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ABSTRACT 
The  maintenance of genetic variability at two diallelic loci under stabilizing selection is investigated. 

Generations  are discrete and nonoverlapping;  mating is random;  mutation  and  random genetic drift 
are  absent; selection operates only through viability differences. The determination of the genotypic 
values is purely  additive. The  fitness function has its optimum  at  the value of the  double heterozygote 
and decreases monotonically and symmetrically from its optimum,  but is otherwise arbitrary. The  
resulting fitness scheme is identical to  the symmetric viability model.  Linkage  disequilibrium is 
neglected,  but  the results are otherwise  exact. Explicit formulas  are  found  for all the equilibria, and 
explicit conditions are  derived  for  their existence and stability. A  complete classification of the six 
possible global convergence  patterns is presented. In addition  to  the symmetric  equilibrium (with 
gene frequency 1/2  at  both loci), a  pair  of  unsymmetric  equilibria may exist; the  latter  are usually, 
but  not always, unstable. If the  ratio of the effect of the major locus to  that of the  minor one exceeds 
a critical value, both loci will be stably polymorphic. If selection is weak at  the  minor locus, the  more 
rapidly the fitness function decreases near  the  optimum,  the lower is this critical value; for rapidly 
decreasing fitness functions, the critical value is close to  one. If the fitness function is smooth at  the 
optimum,  then a  stable  polymorphism exists at  both loci only if selection is strong  at  the major locus. 

T HE maintenance of genetic variability in quanti- 
tative characters is of fundamental  evolutionary 

importance. The mechanism proposed most  widely  in 
studies of this question is the balance between muta- 
tion and stabilizing selection. Consult BARTON (1 986), 
BARTON and TURELLI (1987), BURGER (1986,  1988, 
1989),  NARAIN  and  CHAKRABORTY  (1987),  SLATKIN 
(1987),  and TACHIDA and COCKERHAM  (1988)  for 
recent investigations and references to  the  earlier 
work of BULMER,  FLEMING, KIMURA, LANDE,  LATTER, 
and TURELLI. 

Stabilizing selection toward an  intermediate phe- 
notypic optimum has been established for many quan- 
titative characters in natural populations (ENDLER 
1986, Ch. 7). Mutation is incorporated because several 
analyses suggest that stabilizing selection tends  to re- 
duce  genetic variability in polygenic traits. This view 
is supported by approximations  that focus on a single 
locus at a  time (FISHER 1930, Ch. 5; ROBERTSON 1956; 
BULMER  197  1; KIMURA 1981;  NAGYLAKI  1984). 
WRIGHT’S  (1935) study of the  quadratic  optimum 
model for diallelic loci without epistasis in the  deter- 
mination of the  character  provides  additional  support. 
He neglected linkage disequilibrium and  found  that 
at most one locus could  be in stable polymorphic 
equilibrium if dominance was either absent or com- 
plete. For two loci  with equal effects, complete  addi- 
tivity, arbitrary  recombination rate,  and  an  arbitrary 
symmetric fitness function with optimum at  the value 
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of the  double  heterozygote, HASTINGS (1987)  proved 
that  both loci are ultimately fixed. 

Stable multilocus polymorphisms can occur in the 
quadratic  optimum model even with equal  contribu- 
tions if there is partial  dominance (KOJIMA 1959; 
LEWONTIN  1964; SINGH and LEWONTIN 1966), epis- 
tasis (A. GIMELFARB, unpublished manuscript), or 
pleiotropy for two characters (GIMELFARB 1986). The 
combination of stabilizing selection and viability  ov- 
erdominance can also maintain genetic variation (BUL- 
MER 1973; GILLESPIE 1984). 

In all the investigations of mutation-selection bal- 
ance cited above, it is assumed that  the  trait is deter- 
mined without  dominance or epistasis. Therefore, 
numerical work of GALE and KEARSEY (1968),  and 
KEARSEY and GALE (1 968)  on completely additive two- 
and three-locus models of pure stabilizing selection is 
of particular  interest.  In  contrast to  the commonly 
posited quadratic or Gaussian fitness functions, these 
authors used a  triangular  one (ie., one  that decreases 
linearly from its optimum). They  found  that all the 
loci can be stably polymorphic if their effects are 
sufficiently unequal, and  that  the  amount of disparity 
required decreases as linkage becomes tighter. How- 
ever, they did  not  incorporate  a  parameter  to  control 
the intensity of selection. Since selection is strong in 
all their examples, even the ones with loose linkage 
exhibit  considerable linkage disequilibrium. 

The results of WRIGHT (1 935)  and  GALE  and KEAR- 
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SEY (1968) still leave open  the questions of the de- 
pendence of the possibility of stable multilocus poly- 
morphism on  the intensity of stabilizing selection and 
on  the form of the fitness function. These questions 
will be answered for two loci  in this paper. 

