 
nificantly. In this case, 6 is less than  0.05  for S~/SI L 
0.43.  However, the transition  into  the  regime  where 
the longer  duration  component  dominates in deter- 
mining pes is not so sharp as  for T T ~  5 1 cases. 

Figure 3B shows 6 for r = 0 case versus the relative 
strength s2/sI for  different 72/71 = 2, 3,  4, 5, 6, 8, 10, 
20,  30. The first  component is fixed just in the same 

way as in Figure 3A. 6 is  less than  0.05  for s2/sl 2 0.5 
if and only  if 72/71 > 5. For  a given 72/71, 6 decreases 
only gradually with s2/s1 for 72/71 d 5,  but it makes 
sharp  drops  for 72/71 > 5.  The first drop of 6 which 
starts its lower branch  occurs at  the smaller s2/s1 value 
for  the  greater 72/71. However, the second drop of 6 
which ends its higher  branch  occurs at  an s2/s1 value 
(between 0.25  and 0.4) which does  not  change very 
much with 72/71. 

Combining the results in Figure  3,  A and B, to- 
gether, we can conclude  that the low  pass filter effect 
works generally for 72/71 > 5 and  for S~/SI 2 0.5, 
whether the modifier is linked or not. 

DISCUSSION 

In this paper we examined the evolution of muta- 
tion rate controlled by neutral modifiers by a  formula 
(4)  for  the evolutionarily stable  mutation rate pess. The 
main results obtained in previous sections are sum- 
marized as: 

I.  For any fluctuation,  periodic or random:  (1) if 
the recombination rate T per generation between the 
modifier and  the main locus is 0, pes, is the same as 
the optimal mutation rate pop which maximizes the 
long-term  geometric  average of population fitness; 
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and (2) for any r ,  if the  strength s of selection per 
generation is very large, pes is equal  to  the reciprocal 
of the  average  number T of  generations  (duration 
time) during which one allele is persistently favored 
than  the  other. 

11. For  a  periodic  fluctuation in the limit of small s 
and r ,  pes,? is a function  of ST and rT with properties: 
(1) for a given ST, peSs7 decreases with increasing rT; 

(2) for ST 5 1, peSs7 is almost independent of ST, and 
depends on rT as &,T = 1.6 for rT << 1 and peS,7 = 
6/r7 for rT >> 1 ; and (3) for ST 2 1, and  for a given 
rT, p, , ,~  decreases with increasing ST to a  certain min- 
imum less than 1, and  then increases to 1 asymptoti- 
cally in the limit of  large ST. 

111. For  a  fluctuation consisting of  multiple  Fourier 
components ( i e . ,  sine wave components), the compo- 
nent with the longest period is the most effective in 
determining pes, (low passfilter effect). 

Our results  should be  compared with those  of LEIGH 
(1970). Based on  an analysis which is  valid for very 
strong selection, he claimed that in an asexual  popu- 
lation selection adjusts the  mutation  rate  toward a 
nonzero level which is equal  to  the reciprocal  of the 
duration of  fluctuating  environment. Based on  the 
general ineffectiveness of intergroup selection, he  fur- 
ther  argued  that in a  sexual  population selection on 
mutation  rates would operate  toward zero. Our result 
(12) is in accordance with LEIGH’S claim about  an 
asexual  population,  and (113) extends it to  the  general 
case of s >> 1 / ~ .  However, our result  does not  support 
LEIGH’S claim about a sexual population, since pes, is 
always positive in a  periodic  environment for any 
value of  recombination  rate r .  

Invadability of an ESS modifier: In this paper we 
analyzed the evolutionary stability of a wild-type mod- 
ifier  against an invading  modifier  only at its initial 
stage  of invasion. However,  even if the invading  mod- 
ifier is successful when its frequency is  low, it may not 
be so when its frequency becomes higher.  In  that case, 
the wild type  modifier which is not ESS in the sense 
of our present analysis can persist to exist by somehow 
controlling  the invading  modifier at a low frequency 
level in the  population.  From this  point, an interesting 
question is whether an ESS modifier with pes, # pop 
can  invade into a  population of pop with the  greatest 
average  population fitness. 

