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ABSTRACT 
The role of  linkage  in  influencing heritable  variation  maintained  through a balance  between 

mutation  and  stabilizing  selection is  investigated for two different  models.  In  both cases one trait is 
considered  and  the  interactions  within  and  between  loci are assumed  to be additive.  Contrary to most 
earlier  investigations of this  problem no a priori  assumptions  on  the  distribution of  genotypic  values 
are imposed.  For a deterministic  two-locus  two-allele  model  with  recombination  and  mutation,  related 
to  the  symmetric  viability  model, a complete  nonlinear  analysis is performed. It is shown that, 
depending  on the recombination rate, multiple  stable  equilibria  may  coexist. The equilibrium  genetic 
and  genic  variances are calculated.  For a polygenic trait in a finite  population with a possible  continuum 
of  allelic  effects a simulation  study is performed. In both  models the equilibrium  genetic  and  genic 
variances are roughly  equal  to  the  house-of-cards  prediction or its finite  population counterpart as 
long  as the  recombination rate is not  extremely low.  However,  negative  linkage  disequilibrium  builds 
up. If the loci are very  closely  linked the  equilibrium  additive  genetic  variance is slightly  lower  than 
the  house-of-cards  prediction,  but  the  genic  variance is much higher.  Depending on whether  the 
parameters are in  favor  of the house-of-cards  or  the  Gaussian  approximation,  different  behavior of 
the  genetic system occurs with respect  to  linkage. 

THE question of how much  heritable  variation  in 
quantitative  traits can be  maintained through a 

balance  between  mutation and stabilizing selection has 
received  much attention  during  recent years. Basi- 
cally, two kinds of models have  been treated analyti- 
cally, namely diallelic multilocus models (LATTER 
1960; BULMER 1972,  1980; BARTON 1986) and con- 
tinuum-of-alleles models (KIMURA 1965; LATTER 
1970; LANDE 19’75; FLEMING 1979; TURELLI 1984, 
1986; NAGYLAKI 1984; BURGER 1986, 1988a,b; 
FOLEY 1987). TURELLI (1984) and SLATKIN (1987) 
also considered models with three  and five alleles per 
locus. These analyses, except BULMER’S, were  primar- 
ily devoted  to deterministic models not  taking  into 
account  random  drift in finite  populations. 

For  the continuum-of-alleles model two different 
approximations  have  been  derived, the Gaussian ap- 
proximation (KIMURA 1965; LANDE 1975) and  the 
house-of-cards approximation (TURELLI 1984). The 
Gaussian approximation yields G%(G) = 2ndpa2Vs as 
the equilibrium  variance,  where n denotes  the  number 
of loci affecting the  trait, p the  per locus mutation 
rate, a2 the variance of mutational  effects and V, the 
inverse  measure of the  strength of stabilizing selection 
(see Equation 9 below). The house-of-cards approxi- 
mation leads to  an equilibrium  variance  of GE(HC) = 
4npVs. The latter  agrees with the diallelic and triallelic 
results of LATTER (1960), BULMER (1972), TURELLI 
(1984) and SLATKIN (1987). The Gaussian and  the 
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house-of-cards approximations are, however,  extrap- 
olations from  the haploid one-locus model under  the 
assumption  of global linkage equilibrium. The haploid 
model has been analyzed rigorously by  BURGER (1  986, 
1988a,b), where  existence,  uniqueness and global sta- 
bility of a  stationary  frequency  distribution of types 
have  been  proved under very general assumptions. In 
particular, an  upper  bound  for  the  true equilibrium 
variance has been  derived which is almost  identical to 
the house-of-cards prediction. It follows from these 
results that  the Gaussian approximation is applicable 
only if a* 5 4pV,, but in this case it is lower than  the 
house-of-cards prediction. In  fact, LANDE (1975) had 
noted  that  the validity of the Gaussian approximation 
rests on  the assumption that a2 << pVs and  the  numer- 
ical results of TURELLI ( 1  984,  1986) suggested that 
the Gaussian approximation can be  correct only if the 
variance of mutational  effects per locus is much 
smaller than  the existing  variance at this locus. 

It is the aim of the  present  paper  to  go beyond 
extrapolations  of haploid models and  to investigate 
the influence of linkage in models of  mutation-stabi- 
lizing selection balance. LANDE (1975,  1977) investi- 
gated  the  role of linkage and  found  that  the equilib- 
rium  expressed  genetic  variance is independent of the 
linkage relation of the loci unless linkage is extremely 
tight. His analysis, however, is based on  the assump- 
tion of a  normal  distribution  of allelic effects. On  the 
basis of a  second order approximation,  but based on 
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the same assumptions concerning  the relative magni- 
tudes of the selection and mutation  parameters, FLEM- 
ING ( 1  979) found  that  recombination has a very  weak 
influence  on the equilibrium variance. These results 
were confirmed by TURELLI (1984)  who performed 
simulations for two-, four-,  and six-locus models. None 
of these authors  reported  the existence of multiple 
stable equilibria. On  the  other  hand BARTON ( 1  986) 
investigated a diallelic multilocus model assuming 
linkage equilibrium and a Gaussian distribution of 
genotypic values and  found  that stable equilibria may 
exist where the mean genotypic value deviates from 
the optimum and  the equilibrium variance almost 
reaches the level of the Gaussian prediction. 

Below I will rigorously analyze a diploid two-locus 
two-allele model of a  trait  under stabilizing selection 
and allow for  mutation and recombination. No as- 
sumptions  concerning the distribution of breeding 
values are imposed. It will be shown that  number  and 
position of equilibria depend  on  the  recombination 
rate, whereas the equilibrium variance is almost in- 
dependent of it and  agrees with the house-of-cards 
prediction  for  a wide range of recombination  frac- 
tions. Only for complete linkage does  a slight decrease 
of the equilibrium variance occur. 