We  shall see that our fitness scheme is identical to 
the symmetric viability model. By neglecting linkage 
disequilibrium, we shall obtain  a  complete global 
analysis, which complements  the  exact, local results of 
BODMER and FELSENSTEIN (1967)  and KARLIN and 
FELDMAN (1 970)  on this model. 

In  the  next section, we formulate our model and 
establish some preliminary results. In  the following 
section, we present explicit formulas for all the equi- 
libria and explicit conditions  for  their existence and 
stability. These results provide  a  complete classifica- 
tion of the six  possible global convergence  patterns 
and  are proved in the APPENDIX. In  the succeeding 
section, we examine how the  amount of disparity 
between loci and  the form of the fitness function affect 
the maintenance of genetic diversity. Then we treat 
some specific fitness functions. In  the final section, we 
summarize our main results and discuss extensions 
and  further applications. 

FORMULATION 

We assume that generations are discrete and non- 
overlapping,  mating is random, mutation and  random 
genetic  drift are absent,  and selection operates only 
through viability differences. 

Our sole approximation is to neglect linkage dis- 
equilibrium. Suppose that  the genotypic fitnesses are 
constant and  there is no position effect: there  are 
arbitrarily many alleles at each of n loci. Let pj') and 
wiljl,. . .,in,n denote  the frequency of the allele Acj) at 
locus i and  the fitness of the genotype A\:)At) . 
A t ) A t ) .  Then  the mean fitness reads 

5 = C wilj,...,,injn Il P t h P l h ,  
( 4  (4 (1) 

il.jl....,in,3n k 

which is a polynomial of degree 2n.  The gene  fre- 
quencies in the next  generation  are given by 

where all  allelic frequencies are treated as independ- 
ent in the  partial  differentiation.  From the inequality 
of BAUM and EAGON (1  967) we conclude immediately 
that  the mean fitness is nondecreasing: zir' 2 5, with 
equality only at equilibrium.  Hence, in this approxi- 
mation, locating all the stationary points of zir and 
determining  whether they are maxima provides a 
global analysis  of the evolution of the population. 

We specialize  now to two diallelic loci. The linkage- 
equilibrium  approximation is accurate  for  the situa- 

TABLE 1 

The genotypic values 

BB Bb bb 

AA d + c  C - d + c  
Aa d 0 -d 
aa d - c  -C -d - c 

d ? c > O .  

TABLE 2 

The genotypic fitnesses 

BB Bb bb 

AA 1 - 6  1 - P  1-01 
Aa 1-7 1 1-7 
aa 1-01 1 - 0  1 - 6  

O s a , p s 7 < 6 s 1 .  

tion of  most biological interest, weak selection 
(NAGYLAKI  1976;  1977a, pp. 167-177;  1977b). The 
computations of SINGH and LEWONTIN (1966)  and 
GIMELFARB  (1 986, unpublished manuscript) and com- 
parison of our results with those of GALE  and KEARSEY 
(1 968) suggest that  the inclusion of linkage disequili- 
brium would relax the conditions  for the existence of 
stable two-locus polymorphism without changing 
them qualitatively. 

Simplifying the notation, we call the alleles A and a 
at  the first locus and B and b at  the second. Let p l ,  91, 

p 2 ,  and 42 designate the frequencies of A, a,  B ,  and b, 
respectively. The alleles determine  the genotypic 
value, z, purely additively; without loss of  generality, 
we parametrize the contributions of A,  a, B,  and b to 
z as Y2c, -1/2c, Yzd, and -?hd and take d 2 c > 0. Thus, 
we obtain the genotypic values shown in Table 1. We 
call c and d the effects of the  minor and major loci, 
respectively. 

We assume that  the genotypic fitnesses depend only 
on  the genotypic value and write  them as w(z). We 
posit that  the fitness function w(z )  has its optimum at 
zero, the genotypic value of the  double  heterozygote: 
we scale w(z )  so that w ( 0 )  = 1. We suppose that w(z )  
decreases monotonically from its optimum  and is 
even, w(-z) = w(z ) .  Henceforth, we shall write w ( z )  
only for z L 0; replacing z by I z I would always produce 
expressions valid for --OO < z < m. With these hy- 
potheses, the genotypic values in Table 1 yield the 
fitness scheme in Table 2, where 

a = 1 - w(d - c ) ,  /3 = 1 - w(c) ,  ( 3 4  

y = 1 - w ( d ) ,  6 = 1 - w(d + c ) ;  (3b) 

O I a , p s y < 6 s l .  (4) 

We  shall repeatedly utilize the simple fact that a > p 
(a < p) if and only if d > 2 c  (d < 2c). Furthermore, 
p > O a n d y > a .  
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The fitness scheme in Table 2 is identical to  the 
symmetric viability model (BODMER and FELSENSTEIN 
1967; KARLIN and FELDMAN  1970). Given c and d 
such that d L c > 0 and a,  0, y ,  and 6 satisfying (4), 
there exist infinitely many nonnegative,  nonincreasing 
w ( z )  that pass through  the points (0, l), (d  - c ,  1 - a) ,  
(c, 1 - @), ( d ,  1 - y ) ,  and (d  + c ,  1 - 6). 