We studied this by a computer simulation  of the 
whole process of  modifier  competition for typical 
cases. We found  that  an ESS modifier always suc- 
ceeded in invading into  the population of a non-ESS 
modifier (chosen from  the  attractor  of  the  studied pes,, 
when more  than  one local ESS modifiers existed). 
This gives a support  to our expectation that  the mu- 
tation rate will evolve toward pes as is calculated in 
this  paper. 

Random  fluctuation: In  the real  environment  some 

stochastic elements are usually included in its fluctua- 
tion. So, let us consider what kind of  differences will 
be  expected in a  randomly  changing  environment. In 
this case an explicit analysis of formula (4) for pes is 
not so easy because X(p’, p )  in a random  environment 
is difficult to evaluate explicitly. However, our results 
in (I) apply generally  whether the  environment is 
random or periodic. 

Thus, if the modifier is completely linked, pes is 
equal to pop. For a simple model  of random  environ- 
ment in which the selection coefficient s(t )  makes a 
Markov process which takes two values +s and -s with 
an average  duration T, pop can be  obtained  directly by 
maximizing the long-term  geometric  average of pop- 
ulation fitness which we can evaluate  numerically 
based on  an explicit result on  the stationary  distribu- 
tion of allele A at  the main locus (MATSUDA and ISHII 
1981). The result  pop^ is shown in Figure 2 by a 
broken line. Comparing two curves of pop for a  ran- 
dom  environment  and  for a  corresponding  periodic 
one, we see that they are approximately at the same 
level for ST >> 1. This is as is expected  from our result 
(1 2). However, for weak selection ST << 1, we see that 
pop in a Markov environment  approaches  zero as pop 
= 0.5s while pop in a  periodic  environment stays at a 
finite level of 1.606 1 / ~ .  The smaller pop for a random 
environment  than  for  a  periodic  one may be  explained 
by the low  pass filter  effect  as due  to  the longer  period 
Fourier  components  of  fluctuation which are con- 
tained in a random  environment. 

For  the loosely linked  modifier case, we can show, 
in a similar way as in APPENDIX B, that pes in the above 
mentioned Markov environment is at most less than 
10s in the weak selection limit (ST << 1). Further, since 
we have low  pass filter  effect also for unlinked  modi- 
fiers, we may expect  that pes, for a random  environ- 
ment is generally  smaller than  that  for a  correspond- 
ing  periodic  environment, and  that  the  difference will 
be the  greater  for  the weaker selection. This expec- 
tation was borne  out by computer simulations  of the 
modifier  competition. 

Using a  diffusion  approximation GILLESPIE (1  98 1) 
studied  the evolution of mutation  rate by a  modifier 
model with the selected locus under a  fluctuating 
selection which generally  brings about a  marginal 
overdominance. Our model in the  above  mentioned 
Markov environment  corresponds in the weak selec- 
tion limit ST << 1 to his diffusion  model with parame- 
ters A = 0 and B = 1 (MATSUDA and ISHII 1981), for 
which his result is that selection will continue to in- 
crease the  mutation  rate whatever its current value. 
This result is at variance with our above  result  of pes, 

1 Os. Since the diffusion approximation used by him 
is justifiable only for ~ / s ’ T  = 0 (1) in the limit of s + 
0 and ST + 0, his result is of  dubious significance for 
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p such as p/s = 0 (1). We presume  that this is the 
cause of the discrepancy. 

Cost of preventing  mutation: In this paper we have 
assumed that  mutation rate modifiers are selectively 
neutral,  but they can not  be always neutral  for  real 
organisms. In  order  to  reduce  the mutation rate, it 
may be necessary for organisms to develop  a replica- 
tion system where the replication error is reduced. 
This necessarily requires  more  time and  free energy 
for  replication, causing a  decrease in the multiplica- 
tion rate of organisms per unit time. Then, pess es- 
tablished by such non-neutral modifiers is expected 
not  to  be so low as by neutral ones. 