The influence of linkage and recombination in fi- 
nite populations with many loci affecting  a  trait is 
investigated using the simulation procedure  described 
in  BURGER, WAGNER and STETTINGER (1989) .  
Whereas in that  paper free recombination and a Gaus- 
sian mutant  distribution were assumed, the present 
paper  considers linkage between loci and, in addition 
to a Gaussian mutant  distribution,  a  double y distri- 
bution. The results are qualitatively similar to those 
of the deterministic two-locus model. 

A DETERMINISTIC  TWO-LOCUS  MODEL 

Consider two loci  with two alleles each: A and a at 
the first locus and B and b at  the second locus. Suppose 
that  the effects of A,  a, B, b on a  quantitative  character 
are c - a/2, c + a / 2 ,  -e - 4 2 ,  -c + a / 2 ,  respectively. 
Important special  cases are c = 0 and c = a / 2 .  Assum- 
ing additivity within and between loci the effects of 
the gametes AB,  Ab,  aB,  ab are, independently of c, 
-CY, 0 ,  0 ,  CY. From  these the effects of all possible 
genotypes are easily calculated. Throughout we sup- 
pose that  the trait is under stabilizing selection with 
optimum at zero such that fitness decreases monoton- 
ically from  the  optimum.  This leads to fitness values 
of the genotypes as displayed in Table 1. Throughout, 
it is assumed that 0 < b I d / 2  < Y 2 .  The assumption 
d L 2b means that  the fitness function is concave near 
the optimum and implies that all equilibria exhibit 
negative linkage disequilibrium (see APPENDIX). With 
quadratically deviating fitness 

m(x) = 1 - s*x2, (1) 

TABLE 1 

Fitness  values  in a diallelic two-locus  model for  a  quantitative 
trait  under stabilizing  selection 

BE  Bb bb 

AA 1 - d  1 - b  1 
Aa 1 - b  1 1 - b  
aa 1 1 - b  1 - d  

where x denotes  the genotypic value and s* is a 
measure  for the  strength of stabilizing selection (com- 
pare also Equation 9 below), one obtains d = 46 = 4s 
with s = s*a2. 

This symmetric viability model was first investigated 
by WRIGHT ( 1  9 5 2 )  and  later by BODMER and FELSEN- 
STEIN (1 967), KARLIN and FELDMAN ( 1  970) and HAST- 
INGS (1 987) .  These  authors investigated the interplay 
between selection and recombination. I will, addition- 
ally, introduce  mutation  and assume equal  forward 
and backward mutation  rates p at  both loci. The 
frequencies of the gametes AB,  Ab,  aB and ab are 
denoted by X I ,  x2, x3 and x 4 ,  respectively. Linkage 
disequilibrium is denoted by D = x1x4 - x2x3,  the 
recombination  fraction between the loci by r. The 
marginal mean fitness values of the gametes are  then 

ml = 1 - dxl - bxp - bxs 

m2 = m3 = 1 - bxl - bx4 ( 2 )  

m4 = 1 - bx2 - bxs - dx4 

and  the mean fitness of  the population is 

rii = 1 - d(x: + x Z )  (3) 
- 12b(xlx2 + X ~ X Q  + ~2x4  + ~ 3 x 4 ) .  

Assuming that selection is  weak and  that  the interac- 
tion between selection and mutation  can  be  neglected, 
the gametic  frequencies in a  large  population evolve 
approximately  according to 

il = dx l /d t  = xl(ml - rii) - rD 

+ 4 x 2  + x 3  - 2x1) 

x 2  = dx2/dt = x2(m2 - rii) + rD 

+ &I + x4 - 2x2) 
x 3  = dxs/dt = xg(m3 - 6) + rD 

+ P(X1 + x4 - 2x3) 

x 4  = dx4/dt = x4m4 - rii) - rD 

p(X2 X 3  - 2x4).  

For an exact  derivation  additional assumptions have 
to be imposed, like no dominance in the  death  rates 
and small differences in the  birth  rates  (NAGYLAKI 
and CROW 1974).  Also  in a  continuous  time model 
the  parameter r is in fact the  product of the recom- 
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bination rate  and  the  birth  rate of the  double  heter- 
ozygotes. Hence r 5 0.5 does  not necessarily hold. 
For technical simplicity and since most authors dealing 
with the problem of mutation stabilizing selection 
balance have used quadratically  deviating fitness the 
following results are  stated  under  the assumption of 
Equation 1. Throughout, p > 0 and r > 0 is assumed. 
As shown in the APPENDIX similar results  hold  for the 
more general fitness scheme. 
Result 1: System (4) has the following equilibrium 
points. 

(a) F 1, given by 

21 = 2 4  = (V4) + 61, 2 2  = 23 = (Y4) - 61, 

I),=---,/ A r + 4 p  1 
4s  4s s2 + (r + 4 ~ ) * ,  

exists for all admissable parameter values. 

(b) If r(s - 4p) > 8p2 then  the following equilibria 
exist 

23 = 1 - 21 - 2, - 2 4  

and 

23 = 1 - 21 - 2 2  - 24  

where 6 = -2p2/(sr). If r(s - 4p) I 8p2 then F1 is 
globally asymptotically stable.  If r(s - 4 ~ )  > 8p2 then 
F1 is unstable and F2 and F3 are locally stable. They 
arise by a  pitchfork  bifurcation out of F1. The ba- 
sin  of attraction of F2 (F3) is the set  where xz  > x3 

This result shows that  the equilibrium  gene and 
genotype  frequencies  depend on  the history of the 
population and  that  there will  always be negative 
linkage disequilibrium. It provides  a  considerable  gen- 
eralization of recent results of HASTINGS (1987). The 
proof (see APPENDIX) yields some insight into  the 
dynamics of the system. 