Our fitness scheme is symmetric under  the simul- 
taneous  interchanges A t, a and B c, b, which corre- 
spond to pl t, q1 and p2 t, q 2 ,  respectively. Therefore, 
every convergence pattern in the p1p2-plane  is  sym- 
metric under reflection in the point (Vz, ?h). In  partic- 
ular,  excluding the equilibrium (%, %), the equilibria 
must occur in pairs ( P I ,  p2) and (91, 42). 

We shall see that if selection is  weak at  the minor 
locus, the possible convergence  patterns  depend  on 
the behavior of w(z )  near  the origin. This behavior, 
in turn,  depends  on what smoothness hypotheses, if 
any, we impose on w(z ) .  Although we shall impose 
none, it is important to see that w ( z )  must be  smooth 
(i.e.,  have infinitely many continuous derivatives) un- 
der  the following set of conditions. Suppose the phe- 
notypic value is the sum of the genotypic value and a 
stochastically independent  environmental  contribu- 
tion. Then  the genotypic fitness function can be writ- 
ten  as 

where Wand  represent, respectively, the phenotypic 
fitness function and  the probability density of the 
environmental value. If W(z)  decreases sufficiently 
rapidly as I z I -+ OQ to be  integrable  from --QJ to OQ and 
4 is smooth (e.g., Gaussian), then w is smooth (APOSTOL 
1974,  p. 328) .  Thus, smooth w ( z )  are of particular 
biological interest. 

GENERAL  RESULTS 

In this section, we locate all the equilibria and 
present  conditions  for  their stability. This enables us 
to classify the six  possible global convergence  patterns, 
as shown in Table 3 and Figure 1 below.  We state our 
major results as theorems  and  prove them in the 

We define first some parameter  combinations  that 
APPENDIX. 

greatly simplify our formulas: 

1 = 6 + a ,  m = 6 - a ,  (6a) 

X = I - 2p, P = 2(r - @), (6b) 

f = ! h ( 1  - p ) ,  h = Yz(1 + p) ,  ( 7 4  

g = 2(2y - X). (7b) 

[In BODMER and FELSENSTEIN (1 967) and KARLIN and 
FELDMAN ( 1  970), 1 denotes 27 - X ,  not 6 + a.] These 
parameters satisfy some useful inequalities. Subtract- 
ing @ from (4) and employing (6a) and  (6b), we find 

max(0, X - m )  5 p < X + m ;  (84 

in particular, 

X > -m. (8b) 

From  (6)  and  (8b) we deduce  the bidirectional impli- 
cations 

If X > 0,  we can establish 

2 > p - w X - 2 @ > €  ( 8 4  

by using (6) to prove  that  both inequalities in (8d)  are 
equivalent to m2 > ~ B X .  

Clearly, the  four vertices (0,  0), (1, l) ,  (1, 0), and 
(0, 1) of the unit  square in the p$2-plane are equilib- 
ria. We define 

p1 = ((0,  O ) ,  (1,  I)), p2 = ((1, O ) ,  (0, 1)). (9) 

A glance at  Table 2 informs us that  there exist no 
edge equilibria if a 5 P ,  whereas there exist the two 
overdominant  ones, 

p 1 = 0 ,  p - -+ ->- ,  
2 - 2  2X 2 (loa) 

l m l  

if a > P;  we call these P,. Note  that (10) satisfies the 
reflection symmetry (pl ,  PP) t, (41, q2) ,  as it must. By 
the same symmetry,  the  point Po = (Yz, %) is an 
equilibrium. T o  specify the unsymmetric internal 
equilibria, set 

so that -?h I x ,  y I %. 

Theorem 1: (i) Suppose g f 0.  A pair of unsymmetric 
internal  equilibria, P+, given by 

y = - G., 
exists in Cases a, b, and c in  Table 3, but  not  otherwise. 
(ii) Suppose g = 0. The  line of equilibria 

= - x x  m 
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TABLE 3 

Classification of the convergence patterns and the existence and 
stability of the equilibria 

Equilibria 

Case Conditions p ,  Pe PC Po P ,  

a e > p  p < p 2  u u  u u s  
b c < p  p > p 2  a s p  U S - s u  
c c < p  p > p 2  a > p  u u s s u 
d c < p '  p < p 2  a s p  U S - u -  
e e < p  p < p 2  a > @  u u s u - 
f c > p  p > p 2  u u u  s - 