As a simple model of non-neutral modifiers, let us 
consider  a multiplicative two-locus model with a mod- 
ifier of mutation rate p contributing  a fitness compo- 
nentf(p).  Then,  the  formula (4a) is modified as 

4 P ) / V / J ,  CL) + C(P) = 0. (4a') 
Here, c(p)  sf '(p)/'(p) is the relative cost to reduce 
mutation rate by a  unit amount,  and can be assumed 
to be  non-negative. Then, for c(p)  > 0 formula  (4a') 
gives pes, larger  than in the case of neutral modifiers 
(c(p) = 0) under  the same selection pressure  acting at 
the main locus. 

If the modifier is loosely linked with the main locus, 
we found  that pes, by neutral modifiers is smaller than 
the optimal rate pop. Then, we  may  ask how much 
cost c* is needed  to increase pes, to  the level  of pop of 
the  neutral modifier case. According to (4a'), c* is 

Figure 4 shows for  the periodic selection (7) how 
the critical cost c* depends  on  the scaled model pa- 
rameters ST and 7-7. For  a given s7, c* increases with 
increasing YT from c* = 0 at 7-7 = 0 to a  certain 
maximum E * ,  and  then decreases to 0 asymptotically 
in the limit  of large rT. Curves  for  different ST values 
less than  1  are of the same shape but  are proportional 
to (ST)'. The maximum E* for  a given s7 depends  on 
ST d 1 as E* = (s~)'/100. For  1 S s7 d lo6, E* gradually 
increases with increasing ST but stays  less than  1. The 
behavior of c* for s7 d 1 can be  explained by the 
result of APPENDIX B for  the weak selection limit. 

Based on  an  extended Haldane-Muller principle of 
mutation  load, ISHII and MATSUDA (1985)  proved 
that, if there is no cost of preventing  mutation, pop is 
equal to  the evolution rate u which is defined as the 
increase rate of population  average of mutation  num- 
bers which have occurred  along  the phylogenic line 
leading to  the present replicons. They  further showed 
that u < pop if there is a positive cost of preventing 
mutation,  and  pointed  out  that this may explain,  from 
a selectionist perspective, the fact that molecular ev- 
olution  rates are smaller than  total  mutation  rates. 
Their  argument assumed completely linked mutation 
rate modifiers, but can be  extended  to  the case  of 
unlinked modifiers as ZI 2 pess for c* 2 c.  Thus,  the 

given by -A(Pop)/YPop' Pop). 

above  mentioned fact about molecular evolution rates 
corresponds to  the case when the unlinked modifiers 
incur  a positive cost c of preventing  mutation greater 
than c*. When some reliable data are obtained in the 
future  about how large is the cost c,  it can be  compared 
with the values of c* given in Figure 4. 

Two allele model  under  fluctuating  selection: Our 
model assumes at  the main locus that mutation  occurs 
between two alleles, and  that they become the  more 
fit than  the  other alternatively. This assumption is 
very suitable for the$$-fop mutation in bacteria and 
bacteriophage (WATSON et al. 1987). 

For  example, individual Salmonella bacteria can 
alternate flagella protein expression between two 
types, H1  and  H2, which differ in antigen  property. 
Since the flagella protein is a  dominant  antigen of 
Salmonella, the switching is favorable in eluding the 
host immune defense. The molecular mechanism has 
been clarified (BORST and GREAVES 1987):  In  one 
phase of gene expression, the  gene  for  H1 is tran- 
scribed together with an  adjacent  gene  that codes for 
the repressor of gene  for  H2"hence only H1 is 
expressed. In alternative phase, the  promoter se- 
quence of H1 is inverted, and  neither  H  1  gene  nor 
repressor  gene  for H2 is transcribed,  then only H2 
gene is expressed. The orientation of the invertible 
segment  thus  determines  gene expression of flagella 
protein. The  rate of occasional inversion of  the seg- 
ment is regulated by the recombinase,  Hin, which is 
coded within the  segment itself, together with pro- 
moter  sequence of H 1.  Hence, this is an example of 
completely linked mutation rate modifier in our 
model. 

Another mechanism for switching between two al- 
leles is a cassette  mechanism for  the  mating type of  yeast 
(DARNELL  1982). It is known that  there  are two silent 
loci together with a single expression locus. The 
expression locus is occasionally renewed by gene con- 
version from  one of the two silent loci  in  which the 
information is stored. 