The aim of the present  paper is to investigate the 
influence of linkage on  the genetic variance main- 
tained by mutation-stabilizing selection balance. The 
subsequent  result is an easy consequence of Result 1 
and summarizes the (additive)  genetic variance Gg 
(= 2a2(x1 + 0 + 0 + x4)) and  the genic variance Gi 

P B  = XI + x3) that is maintained at  the various equilib- 
ria. A departure of these two variances indicates link- 
age disequilibrium (compare  Equation 12). 

(x2 < x3). 

(= 2a2pA (1 - P A )  + 2a2pB( 1 - P B ) ,  P A  = x1 + x29 

Result 2: (a) If r(s - 4p) 5 8p2 then  at  the single 
stable  equilibrium F1 the genetic and  the genic vari- 
ances are 

and 
2; = a2, 

respectively. Gi 5 min(a2, 4p/s*) always holds and Gz 
decreases as r decreases. 

(b)  If r(s - 4p) > 8p2 then  the  equilibrium  genetic 
and genic variances are 

fJG - 2  - - 4p/s* (7) 
and 

respectively, independently of which of the two equi- 
libria F2 and F3 is approached. 

(c) For fixed but  arbitrary p and s, Gz is a  function 
of r whose maximal value is min(a2, 4p/s*) and whose 
minimal value is attained  for r = 0. In particular, 
G&,,in/G&,,ax 2 2 - &. The maximum decrease due 
to reduction of r is obtained if 4p = s. 

It may be  noticed that Equation 7 gives just  the 
variance predicted by the house-of-cards model, using 
an extrapolation  from the one-locus haploid case. For 
an illustration of Result 2, see Figure 1. It is also in 
good  accordance with TURELLI'S (1984, Table  VII) 
simulations. 

Most authors investigating the maintenance of ge- 
netic variation problem have used the fitness function 

w(x)  = exp{- -& j. 
If one puts s* = 1/(2Vs), w corresponds to m (Equation 
l), since the logarithm  transforms  relative fitness to 
Malthusian fitness if selection is weak. The discrete 
time model is technically more difficult but leads to 
almost the same results. 

In  the case of a more general fitness function satis- 
fying d I 2b again equilibria corresponding  to F  1, F2 
and F3 exist. Whereas F2 and F3 can be calculated 
exactly, F1 is the solution of a third  order equation 
[see APPENDIX, part A]. In  the APPENDIX it is also 
shown that  the stability properties of these  equilibria 
are completely analogous to those  stated  above  for 
the special case. Moreover, the genic and genetic 
variances maintained at these equilibria are approxi- 
mately those maintained in the special  case  with quad- 
ratically deviating fitness, if s is replaced by b. If,  for 
example, d = 26 then  at F2 and F3 x1 = x4 = 

if d = 8b then x1 = 
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FIGURE I.-Bold lines illustrate the genetic variance &: as a function of the recombination rate according to Result 2. Dashed lines 

illustrate the  genic variance &:. For the recombination rate, a logarithmic scale is chosen. The parameters are a* = 0.05, P = and (1) V, 
= 100, (2) V, = 20 and (3) V, = 5. In the first case F1 is stable for all values of r ,  in the second case the critical recombination rate where F1 
becomes stable is r, = 9.4 X and in the third case r, = 1.7 X 

SIMULATION  RESULTS  IN  FINITE 
POPULATIONS 

T o  study the effects of linkage on  the equilibrium 
variance of a polygenic trait in a finite population,  I 
use a simulation model that  does  not rely on any 
numerical  evaluation of model equations.  Instead it is 
a  direct stochastic simulation of those events which 
actually occur in natural  populations, such as muta- 
tion,  recombination, survival and  death.  This model, 
mainly designed by  G. P. WAGNER and F. STETTIN- 
GER, was applied in BURGER, STETTINGER and WAG- 
NER (1  989)  to test the  ranges of applicability of various 
models and approximations  for  predicting  the  addi- 
tive genetic equilibrium variance of a  quantitative 
character  under mutation-selection balance. In this 
earlier study free recombination between all  loci was 
assumed. 

The simulation model is as follows. Every individual 
is characterized by n loci  which contribute additively 
to  a  quantitative  character. This produces  a genotypic 
value X .  Adding  a Gaussian random  number E with 
mean zero and variance 1 yields the phenotype P.  On 
the phenotype stabilizing selection acts according to 

w ~ ( P )  = exp(-~*/2w~].  (10) 

This yields the mean fitness of individuals with geno- 
typic value X .  It is given by Equation  9 with V, = w2 + 
I .  

The life cycle  consists of three stages. (a) From  a 
base population consisting of the surviving offspring 

of the  preceding  generation  breeding pairs are sam- 
pled without replacement. T o  keep the population 
size constant  a fixed number of "nesting places" that 
limits the maximal population size N p  was assumed. 
(b) Each breeding  pair  produces 10 offspring. The 
genotype of each descendent is obtained  from its 
parents by recombination  according  to the specified 
recombination rate r of adjacent loci without interfer- 
ence.  Afterward  mutation was performed by adding 
a Gaussian or a  double (see Equation  12 below) 
random  number with mean zero and variance a2 to 
the  current allelic effect. (c) Then viability selection 
was imposed by assigning fitness values according  to 
(10). The fitness values vary between 0 and 1 and 
were interpreted as probabilities of survival. More 
precisely, for each individual a  random  number  (uni- 
formly distributed between 0 and 1) was chosen and 
the individual survived if its fitness was greater  than 
this random  number. The surviving offspring  served 
as the base population  for the next  parental  genera- 
tion, as described  above. 