The  parameters  are  defined in Equation 6. P I ,   P 2 ,  PC, Po,  and P, 
designate  the vertices (0, 0) and (1,  l), the vertices (1, 0) and (0, l ) ,  
the two edge equilibria (lo), the symmetric  equilibrium (%, Yz), and 
the two  unsymmetric  equilibria (12), respectively. The dash, S ,  and 
U signify nonexistence,  stability, and instability of an equilibrium, 
respectively. Figure 1 shows the global convergence  patterns  for 
the six cases. 

exists i fand only i f p  = p2, which is equivalent to 

a = P + y - & ,  S = / ? + y + & .  (14) 

In Table  3, Cases d,  e,  and f  complement Cases a, 
b,  and c,  excluding the  degenerate cases  of equality 
E = p and p = p2. Notice that, by (8a) and (8c) ,  in  Cases 
a and f a > 0, which is equivalent to d > 2c.  The full 
significance of our classification  follows from  the con- 
ditions  for stability of the equilibria, which we proceed 
to consider. We abbreviate asymptotic stability as stabil- 
ity. Let t designate  time in generations. 

Table 2 and (4)  inform us that, as t + m, p l ( t )  + 1 
along p 2  = 0 and p l ( t )  -+ 0 along p 2  = 1. Similarly, if 
a! I /?, p , ( t )  + 1  along f i l  = 0 and p , ( t )  + 0 along P I  
= 1.  If a! > 0, p2(t) converges  along P I  = 0 to  the  edge 
equilibrium (loa) and along f i l  = 1 to  (lob). We 
conclude  that  the equilibria (0,O) and  (1,  1)  are always 
unstable, whereas (1, 0) and (0, 1) are stable if a 5 0 
and unstable if a > 0. 

Our next  theorem  concerns  the stability of the  edge 
equilibria (1 0), which exist if and only if a! > 0. 

Theorem 2: Suppose a > 0. The edge equilibria (10) 
are stable ift  < p and  unstable if€ > p. In the degenerate 
case t = p, they are stable i f g  < 0 and  unstable i f g  > 0. 

The stability of the symmetry point ('h, !h), at which 
the genetic variance is maximized, is of particular 
interest. 

Theorem 3: The symmetric equilibrium (%, 'h) is  stable 
ifp > p 2  and  unstable $ p  p2.  

Thus, each of the  three conditions in Table 3 has 
an immediate  meaning. As we proved below ( 2 ) ,  the 
mean fitness is nondecreasing. Therefore, in nonde- 
generate cases, the  gene  frequencies must converge 
to some equilibrium  point  from all initial conditions, 
and this enables us to  determine  the stability of the 
unsymmetric interior equilibria (12) from  that of the 

other equilibria. In this manner, we obtain the six 
global convergence  patterns shown  in Figure 1 ,  cor- 
responding  to  the six  cases  in Table 3. 

Several features of Table 3 and Figure 1 are  inter- 
esting. If there is a stable internal  equilibrium, it is 
either Po, the symmetric one (Cases b,  c, and f) ,  or 
P+, the pair of unsymmetric ones (Case a). If P+ exists, 
its stability is opposite to that of Po. There exists at 
least one stable internal equilibrium in Cases a, b, c, 
and f, but the two-locus polymorphism is protected 
only in  Cases a and f. Thus, protection is sufficient, 
but  not necessary, for  the existence of a stable internal 
equilibrium.  Moreover, in  Cases a and f, as we noted 
below (14), d > 2c, which means that  a substantial 
disparity between the effects of the major and minor 
loci is necessary, but  not sufficient, for  protection. 
Finally, observe that stable internal equilibria are max- 
ima  of the mean fitness W, unstable internal equilibria 
are saddle points, and internal minima do not exist. 

MORAN (1  963)  proved  for two independent diallelic 
loci  with arbitrary fitnesses that,  excluding  degenerate 
cases, there exist at most five internal  equilibria, of 
which at most three  are stable, and he  offered exam- 
ples  in  which these  bounds are  attained. KARLIN and 
FELDMAN  (1  970)  demonstrated  that as many as seven 
internal equilibria can exist simultaneously in the ex- 
act symmetric viability model, and HASTINGS (1985) 
proved  that four of these can be simultaneously stable. 
Figure  1 establishes that with independent loci, at 
least under  the restriction (4),  the generic  number of 
internal equilibria in the symmetric viability model is 
either  one or  three,  and  the  number of stable internal 
equilibria is 0, 1 ,  or 2. 