If the  rate of flip-flop in bacteria or mating type 
change in  yeast is to be evolutionarily determined, 
our model gives the  rate which is to be realized as a 
result of evolution. 

General  interpretation of the  two-allele  model- 
parity  model: At first sight, or taken literally, the two- 
allele model for  the main locus as studied in this paper 
may sound  too simple or  too artificial to  get  an insight 
into  the real mutation process occurring  throughout 
the genome of organisms. One may mention the pos- 
sibility that most mutations will be  deleterious in  all 
or essentially all environments,  contrary to  our as- 
sumption of fluctuating  environments. One may ar- 
gue  then  that even if there  are a few sites or loci  which 
behave something like the main locus of the model 
considered, the applicability of the model to  the prob- 
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FIGURE 4.-The critical  cost c* of preventing  mu- 
tation  that is needed to increase to the  level of 
of the neutral  modifier  case. The same  periodic selec- 
tion  with a single  strong  Fourier component as  in 
Figure 1 is assumed. The scaled  result for c* is calcu- 
lated for a given pair of scaled  parameters ST and rT 

with T = max(lOs7, 1 0 ~ ) .  Lines  are  drawn for each 
fixed ST value. 

lem  of mutation rate may  be  very  limited  unless the 
modifier  locus is extremely site  specific  in  its actions. 

We do not deny the possibility that many mutations 
will be deleterious in  essentially  all environments, yet 
we consider that models studied in  this paper may  still 
represent some  essential feature of the real replication 
unit (replicon) such  as a chromosome or DNA by the 
following reasons. 

We  have  assumed  only  two  alleles at  the main  locus, 
but their fitnesses are generally time-dependent. 
Then, by classifying  all the possible genetic states of 
replicons into just two  types, we can regard  the above 
fitness  as an average fitness  of a subpopulation con- 
sisting  of the respective  type of replicons. In that case, 
the fitness of replicons  which are deleterious in  every 
environment will be considerably  low, so that their 
frequencies will remain very  small  in  each subpopu- 

lation. Then, their effect on the average fitness  of 
each subpopulation will also  be  small. 

Therefore,  under  a suitable dichotomous classifi- 
cation  of genetic states, it may be possible that  the 
average fitness of each  type fluctuates essentially  like 
the model we have considered in  this paper. If  this is 
indeed the case, the mutation rate modifier need not 
be site  specific  in order  for our model to be  applicable. 

For  instance, we  may  classify four kinds  of  bases A, 
T, G, and C into purines (A or G) and pyrimidines (T 
or C). Then, we  may  classify the base  sequences of 
DNA according to whether the total number of pu- 
rines contained in each sequence is even or odd. It is 
like the classification  of the internal states of elemen- 
tary particles by even and odd parity. 

In order  to get a simple and unified view  of molec- 
ular  evolution from the population genetical stand 
point, we consider that further study of  such  simple 
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models  with general interpretation as may be  called a 
“parity model” will be  worthwhile. 
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APPENDIX A 

Method of numerical analysis of (4) 

as 
First,  let us write  down the characteristic equation of MT 

X’ - XTrkfT + deMT = 0. (A1 ) 

Its  greatest eigenvalue X@’, p)  is given by 

X(p’,  p) = (TrMT J(TrMT)‘ - 4detM~)/2.  (A2) 

Then,  differentiating  (Al) with p’ ,  we have 

(2X - TrMT)dX/dp‘ - XdTI“T/dp’ + ddeaT/dp’ = 0, 

which gives 

dX(p’, p)/dp’= (XdTrMTldp’ 
(‘43) - ddetMT/dp’)/(2X - TrMT). 