Since each breeding  pair  produces exactly 10 off- 
spring and sampling is performed without replace- 
ment,  the effective population size is slightly larger 
than  the  number of parents Np.  If N p  = 20 then Ne = 
22.5 and if N p  = 100  then Ne = 11  1.5. Some simula- 
tions show that Ne is almost independent of the selec- 
tion intensity. For  more details, see BURGER, WAGNER 
and STETTINGER (1989). T o  produce  the statistics, 
between 40 and  80  different initial populations were 
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generated  and  run  for  1000 generations if Np = 20 
and  for 2000 generations if Np = 100. For  each run 
the time  average  over  generations 600 to  1000  and 
1400  to 2000, respectively, of the additive  genetic 
variance was taken as an estimator of the variance of 
the stationary  distribution. The mean of these values 
was taken as the observed  equilibrium variance G: 
(Obs). More than 40 runs were performed if the 
standard deviation of the first 40 runs was larger  than 
10% of the mean. This was necessary mainly for N p  = 
20. 

BURGER, WAGNER and STETTINGER (1 989) showed 
that in finite  populations the expected  equilibrium 
variance is very well approximated by the formula 

&$(SHC) = 
4 w V S  

1 + (VS/Nea2)' 

although  (1  1) applies only to equal  mutational vari- 
ances and equal  mutation  rates at all  loci. I will refer 
to Equation 11 as the stochastic or finite  population 
extension of the house-of-cards prediction, since it 
interpolates between the house-of-cards prediction 
Gi(HC) and  the  neutral prediction G:(N) = 4npa2Ne. 
The latter may be  found in LYNCH and HILL  (1  986), 
for example. KEIGHTLEY and HILL  (1988)  and BAR- 
TON (1  989)  found  Equation 1 1 on  the basis  of differ- 
ent model assumptions. 

T o  find out  the influence of linkage and  nonrandom 
associations between loci the genic variance was cal- 
culated. Since in the present model epistasic interac- 
tions of effects are neglected the expressed  genetic 
variance can be decomposed according to 

&$ = Gi + CD, (1 2) 

where Gi = C,(Var(Xi) + Var(XF)), Xi and X? being 
the maternal and  paternal contributions  from the  ith 
locus, is called the genic variance. CD represents  the 
covariances between alleles at  different  gametes  and 
loci due  to  Hardy-Weinberg  and linkage disequi- 
librium [see also BULMER (1  980)  Ch.  9;  (1988)l.  In  the 
simulations the genic variance was measured in the 
same way as the additive genetic variance and is de- 
noted by Gi(Obs). They were calculated among off- 
spring  before selection. Similarly, the kurtosis of the 
stationary  distribution of genotypic values was meas- 
ured  and,  at  the  gene level, mean heterozygosity and 
percentage of polymorphic loci. 

The influence of recombination has been investi- 
gated  for three  different  parameter sets, namely Gaus- 
sian distribution of mutational effects with variance 
a' = 0.05 and 10 loci contributing  to  the  trait with 
p = IO-' on the  one  hand  and 50 loci  with p = 
on the  other hand. Additionally, a  double gamma 
distribution  (reflected about zero) with a' = 0.05, 50 
loci and p = was investigated. The latter has 

TABLE 2 

Influence of the  recombination  rate on the observed additive 
genetic variance  and genic variance  at stochastic equilibrium 

z T =  

V, (SHC) Variance 0.5 0.1 0.01 0.001 0 

100  0.212 Additive 0.202 0.179 0.214 0.174 0.193 
Genic 0.202 0.179 0.230 0.198 0.204 

10 0.143 Additive 0.125 0.138 0.117 0.112 0.098 
Genic 0.126 0.142 0.133 0.155 0.152 

2 0.059 Additive 0.056 0.058 0.053 0.048 0.042 
Genic 0.057 0.061 0.069 0.097 0.077 

The distribution of mutant effects is normal with mean zero and 
variance a* = 0.05, the mutation rate is p = lo-', the  number of 
loci is n = 10 and  the population size  is N p  = 100. The second 
column contains the values of iZ(SHC), Equation 1  1, the  fourth to 
eighth the values of i$(Obs) and of ii(0bs). Standard errors  are 
less than 8%. 

been suggested by HILL (e.g., KEIGHTLEY and HILL 
1988)  and is given by 

where a' = [p(@ + l)/a'] is the variance and a defines 
the scale. In  the present simulations p = ' / z  was chosen, 
which  gives a highly leptokurtic  mutational  distribu- 
tion. 

The first choice of parameters is in accordance with 
LANDE'S (1 984,  1988) hypothesis that  the  number of 
effective loci contributing most additive  genetic vari- 
ance  to  quantitative  traits is small (on the  order of 10) 
and  that these are highly mutable. Therefore it is in 
accordance with the assumptions leading to  the Gaus- 
sian approximation. The results are  presented in Ta- 
ble 2 and show a  moderate  decrease of expressed 
variance &:(Obs) as r becomes very small, unless selec- 
tion is very weak. Concomitantly, Gi(0bs) is slightly 
increasing. 

The second choice of parameters is in accordance 
with the assumptions assuring validity  of the house- 
of-cards prediction. Both genetic and genic variances 
are roughly  constant. Since only for N p  = 100, V, = 2 
and r = 0 a statistically significant increase of the genic 
variance was observed (6; = 0.042) its values are not 
displayed in Table 3. 

Both cases are qualitatively in agreement with the 
two-locus results as discussed below. In particular, 
Gi(Obs)/G$ (SHC) 2 0.68 always holds, hence the 
maximal decrease of variance due  to linkage is ap- 
proximately 30%. 

A  considerable  reduction of variance is found when 
the Gaussian mutant  distribution is replaced by a 
double gamma distribution, unless selection is very 
weak (Table 4). This has  also been shown by KEIGHT- 
LEY and HILL (1 988)  on  the basis of a  different  model. 
Part of their  results are extrapolations of a one-locus 
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TABLE 3 

Influence of the  recombination  rate on the observed additive 
genetic variance  at  stochastic  equilibrium 

7 =  
t: 

V, (SHC) 0.5 0.1 0.001 0 

Np = 20 100  0.022 0.022  0.022 0.022 0.020 
10 0.020 0.020 0.017 0.022 0.019 
2 0.014 0.013 0.016 0.017 0.015 

Np= 100  100 0.106  0.097 0.097 0.112  0.103 
10 0.072 0.073 0.075 0.059 0.060 
2  0.029 0.029 0.028 0.029 0.025 

The distribution of mutant effects is normal with mean zero and 
variance a* = 0.05, the mutation rate is p = the  number of 
loci n = 50. The third column contains the values  of i%(SHC), 
Equation 1 1, the fourth to seventh the values  of ;:(Ob+. Standard 
errors  are less than 10%. The genic variances do not significantly 
deviate from i:(Obs) except for N p  = 100, V, = 2 and r = 0, when 
Gi(0bs) = 0.042. 