We  shall see that Case a seems to occur very rarely. 
When can it be  excluded analytically? In the course 
of proving Theorem  1, we shall demonstrate  that Case 
a  cannot  occur if g > 0. If several fitness functions 
w,(z) satisfy our restrictions  (normalization,  monoton- 
icity, and  symmetry),  then so does  the fitness function 

w ( z )  = C a,wi(z),  a, = 1, (1 5) 
1 I 

where the ai represent positive constants. For each i ,  
we define our parameters by subscripting (3),  (6),  and 
(7). Then we calculate a!, 0, y, and 6 by averaging as 
in (1 5); since (6a) and  (7b)  are linear, we get 

g = 2 aigi. (1 6) 
2 

Consequently, if g, > 0 for every i ,  then g > 0. This 
result helps to exclude Case a  for some fitness  func- 
tions. 

Let us prove  next  that g > 0, and hence Case a 
cannot  occur, if w ( z )  is convex for z 2 0. For all Z I  Z 
0 and z2 z 0 we have 

w[1/2(z1 + zz)] 5 l/Z[W(.l) + w(zz)]. (17) 
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( a )  

p24 

P24 

Taking z1 = d + c and z2 = d - c in (17)  and recalling 
(3) and (6a), we find 1 I 27; in view of (6b)  and  (7b), 
this implies that g L 4P > 0. 

We summarize the conclusions of the last two par- 
agraphs in the following proposition. We shall dem- 
onstrate by example below (55)  that  the  conditions  of 
Proposition 1 are  not necessary. 

Proposition 1: (i) I f g  > 0, Case a cannot occur. (ii) I f  
w(z) is given by (15) and g, > 0 for  each i, then g > 0. (iii) 
If w(z) is convex for ,z 2 0, then g > 0. 

We devote the next two sections to  extracting  the 
implications of the above  general results. 

ASYMPTOTIC RESULTS 

For each fitness function w ( z ) ,  the line d = 2c and 
the  boundary  curves E = p and c~ = p2 divide the wedge 
d L c > 0 into  at most six regions, each of  which 
corresponds to  one of the cases  in Table 3. In the 
next  section, we shall exhibit such case maps for some 
particular fitness functions. Here, we derive  general 
features of case maps in proximate and distal regions 
of the wedge d L c > 0 by treating successively (i) 
equal effects (c = d ) ,  (ii) strong selection at  the major 
locus (d  + with c fixed), (iii) weak selection at  the 
minor locus ( c  + 0 with d fixed), (iv) weak selection 
at both loci (0 < c 5 d + 0), and (v) strong selection 
at both loci ( d  2 c + w). If we scale z so that w(z)  = 1 
for I z I  << 1 and w ( z )  << 1 for Iz I  >> 1, then we can 
approximate  the limits (ii),  (iii), (iv), and (v) by d >> 1, 
c << 1 ,  0 < c s d << 1, and d 2 c >> 1, respectively. 

Equal effects: If the two loci contribute equally to 
the  character, i . e . ,  c = d ,  then  (3) yields a = 0 and /3 
= 7 .  Hence, (6)  and (8c) give 1 = m = 6, p = 0, c~ < 0, 

FIGURE 1 .-The six possible con- 
vergence patterns for the symmetric 
viability model with independent 
loci. The coordinates are the gene 
frequencies at the two loci. 

and E < 0. We infer  from  Table 3 that Case d and 
Figure Id apply. Consequently, on account of  the 
biological ubiquity of small perturbations,  the  popu- 
lation converges to  either  (1, 0) or (0, l ) ,  i.e., ulti- 
mately the sole genotype in the population is either 
AAbb or aaBB. 

HASTINGS (1987)  proved this result in the exact 
model with linkage. 

Strong selection at  the  major  locus: We assume 
that w ( z )  + 0 as z - co and let d + with c fixed. 
From  (3),  (6), and (7b), we get a, 7, 6 + 1, 1 + 2, m 
+ 0, p + 2(1 - B), p + 4, and E + 2 .  Therefore, 
Table 3 tells us that Case f applies in this limit. Thus, 
Po is globally stable if selection at the  major locus is 
sufficiently strong. This result is intuitively reasona- 
ble: in the limit, all the fitnesses in the first and  third 
columns of Table 2 are zero, so  ($4, 1/2) is the globally 
stable  equilibrium. 

Our conclusion here seems to disagree with 
WRIGHT'S (1935)  result  that at most one locus can  be 
in stable polymorphic equilibrium  for the  quadratic 
fitness function. The apparent discrepancy is resolved 
by noting  that  for  the  quadratic fitness function (which 
we shall examine in the next section), the nonnegativ- 
ity of w ( z )  imposes an  upper  bound  on d ,  so one  cannot 
let d + W. 