Thus, in order  to calculate by (A2) and (A3) the value of 
A(p) = [dX(p’, p)/dp’],,,=,, for a given p,  we need only to know 
four values at LC’ = I.L of TrMT and  deMT  together with 
their partial  derivatives with respect to p‘. and 
dTrMT/dp’ are immediately obtained  once matrices MT and 
dM~/d/.t‘ are numerically  calculated by the following itera- 
tion 

Mf+I = M(t)M,,  (-444 

and 

dMt+l/dp’ = M(t)dMc/dp’ + [aM(t)/+’]Mt (A4b) 

for t = 0, 1, . . . , T - 1,  where dM(t ) /dp’  is calculated from 
(2) as - - 

dM(t)/dp’ = (1 - 
r, L 1 + s( t )  -1 + s(t)  1 . (A5) 

- 1 - s(t )  1 - s( t )  

detMT is calculated from (2) and (6) as 

detMT = ((1 - r)(l - 2p’))’’ n ( 1 - s(t ) ’ ) ,  (A64 
7” I 

l=O 

with 

ddetMT/dp‘ = -4rdetM~/(1 - 2p’). (A&) 

Calculating necessary p’ derivatives by (A4)-(A6), we 
obtain by (A2) and (A3) the value of A(p)  for each p. Finally, 
zeros of A(p)  in the  range [0 ,  13 are  obtained by a routine 
of bisection. 

APPENDIX B 

pess in the weak seletion limit 
In this appendix we show how we can analytically study 

perr when the frequencies x( t )  and y( t )  of A alleles, respec- 
tively, among B carrying genomes and  among b carrying 
ones, keep fluctuating  only very near  around 0.5.  Such  a 
situation is realized when the  strength s of selection is very 
small compared with the  mutation  rate p. 

First, we restate  the condition (4)  for peSs in terms of x( t )  
andy(t). Since the  average fitness G(t) of 6 carrying genomes 
is expressed  as G(t) = 1 + s( t ) (Zy( t )  - 1) in terms of y( t )  = 
Nl( t ) /N( t ) ,  the increase rate X(p’, p) as the long-term geo- 
metric  average of G(t) is given in the weak selection limit as 

X@’, p)  = 1 + lim t-’ s( t ’ ) {Zy( t ’ )  - I ) ,  

where we have neglected higher  order  terms of s. Compar- 

1- 1 

I- ,’=O 
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ing this  with the  rate k(p, p) for B carrying genomes, which 
is obtained by replacing y(t’) with x(t’ - 1) in the above, we 
find 

I- 1 

for p’ # p 

as the condition for p to be a pes. 
From (1) and (2), the time change of y(t) is given by 

y(t + 1) = EIrx(t) + (1 - r)(l - r’)l{l + s(t)Jy(t) 

+IrJc(t)+(l -r)cLtlI1 -s(t)lll -y(011/[1 +40i2y@)- 111. 

The time change of x(t )  is given by (3) since x( t )  = x,@). By 
assumption, the deviations of x( t )  and y( t )  from 0.5 become 
small magnitude quantities after  a finite transient period. 
Therefore, by expanding x(t )  and y(t) around 0.5 and keep- 
ing only the leading terms in the equations for  the time 
change of x( t )  and y(t),  we find that [(t) = x(t - 1) - 0.5 and 
f i t )  = y(t)  - x(t - 1) become to satisfy 

and 

T(t + 1) = (1 - r)[-(Cc’ - P ) b ( t )  + 2f(t)l 
(B3) 

+ (1 - 2 d )  T(0l 

to  the lowest order terms of s. 
Alternating  environment  with  duration T: We consider 

a periodic selection  with s( t )  given by (7). From the assumed 
symmetry  of s(t) ,  [ ( t )  and nt) converge to  the periodic 
sequences which  satisfy [ ( t  + T )  = - f ( t )  and T(t + T )  = - f i t )  
for any t .  Then, the average ({s) in (Bl) is calculated as 

7-1 

in terms of a sequence {T(t); t = 0, 1, . . . , T J  which  is the 
solution of constant coefficient equations 

[(t+1)=(1-2p)(~/2+((t)J ( t = 0 , 1 , . . -  , ~ - l )  (B5) 

and 

from the boundary condition. Then we substitute (B7) in 
(B6) and find T(t) in the limit  of p‘ 4 p as 