TABLE 4 

Influence of the recombination  rate on the observed  additive 
genetic variance at stochastic equilibrium for a double 7 

distribution of mutant effects with  mean  zero and variance 
a’ = 0.05 

7 =  

V, %(SHC) 0.5 0.001 0 

N p =  100  100 0.106 0.106 0.063 0.091 
10 0.072 0.050 0.040 0.047 
2 0.029  0.016 0.016  0.016 

The mutation rate is p = the number of loci n = 50. The 
third column contains the values of uE(SHC), Equation 11, the 
fourth to sixth the values of i%(Obs).  Standard errors  are less than 
10%. The genic variances deviate from i:(Obs)  by more than 10% 
only if r = 0 and V, = 10 and V, = 2 when ii(0bs) = 0.0600 and 
ii(Obs) = 0.020, respectively. However, G%(Obs)  is considerably 
lower than with a Gaussian mutant distribution, unless selection is 
very  weak. 

model with two alleles in  which the heterozygote is 
assumed to be less fit than  both homozygotes. This 
model may be  traced back to ROBERTSON (1  956),  but 
it is hard  to  understand how stabilizing selection leads 
to  underdominance  at all  loci (see also Section 4 
below). Table 4 illustrates that  a  decrease of recom- 
bination rate has almost no statistically significant 
influence on ;i(Obs) and  gi(0bs). 

Simulation results not  presented here show that  the 
degree of linkage has no statistically significant influ- 
ence  on  the kurtosis of the stationary  distribution of 
genotypic values. The double y mutant  distribution 
leads approximately to twice the kurtosis of the  nor- 
mal mutant  distribution. Also mean heterozygosity 
and polymorphism are somewhat higher if the  mutant 
distribution is double y instead of normal,  although 
the variance is lower. The reason  for this is that with 
a  double y distribution most mutants have very small 
effects and those with large effects are quickly elimi- 
nated in a small population. This leads to a lower 

variance. On  the  other  hand most mutants have very 
small differences in fitness which leads to higher fix- 
ation times and higher polymorphism and heterozy- 
gosity. Again, recombination rate has no significant 
influence on these values. 

DISCUSSION 

Although the present analysis  in principle confirms 
earlier results by LANDE  (1975,  1977), FLEMING 
(1979), BULMER (1980), TURELLI (1984) and KEIGHT- 
TLEY and HILL  (1988)  that  the linkage relation be- 
tween loci has only a  moderate  influence  on  the  ex- 
pressed equilibrium variance maintained by a balance 
between mutation and stabilizing selection, it reveals 
certain  differences and complications, especially at  the 
gene level. In  particular, this paper differs methodi- 
cally from those mentioned  above. (i) Contrary  to 
LANDE, FLEMING and BULMER the present results are 
not based on assumptions leading to a  particular dis- 
tribution of genotypic values. (ii) Whereas, TURELLI 
simulated two-, four-,  and six-locus models numeri- 
cally, the present  paper  contains  a  complete analytic 
solution and stability analysis  of the two-locus model. 
(iii) The present simulation model seems to be  more 
general and “realistic” than most earlier simulation 
studies in this field. It assumes that  the possible num- 
ber of alleles per locus is infinite,  but it does  not  rest 
on any deterministic evolution equations  for  gene 
frequencies, or on symmetry assumptions concerning 
allelic effects. For  example, the theoretical and  the 
simulation results of KEIGHTLEY and HILL (1 988) are 
in part based on a  transition  matrix  method involving 
a one-locus two-allele model with underdominance 
(this assumption being discussed below) and in part 
on Monte  Carlo simulations using an infinite sites 
model. 

Consider first a  quantitative  trait,  a  pair of muta- 
tionally equivalent loci contributing  to  that  trait  and 
quadratically deviating fitness as in Equation  1 or 
Gaussian fitness as in Equation  9. The present analysis 
shows that  the consequences of linkage between  these 
two loci on  the genetic variance at mutation-selection 
balance depend  on whether a2 C 8pVs or a2 > 8pVs 
(a2 is the variance of mutational effects). In  the  former 
case the expressed  genetic variance decreases as the 
recombination rate r between the loci decreases, 
whereas the genic variance remains  constant and equal 
to cy2 (Equations 5 and 6). In  the  latter case the 
expressed genetic variance is constant and equal to 
the house-of-cards prediction 8pVs as  long  as r 2 rc = 
16p2Vs/(a2 - 8pVs), whereas the genic variance in- 
creases. If r < rc the genetic variance slightly decreases 
and  the genic variance has reached  the value a2 (see 
Result 2 and Figure 1). The maximal possible decrease 
of the genetic variance due to decreasing r is by a 
factor 2 - a. This can be realized only if a2 = 8pVs. 
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Otherwise the decrease is much less pronounced (Fig- 
ure 1) .  As shown in the APPENDIX, a similar behavior 
occurs for  other functions  modeling stabilizing selec- 
tion. 