Weak selection at  the  minor  locus: We let c + 0 
with d fixed. Assume that w ( z )  has at least three 
continuous derivatives for z > 0 and 

W ( Z )  = 1 - kz" + o(z") (18) 

as z + 0+, where k > 0 and K > 0 designate constants. 
By the  argument below (5) ,  fitness functions that  are 
smooth even at  the origin are especially important. 
For such w(z ) ,  K must be an even integer, so we usually 
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TABLE 4 

Classification of the  convergence  patterns for small  minor-locus 
effect 

Conditions Case 

K < 2  f 
K = 2  vck f 
K = 2  v > k  e 
K > 2  V C O  f 
K > 2  1 4 0  e 

The  parameters  are  defined in (18), (20),  and  (22). 

expect K = 2, as for  the Gaussian fitness function. 
Employing (18)  and  Taylor's  theorem in (3 ) ,  we de- 
duce 

a = - uc - 7 c 2  + 0 ( ~ 3 ) ,  (194 

6 = + uc - 7c2 + 0 ( ~ 3 )  (1 9 4  

/3 = kc" + o(cK) ,  (1 9b) 

as c + 0, in  which u and 7 represent  the  first  and 
second derivatives 

u = - w ' ( d )  > 0, 7 = Y&"(d). (20) 

Inserting  (1  9)  into  (6) leads to 

p = 2(y - kc") + o ( c K ) ,  (214 

p 2  = 4y(y - 2kc") + o ( c I ) ,  (2 lb) 

p = 4y(y - 2712) + 0 ( c S ) ,  (214 

E = 2(y - qc2) + O(c3)  + o(cK)  (21d) 

as c + 0, where 

r]  = 7 + 2y"uZ. (22) 

From (1 9a) and (19b) we see that a > /3 for suffi- 
ciently small c. Table 3 and (2  1)  inform us that as c --., 
0 with d fixed, either Case e or Case f applies, as 
shown in Table 4. According to  Table  4, if w ( z )  
decreases rapidly near  the  optimum ( K  < 2), the sym- 
metric  equilibrium (Po) is globally stable for suffi- 
ciently weak selection at  the minor locus. This has the 
important consequence that Po is globally stable with 
arbitrarily weak selection, provided d / c  is sufficiently 
large. If w ( z )  decreases more slowly near  the  optimum 
( K  L 2),  the existence of a stable internal  equilibrium 
depends  on  the major-locus effect ( d )  and details of 
the fitness function. 

We can obtain  more insight for K 2: 2 by studying 
the limits d + 0 and d -+ 00 (after  taking the limit c + 
0). From  (18),  (20),  and  (22), we find 

r](d)  - ! / & K ( ~ K  l ) d K - 2  (23) 

as d + 0. Hence, Table 4 reveals that Case e holds 
for sufficiently small d.  For most simple fitness func- 
tions, w " ( z )  > 0 for sufficiently large z, and w ' ( z ) ,  
w " ( z )  3 0 as z * 00. Under these  conditions, r](d)  4 

O+ as d + 00, whence Table 4 implies for sufficiently 
large d that Cases f and e apply for K = 2 and K > 2, 
respectively. Thus, if K 2 2, the existence of a stable 
internal  equilibrium  requires  strong selection at  the 
major locus. These observations further  support  the 
conclusion of the previous paragraph  that  rapid  de- 
crease of w ( ~ )  near  the  origin  enhances  the  opportu- 
nity for stable polymorphism. 

Weak selection at both  loci: We have already 
proved  that Case f applies as d + 03 with c fixed. By 
Table  4, if K C 2 in (IS),  then Case f also applies as 
c + 0 with d fixed. We conclude  that if K < 2,  the 
boundary curves E = p and p = p4 must emanate  from 
the  origin. Therefore, we assume that K < 2 and seek 
their slopes at  the origin. These will yield the classifi- 
cation of the convergence  patterns in the weak-selec- 
tion limit (0 C c 5 d + 0) for fitness functions  that 
decrease rapidly near  the  optimum ( K  < 2). 

We put 

[ = d / c  (24) 

and assume 6 remains  bounded as c + 0. Appealing 
to ( 3 )  and  (18), we derive 

a = kc"([ - 1)" + 0 ( c X ) ,  (2 5a) 

/3 = kc" + o(c"), (2  5b) 

y = kc"E" + o(cK) ,  (254 

6 = kc"([ + 1)" + o ( c K )  ( 2 5 4  

as c + 0 with bounded.  In  the limit c + 0, we obtain 
the slopes & and &, of E = p and p = p2, respectively, 
at  the origin. 

Consider first E = p .  Inserting  (25)  into  (6) and 
letting c "$0 lead to 

(Xo + 2)(Xg - mg) = 2([: - 1)(Xg + ma), (26a) 

where 

X0 = (& + 1)" + (& - 1)" - 2, (26b) 

mo = (& + 1)" - (& - 1)". (264 

By (8c) and (24), E C 0 C p if 4 C 2, so we investigate 
(26) only  in [2, 00); assertions of uniqueness refer only 
to this interval. If K = 1, it is easy to see that  (26) has 
the unique root & = 2 + &. We offer some numerical 
examples in Table  5;  the roots  appear  to be unique. 