T(t)=((1-r)(l-2p)JfT(0)+(1-r)s- P’ - P  
CL 

1 -(1 -ry (1 -2py 
.[ r 1+(1-2p)7 

” 1 l - ( ( l - r ) ( l -2p))f  
2 l - ( l - r ) ( l -2p)  

where T(0) is determined as 

1 -(1 - ry  (1 -2py 
.[ r 1+(1-2pY 

” 
1  1 - ((1 - r)(l - 2/41‘ 
2  1 -(1  -r)(l  -2p) 1 

from the boundary condition. Substituting (B8) in (B4), we 
finally obtain ({s) as 

with 
1 /7  

f(p’r)=1+[(1-r)(l-2p)JT 

1-((1-~)(1-2p))’  1-(1-r)’  (1-2p)’ 
* [  1 -(I  -r)(l-2p) 

- 2  
r 1 +(1-2p)‘ 

1 -2p 1 -(1-2$ 1 +- 
2 ~ p  1+(1 -2py  2’ 

” 

According to  the result (B9a) for ({s), the condition (Bl) 
for p to be a pes becomes asf(p, r) = 0 for 0 < p < 1, and 
f( 1, r )  2 0 for p = 1. The result (B9b) forf(p, r )  then shows 
that p = 1 is a ks if and only if T is an odd integer. We 
further see thatf(p, r) > 0 for 0 < p < 1 if T = 1, and  that 

f ( p ,  r )  = 0 only for p = 0.5 among 0 < p < 1 if T = 2. 
Therefore, in the weak selection  limit, p = 1 is the only pear 
for T = 1, and p = 0.5 is the only one  for 7 = 2. For T Z 3, 

f ( p ,  r )  = 0 has a  root in 0 < p < 1, giving a pes which 
generally depends on two parameters T and r .  These results 
explain the numerical results for ST 5 1 in Figure 1. 

We next show  how the last mentioned p,,, becomes to 
satisfy a scaling rule for T > 1. We fix C(T = M and r~ = R 
at finite values and let T 4 m. Then, we find 

F (M, R) = limf(MI7, R/T) 
7- 

- - 
( l  - e-R-2M 

1 - e-R e-2M 

1 + R + 2M R  1 + e-2M ) (B10) 
-2” 

1  1 - e-2M 1 +”“ 
2M 1 + e-2M 2‘ 

For a given R = 7-7, F(M, R )  as a function of M has a zero M 
> 0 which  gives the scaled pesa7. In a special  case  of R = 0, 
which corresponds to  the completely linked modifier case, 
F(M, 0) = 0 is numerically  solved to give M = 1.606  1 . . . . 
In the opposite case  of R >> 1, which corresponds to  the 
loosely  linked modifier case, M << 1 satisfies M/R - M2/6 = 
0 to its second order terms, with a positive zero M = 6 / R .  

These analytical results explain very well the numerical 
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results for ST 5 1 in Figure 2. There, we further  note  that 
perr~  for a  fixed rT is independent of ST not only for s < p 
but also for s B p as long as ST 5 1.  This suggests that 
periodic selection for ST < 1 also can produce  an additional 
drift of x( t )  toward 0.5 just as is known for stochastic selec- 
tion (GILLESPIE 1972;  TAKAHATA, ISHII and MATUSUDA 
1975). 

Sinusoidally oscillating environment with period 27: We 
now consider  a  second example of periodic selection with 
s(t) given by (8). This  environment is similar to  the previous 
one in that  one allele is persistently  favored than  the  other 
for T generations. Noting  that cos(wt + P) = Re(e<"'+')),  we 
assume the deviation  of  frequencies  as { ( t )  = Re(sXei("Lw)) 
and fit) = Re(sZei(w'+')) with w = T / T .  Then,  the  average in 
(BI) is calculated as ({s) = s2Re(Z/2), while the complex 
amplitudes X and Z satisfy from (B2) and (B3) 

Xe'" = (1 - 2p)(1/2 + X) (B1 la) 

and 

Ze" = (1 - r)(-(p'  - p)( 1 + 2X) + (1 - 2p')Z). (B1 lb) 

After some calculation we obtain in the limit of p' + p 

- 2(1 - 2p)cos w )  X ( 1 + (1 - r)'(1 - 2 ~ ) ~  (B12a) 

- 2(1 - r)(l - 2p)cos a]] 

with 

(B 12b) 
- ((1 - r)(l - 2p)2 + 1 ]cos w .  