These two cases are in close connection with the 
distinction of the Gaussian and  the house-of-cards 
approximation. The Gaussian approximation of KI- 
MURA and  LANDE can  be valid only if at each locus a2 
e< gVs (LANDE 1975; TURELLI 1984; BURGER 1988b). 
The biological plausibility of this assumption was 
criticised by TURELLI (1  984) who suggested a* >> gV, 
to be more realistic and based his house-of-cards ap- 
proximation on it. The above  reasoning, based on 
Result 2, indicates that,  depending  on which  of the 
inequalities is valid, linkage will effect the equilibrium 
variances (expressed and  hidden) in a  different way. 

TURELLI (1  984) reviewed data  from Drosojdda mel- 
anoguster which suggest that lower bounds  for  the 
recombination rate  for adjacent  structural loci  in the 
neighborhood of 10-5-10-4 seem reasonable. If this 
is true  then  under house-of-cards conditions the equi- 
libria F2 and F3 will  always be stable and F1 is  always 
unstable.  Hence under house-of-cards conditions the 
expressed  genetic variance is  always independent of r 
but (in the two-locus model) two stable equilibria 
coexist. In a multilocus model many equilibria will be 
simultaneously stable. Under assumptions in favor of 
the Gaussian approximation,  however,  the  expressed 
genetic variance decreases slightly as r decreases, 
whereas the dynamics of genotype  frequencies are 
simple since only a single globally stable  equilibrium, 
namely (Fl), exists due  to mutation  pressure. 

That Result 2 is not  an artifact of the special model 
is clear  from the simulation results of a multilocus 
model with a possible continuum of allelic effects per 
locus in a  finite  population. Table 2 contains the 
results for  the  parameter  combinations in favour of 
the Gaussian approximation. In particular  they are 
compatible with LANDE’S (1 984,  1988) hypothesis that 
relatively few “effective loci” are responsible for most 
heritable variation of a  trait.  Table 3 contains the 
results for  parameter  combinations in favour of the 
house-of-cards prediction. It may be seen that these 
results agree qualitatively with the analysis of the two- 
locus model. For  example in Table 2 the largest 
decrease of expressed variance occurs  for V, = 10, 
followed by V, = 2 and V, = 100, which is just  the 
order of increasing I a2 - 8pV, I, as  predicted by Result 
2. As already shown by KEIGHTLEY and HILL (1988) 
on  the basis  of a  different model that assumes under- 
dominance at each locus, a  leptokurtic  mutant distri- 
bution leads to  a considerably lower equilibrium var- 
iance (Table 4). The influence of linkage, however, is 
again weak under house-of-cards assumptions. 

The conformity of the results of both models indi- 
cates that they are very robust, since the models are 

quite  different.  Although in both models additivity 
within and between loci  is assumed the deterministic 
model is highly symmetric having alleles with fixed 
effects, whereas the stochastic is not.  In the  latter, 
alleles of arbitrary effects may occur  according to  the 
mutant  distribution and  the  number of alleles segre- 
gating per locus may  vary over time. A  short  account 
of the deterministic model with different allelic effects 
at  the two loci  may be  found in the APPENDIX, part B. 

Recently, HASTINGS (1 988) investigated disequi- 
librium in certain two-locus models under mutation- 
stabilizing selection balance by approximation  meth- 
ods. However, his results do not apply to  the model 
treated in Section 2, since he assumes that  at each 
locus a  common allele exists and  that  the  correspond- 
ing  double homozygote has higher fitness than all 
other genotypes with two or more of the common 
alleles. His results may apply, for  example, if the 
effects of the gametes AB, Ab, aB, ab are 2a, a, a, 0 
and  the maximum fitness is attained at 0. Contrary  to 
the present  model, in such a model the mean  geno- 
typic effect at equilibrium will in general  not agree 
with the fitness maximum. Nevertheless, his expres- 
sion ( 1   1 )  for  the linkage disequilibrium agrees with 
the linkage disequilibrium at F2 and F3, if the fitness 
values of Table 1 are plugged into his formula (with 
the obvious modification that w14 is replaced by 

The present  results  together with many other  re- 
cent  results (BARTON 1989; BULMER 1972,  1980; 
BURGER 1988a,b; BURGER, WAGNER and STETTINGER 
1989; KEIGHTLEY and HILL 1988; SLATKIN 1987; 
TURELLI 1984) underline  the  remarkable robustness 
of the house-of-cards prediction and its finite popula- 
tion counterpart (1  l),  at least for  a Gaussian mutant 
distribution. They also indicate that extrapolations 
from one-locus haploid models to multilocus diploid 
models lead to  correct results concerning  the equilib- 
rium variance for  a wide range of parameters. GA- 
BRIEL and WAGNER (1 988) and G. P. WAGNER and W. 
GABRIEL (unpublished  data) have shown that  parthen- 
ogenetic  populations may be as effective as sexual 
populations in adapting to local peaks. All these  results 
indicate that  the dynamics of phenotypic means and 
variances in haploid and diploid models behave very 
similarly near  an  adaptive  optimum. Additionally, the 
distribution of genotypic values is  in fact nearly Gaus- 
sian for  a relatively wide range of parameters (com- 
pare also BURGER, WAGNER and STETTINGER 1989). 
There is evidence, however, that pleiotropy and 
epistasis  may lead to substantial complications (TUR- 

The dynamics at  the genotype level are much  more 
complicated in the diploid case than in the haploid. 
In haploid models a uniquely determined, globally 
stable  equilibrium  distribution of (geno)types always 

w14w44). 

ELL1 1985; GOODNIGHT 1988). 
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exists for (almost) arbitrary stabilizing selection func- 
tions and  arbitrary  mutant  distributions (BURGER 
1986, 1988a,b). This holds independently of whether 
a finite number of alleles or a  continuum of alleles is 
assumed, or whether  generations are discrete or over- 
lapping. On  the  other  hand, already in the diallelic 
two-locus model up  to  three equilibria may exist. 