Intuition and  Table 5 suggest that & + 2+ as K + 

O+. This observation enables us to  approximate [e for 
K << 1. We substitute 

tc = 2 + Oc (27) 

into  (26)  and  expand as K + O+ and O, + O+; we find 

= [%(In 2)(ln 3)] K + O(O: + KO,) 

= [Yz(ln 2)(ln 3)] K + O(K') (28) 
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TABLE 5 

The slopes of the  boundary  curves e = p and p = pp at the origin 

X €6 E, 

0.25  2.122 1.025 
0.50  2.322 1.255 
0.75  2.678 1.688 
I .oo 3.414 2.500 
1.25  5.492 4.694 
1.50 17.70 17.24 
1.75 894.5 894.5 

The parameters  are defined in (6), (18). and (24). 

as K + 0. The constant in brackets is about 0.3808. 
Equation 28 is fairly accurate  even  for K as large as 
0.25, in which case the relative error is 1.2%. 

Intuition  and  Table 5 also indicate that El  + w as 
K + 2-. Therefore, we set 

ve = l /Ef  (29) 

and  rewrite  (26) as 

(X, + 2v:)(X: - m:) = 2(1 - ut)@: + my), (30a) 

where 

X1 = ( 1  + v~)" + (1  - Y~)" - 2~: ,  (30b) 

r n l  = ( 1  + v,)" - (1  - u,)". (304  

Expanding (30) as u, + 0, we deduce 

u: = 8" + O($) = K'[l + O(Y:)], (31a) 

where 

s = 2 - K ,  e = 1/2K(3K + 1).  (31b) 

From (3 1 a) we get 

E. = P [ i  + 0(~-~,57] 

= P [ i  + ~ ( ~ - ~ e - ~ / ~ ) ]  (32) 

as s + O+. This  approximation has an error of 3.9% 
for K = 1.50, but only about 0.01% for K = 1.75. The 
expansion 

e l / 5  = e-13/1471/s 11 + %)I (33) 
exhibits the extremely  rapid  divergence of & as s -+ 
0. 

We turn now to c~ = p2. Substituting  (6a) into (6c), 
we have 

p = (36 - a)(3a - 6). (34) 

Consequently, in the limit c + 0, (6b), (25), and (34) 
yield 

[3(& + 1)" - e, - 1 ~ 1 [ 3 ( ~ ,  - 1)" - (E ,  + V I  
(35) 

= 4(& - 1)2. 

Since d 2 c, we examine (35) only in [ 1, 00); all 

TABLE 6 

Classification of the convergence patterns for weak selection 
with 0 < K < 2 

Condition Case 

1 I < rnin(2,t,,) d 
rnin(2,(,) < 5 max(2.6) b or e 

rnax(2.W < I -= C 

I > '5 f 

The parameters  are defined in (18). (24), and Table 5. In the 
second line, Case b applies if I, < 2 and  Case e does if [, > 2.  The 
inequality I, < 2 holds if  and only  if K 5 0.8690. 

assertions of uniqueness are confined to this interval. 
If K = 1 ,  we can see easily that (35) has the unique 
solution E ,  = 5/2. The roots in Table 5 appear  to  be 
unique.  Observe  that, as the case maps in the next 
section suggest, 4. > 4, in Table 5. 

Evidently, &, + 1+  as K + O+. We insert 

4, = 1 + w, (36) 

into (35) and  rearrange it in the  form 

3w; - (2 + w,)" = 
4[(1 + w,)" - 11' 
3(2 + w,)" - w; * (37) 

Since the  denominator  on  the  right side of (37) ex- 
ceeds 2 for 0 < w, < 1 ,  therefore, as K + O+ and 
w, + 0+, (37) becomes 

3Wi - (2 + Up)" = o(K20:). (38) 

Hence, 

31/"w, = (2 + w,>[ 1 O(KW;)], (39) 

which has the solution 
0 

as K + 0. Equation 40 is accurate even if K is as  large 
as 0.25: then  the error is 0.44%. According to (40), 
w, + 0 extremely rapidly as K + 0; e.g., w, = 3.387 X 

Manifestly, E ,  + 00 as K + 2-. Setting u, = 1/[, as 
in (29) and expanding (35) as V ,  + 0, we find  that up 
satisfies (3 1). We conclude  that 6, is also given by (32). 
Thus, &/&, + 1 as K + 2. Equation 32 is fairly accurate 
even for K as small as 1.50: then  the  error is 1.3%; if 
K = 1.75, the  error is only about 0.01%. 