According to  the result (B 12a)  for ({s), the condition (B 1) 
for p to  be a pess becomes  as g(p,  r )  = 0 for 0 < p < 1,  and 
g( 1, r )  B 0 for p = 1. The  result (B 12b)  for g(p, r )  then 
shows that p = 1 is a pes if and only if T = 1. We  further see 
that g(p, r )  > 0 for 0 < p < 1 if T = 1, and  that g ( p ,  r )  = 0 
only for p = 0.5  among 0 < p < 1 if T = 2. Therefore, in 
the weak selection limit, p = 1 is the only pes for T = 1,  and 
p = 0.5 is the only one  for T = 2. For T B 3, g(p, T )  = 0 has 
a root in 0 < p < 1, giving a pes which generally depends 
on two parameters T and r.  

The  scaled result for this environment is given by 
G(M, R) = 0 with 

G(M,  R )  = Iim T2g(M/T, R/T) 
7- 

= a2 - 2RM - 4M2. (B 13) 

Thus, we find M = (n - R)/4.  This gives M = 
a/2  for R << 2a,  and M = r2/2R  for R >> 2a. It should be 

noted  that  the results for this environment  are essentially 
the same as those for  the  corresponding  alternating  environ- 
ment. 

Continuous time models: If we are  interested only in the 
scaled results obtained in the above by taking  a limit of T + 
0, it should be noted  that they  can be  obtained  more easily 
by starting directly from a continuous time  model corre- 
sponding to  our discrete  time  model (1)  and (2). Then  the 
rate X becomes  equal to  the long-term arithmetic  average 
of the  average Malthusian parameter 7iL(t) of b carrying 
genomes in a  population dominated by B carrying ones. 
The linear analysis based on  the expansion of frequencies 
around 0.5 can be easily carried  out in a similar manner as 
has been  explained in the above for discrete  time models. 

APPENDIX C 

pes* under  very  strong  selection 
In this appendix we consider  a fluctuating selection where 

s(t)  takes only two values +sand -s with an  average  duration 
T .  The  fluctuation may be  either periodic or random. 

Under very strong selection with the  strength of selection 
s very near  to 1, we find  that  the frequency x(t' - 1) of A 
alleles among B carrying genomes, just  before recombina- 
tion  takes place in the (t' - 1)th generation, is 1 - p or p 
according  to  whether s(t' - 1) is +s or -3. Then,  the 
frequency y(t)  of A alleles among b carrying genomes, just 
before selection takes place in the tth generation, is y+ 
= r( 1 - p)  + (1 - r)(l - p ' )  or y- 1 - y+ according  to 
whether s(t' - 1) is +S or -s. Therefore,  the  average fitness 
G(t)  = 1 + s(t)(2y(t) - 1) of b carrying genomes is  2y+ or 2y- 
according  to  whether s( t )  = s(t - 1) or not. 

Since the  environment  continues  to be the same for T 

generations  on  the  average, we find  that  the  rate X(p', p)  as 
the long-term geometric  average of G(t) is given by 

log X(p',  p) = log  2 + (logy- + (7 - 1) log y + ) / T .  

Substituting this in (4), and  noting  that 
A(P) = (1 - rP(1 - TP)/TP(~ - P) ,  

we obtain pes = 1 / ~  for any  recombination rate r between 
the modifier and  the main locus. 

It can be shown in a similar way that  the same  result as 
above  holds also for  the following more  general situation. 
We assume that  there  are a  finite number a of alleles at  the 
selected locus with the fitness of allele A, given by 1 + si ( t )  

and  the  mutation  rate  from Ai to Aj given by pfij, where p is 
the total  mutation rate specified by an allele at  the modifier 
locus andfij is a  non-negative  constant satisfying Cfij = 1 .  
As a very strong fluctuating  selection, we assume such that 
at a  time all alleles except one is nearly  lethal with s,(t) k -1 
and  the nonlethal allele changes with time with an  average 
duration 7. 