If, in the present  deterministic model with quadrat- 
ically deviating fitness, 4p/s ? 1 then  due  to mutation 
pressure F1 is the single stable  equilibrium for all 
recombination values. Although at this equilibrium all 
gene  frequencies are ‘12 there may be substantial neg- 
ative linkage disequilibrium. If 4p/s < 1 then F1 is 
stable only for  extremely  tight linkage (r(s - 4p) 5 
Sp2) otherwise two stable equilibria F2, F3, with one 
of the balanced gametes Ab or aB prevailing, exist. 
Which of the two equilibria is actually approached 
depends  on  the initial frequencies of Ab and aB. Link- 
age disequilibrium at these equilibria is 6 = -2p2/(sr). 
These results are  different  from those of BULMER 
(1972) and BARTON (1986) [see also BULMER (1988) 
for  a review] when their analysis is restricted to two 
loci. They assumed (in fact for  a model with many 
loci) that  the dynamics can be  described solely  by the 
gene  frequencies, assuming global linkage equilib- 
rium.  This assumption is admissible only if p2/(sr) is 
very  small and leads to an  “underdominance” like 
dynamics. Moreover, they assumed a Gaussian distri- 
bution of genotypic values. Precise conditions for  the 
validity  of this assumption are  not yet known, however 
there is some evidence that sufficiently high gametic 
mutation  rates, and  moderate selection intensities are 
necessary (BURGER,  WAGNER and STETTINGER 1989). 

These assumptions lead to  an overdetermination of 
the BULMER-BARTON model and  to a  different mean 
fitness. If their model assumptions are applied to two 
loci then mean fitness is given by f i e  = rfi + 4sD, 
whereas rfi is the exact mean fitness (see Equation 3). 
Of course, they assume linkage equilibrium, i.e. D-0, 
and as long as this is satisfied there is no difference. 
But since D does  not  remain  zero and instead becomes 
negative, as shown in the APPENDIX, the dynamics in 
their model are slightly different,  depending  on how 
large linkage disequilibrium in fact is. 

As a  consequence, in the BULMER-BARTON model 
at  the equilibrium  corresponding to F1 all genotype 
frequencies are Y4 and  the equilibriaA corresponding 
to F2 and F3 are lacking the  term D and  are inde- 
pendent of r. Since in their model F2 and F3 are 
always  locally stable (unless 4p/s 2 1) the impression 
may emerge  that  underdominance  occurs in stabiliz- 
ing selection models, This assertion goes back to ROB- 
ERTSON ( 1  956) (see also KEIGHTLEY and HILL 1988). 
The exact analysis  shows that these two stable equilib- 
ria are not due to underdominance in the strict sense, 
since their  existence, position and stability depends 

not only on p/s but in particular on  the recombination 
rate. 

BARTON (1986) also showed that  for  more  than 
three loci additional stable equilibria can exist,  where 
the mean genotypic value deviates from  the  optimum. 
It is to be  expected  that similar phenomena will also 
occur in the exact model. Whether such equilibria are 
of much  importance if the effects of alleles are asym- 
metric is questionable, since with increasing asymme- 
try the  range of stability of F1 increases (see APPENDIX 

In finite populations shifts between the various equi- 
libria in the BULMER-BARTON model can occur. If the 
population size is large, however (e.g. >20,000, de- 
pending on  the various parameters), the population 
will be  clustered around  one of the house-of-cards 
equilibria and shifts away from  the  optimum become 
infrequent (BARTON 1989). Although in  small popu- 
lations such shifts may be rather likely their  net effect 
on  the  expected variance seems to be small (BURGER, 
WAGNER and STETTINGER 1989). In that  paper  excur- 
sions of variance were frequently  observed,  but the 
observed mean variance was approximately G:(SHC). 
Probably this is due  to  the fact that in our simulation 
model no symmetries are assumed, since BULMER’S 
(1972) analysis  of diallelic model including  random 
drift  but with symmetry assumptions led to a  higher 
variance than G:(SHC). Similar effects in diallelic 
models were observed by BARTON (1  989) and KEIGHT- 
LEY and HILL (1988). 

T o  summarize,  recent analyses including the pres- 
ent  one show a relatively simple dependence of the 
expressed  genetic variance under mutation-selection 
balance on  the gametic mutation  rate, the selection 
intensity, the  mutant  distribution and  the population 
size. It is very robust with respect to recombination 
relations  among loci and with respect to detailed 
genetic assumptions like possible number of alleles per 
locus, symmetry assumptions etc.  If, however, the loci 
contributing  much  to  the variance are tightly linked 
considerable hidden variance due  to negative linkage 
disequilibrium builds up.  Moreover, the detailed ge- 
netic composition of a  population  near  an  adaptive 
optimum will strongly depend  on  genetic  parameters 
like recombination  rates and hence on its history due 
to  the existence of multiple stable equilibria at  the 
gene level. COHAN (1984) has shown that  uniform 
selection acting on small isolated populations may lead 
to genetic  divergence between conspecific popula- 
tions. The present analysis as well as that of BULMER 
and BARTON allow us to  conclude  that even stabilizing 
selection acting on very large populations may lead to 
genetic divergence between isolated populations. 
These effects may be of importance if a  population 
experiences  directional selection due to changing  en- 

B). 
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vironmental conditions and can  be one reason for 
unpredictable long term response. 
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APPENDIX 

A) To investigate the dynamical properties of the system 
of differential equations (4) I use an approach based on 
Ljapunov functions (4 BURGER 1983). 

Since there is forward and backward mutation at both 
loci no equilibria at  the boundary of the simplex S4 = ((xi) : 
xi 2 0 and 2 xi = 1, i = 1, 2, 3, 4) can exist and  the flow at 
the boundary points into  the simplex. Therefore, it is suffl- 
cient to consider the  interior of Sq. First we consider the 
function 2 = x2x~/x1x4 and show that 2 > 0 if 2 5 1. Notice 
that D = X1X4(1 - 2). Using (4) an easy calculation  shows 
that 

2 = Z[(d - 2b)(Xl + x4) + 2b(x2 + X%)] 
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if Z 5 1. Here T = X ~ X Z X S  + xIxpx4 + x1xsx4 + xpx3x4. This 
shows that  for  arbitrary initial genotype frequencies  even- 
tually D < 0 hold. Hence  the  subregion of S4, where D < 0 
holds is positively invariant and contains  every w-limit. This 
argument is no  longer valid if d < 2b, in which case positive 
linkage  disequilibrium is possible. 

Next we show that if D < 0 then - ("I - - I)P I 0 holds. 

Geometrically, xl/x4 = c  describes  a  plane in the simplex 
containing the  edge x p  + xs = 1 such that this relation is 
satisfied. Indeed, if D I 0 

dt x4 

holds. This implies that all orbits  converge  to  the plane x1 
= x4. Additionally,  as  shown  above, D < 0 holds  as t + Q). 

Subsequently,  assume that x = x1 = x4 and  put y = x2 - x3. 
Then  an easy calculation shows that  the dynamics in the 
plane x1 = x4 are given by 

i = A(x)(Sx - 1)  - x(r + 2p) + ( r / 4 )  - ( r /4)y2  (A3) 

j = 2yA(x) (A4) 

Here, A(x) = (d - 4b)x2  + bx - p. This system has up to 
three equilibrium  points, which have to satisfy x 5 Y4, since 
we already know that D < 0. Simple algebra shows that, if y 
= 0, a unique equilibrium [, 0 < [ < '/4 of (A3) exists. This 
gives fixed  point F1. If d = 46 = 4s  then F1 can be calculated 
explicitly and, using y = x2 - xs, the expression in Result 1 
is obtained. All other equilibria  have to satisfy A(x) = 0. If 
26 5 d < 46 - ( b 2 / 4 ~ )  or d < 1 6 ~  no  further equilibria  exist, 
since in this case A(x) # 0 for 0 < x < Y4. If d > max(2b, 4b 
- (b2 /4p) ,  1 6 ~ )  a unique solution i ,  0 < i < % of A(x) = 0 
exists. This yields fixed  points F2 and F3. If d = 4 b  they are 
given by i = p / b  and 

I f  26 5 d < 4b then F2 and  F3  are given by 

If d > 4b they are given by 

X =  
-1 

2(d - 4 b )  
(b  + J b 2  + 4p(d - 4b)) ,  

(A6) 

j = & 2  V-&i(l+?). 

It follows that F2 and  F3 exist only if r is sufficiently large 
to  ensure  that '14 > i( 1 + Pp/r).  Some further simple algebra 
shows that, as r increases from zero, the x-coordinate  of F 1, 
[, increases and satisfies E < i. For a critical value r, = 8 4  1 
- 4;) we have 5 = i and j = 0 and  therefore F 1 ,  F2 and F3 
coincide. In  fact, on pitchfork  bifurcation  occurs at this 
point. 

It remains to  prove  the stability properties claimed in 
Result 1 .  Consideration  of ai/& shows that i < 0 for all x 
> E .  Hence each w-limit  lies  in the positively invariant 
subarea x 5 of the plane xl = x4. We know already that r 
< 8 4  1 - 43;) is equivalent to .$ < i, which in turn is equivalent 
(as is easily shown) to A(x) < A([) < 0 if x < E .  Therefore, 
global stability of F1 follows immediately from Equation 
A4. Note  that this is the case if and only if F2 and F3 do 
not exist. If r > r, then F1 is unstable and a  linear stability 
analysis shows that F2 and  F3 are locally stable. 

T o  prove  that F2 (F3) is globally attractive  for  the half 
space x:, > xs (x, < x3) it suffices to  exclude  the existence of 
periodic orbits  around F2 (F3) (HOFBAUER and SIGMUND 
1988). T o  this aim I use a Dulac function  (due  to J. HOF- 
BAUER) in the  forward invariant area x 5 [ and y 2 0 
(y I 0). Indeed 

a(y-'x)/ax + d(y"j)/dy 
(A7) 

=y"(6A(x) + 2(3b  - d)x - (b  + r - 2p)) 

and 6A(x) + "(36 - d)x - (b  + r - 2p)  < 0 in each  of  these 
areas. Hence (A7) has constant sign in both areas, which 
finishes the proof. 

B) It is also possible to  draw a few conclusions if the effects 
of mutants  are  different  at  the two loci. Assume, for exam- 
ple, that  the effects of A, a, B, b are c - a1/2, c + a1/2, -c 
- a2/2, "c + a2/2. Then,  for  the  general stabilizing selection 
model the  general symmetric fitness model with parameters 
a, b, c, d,  as treated by KARLIN and FELDMAN (1970), 
emerges. Without  further assumptions this is almost  intrac- 
table. Assuming quadratically  deviating fitness, the side 
assumption a + d = 2(b + c) is obtained.  Then it is straight- 
forward  to show that  an equilibrium with coordinates as F1 
(see Result 1) exists, where s = s*a2 is replaced by s*alaz. 
Its stability depends  on  the sign of  a  (quite  complicated) 
quadratic polynomial in r.  However, it can be shown that 
F1 is locally stable for all r 2 0 if 

a:a;<-y+-- -  16 pp 8 p a:+a; 
3 s* 3s*  2 . 

That is,  if the mean  variance of mutation effects (a: + 
ag)/2 is held constant, F1 is locally stable for all r if the 
effects are sufficiently different.  For example, if s* = lo-', 
p = (a? + a$/2 = 0.05,  then F1 is stable if a? 2 0.075 
and ai I 0.025.  However, in this case the assumptions 
leading to  the house-of-cards approximation  are  no  longer 
satisfied at locus two. Numerical simulations suggest that in 
this case F1 is globally stable. If F1 is unstable  equilibria 
similar to F2 and F3 exist, but they do not satisfy XI = x4. 
The variance  maintained at these  equilibria is slightly higher 
than in the symmetrical case. 