Invoking Table 3, we obtain  the classification  of the 
convergence  patterns in Table  6.  In  the second line, 
Case b applies if 5, < 2 and Case e  does if E,, > 2. By 
setting 6, = 2 and solving for K in (35), we deduce  that 
E ,  < 2 if and only if K 5 0.8690. Tables 5 and 6 
demonstrate  that, in the weak-selection limit, the 
more rapidly the fitness function decreases near  the 

if K = 0.10. 
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optimum,  the less stringent  are  the conditions  for 
locally ( E  > E , )  and globally ( E  > &) stable two-locus 
polymorphism. If the  decrease is fairly rapid ( K  5 
0.25), only a very slight disparity between the effects 
of the  major and minor loci  is required  for local 
stability. 'This disparity must be substantial, however, 
for K 2 1,  and it increases extremely fast as K 4 2. 
The condition  for global stability is more restrictive: 
4 > 2 is necessary but not sufficient. 

Strong  selection  at  both  loci: In this subsection, 
we assume that w ( z )  4 0 as z 4 CQ and investigate 
the  boundary curves E = p and p = p2 in the limit d 2 

As c + w, (3) yields P, y, 6 + 1, whence (6b) gives 
p + 0. Therefore, E 4 0 along E = p and p + 0 along 
p = p2.  Since d = 2c and E = 0 are equivalent by (8c), 
we expect E = p to be asymptotic to d = 2c. 

On account of (34), p = 0 is equivalent to 6 = 3a. 
Thus, we expect p = p2 to be asymptotic to 

c + w. 

1 - w(d + C) = 3[1 - w(d - c)]. (41) 

As c + w, the left side of (41) converges to  one, so 

w(d - C) + *A. (42) 

Consequently, we expect p = p2 to be asymptotic to 
the line 

d = c + r ,  w(r)  = %. (43) 

Since w ( z )  decreases monotonically from  1  to 0 as z 
increases from 0 to w, there exists a  unique  constant 
r in (0, 00). 

EXAMPLES 

Here we illustrate the results of the last two sections 
by classifying the  convergence  patterns  for some spe- 
cific fitness functions. 

The quadratic fitness function: Scaling c and d in 
terms of the selection intensity allows us to take 

w ( z )  = 1 - 2 ,  0 I z 5 1, (44) 

without loss of generality. From (3), (6), and  (44), we 
find 

p = 2(d2 - c'), (454 

p = 4(d4 - 14c2d' + c4), (45W 

6 = 2(d2 + c') d2  - 4c2 
d2 + 4c2'  

Trivial manipulation of (45) yields E < p and p < p2, 
so Table 3 gives  Case d  for  d 5 2c and Case e  for  d > 
2c. Thus, in agreement with WRIGHT  (1935),  at most 
one locus can segregate stably. This was discussed 
further in the last section. 

The  triangular  fitness  function: On  the  appropri- 

TABLE 7 

Classification of the  convergence  patterns  for  the  triangular 
fitness function 

Condition Case 

1 5 [ 5 2  d 
2 e f 5 5/2 e 

5 1 ~ < [ < 2 + f i  C 

[ r 2 + &  f 

[ = d/c .  

ate scale, we have 

w ( z )  = 1 - z, 0 I z I 1. (46) 

Employing (3),  (6),  (24),  and  (46) leads to 

2cE2(E - 2) 
E' - 2E + 2' 

E =  

whence we see easily that E > p and p > p2 are 
equivalent to E > 2 + & and > 5/2, in agreement 
with (26)  and  (35), respectively. Table 3  then yields 
Table 7, excluding [ = 5/2 and 4 = 2 + &. T o  classify 
these two values, note first that g = 4 c  > 0, so the line 
of equilibria (13)  does  not exist. If E = 5 / ~ ,  then E < p ,  
so the  edge equilibria P, are stable by Theorem  2,  and 
hence PO is unstable. Therefore, Figure l e  applies. If 
E = 2 + &, then p > p2, so Po is stable by Theorem 
3,  and hence  the  pair P, is unstable. Therefore, Figure 
1 f applies. 

The fitness function  (46) generalizes that of GALE 
and KEARSEY (1968)  to  arbitrary selection intensity 
(their  1 + k is our E ) .  We have found  that  there exists 
a stable internal  equilibrium if and only if the  ratio of 
the effects of the major and minor loci, E ,  exceeds 5/2; 

the stability is global if and only if E 2 2 + a. GALE 
and KEARSEY (1968)  incorporate linkage and find 
numerically that,  for a  fixed,  large selection coeffi- 
cient,  the critical value  of increases from  about 1.2 
to  about 2.0 as the recombination  frequency increases 
from  0.05  to  0.50. Since all their examples exhibit 
considerable linkage disequilibrium, it is not  surpris- 
ing that  their critical values do not  approach 5/2, as 
they would for weak selection. By neglecting linkage 
disequilibrium, we have obtained critical values that 
are  independent of the selection intensity and higher 
than  the  exact ones. 

The Gaussian fitness function: Our most impor- 
tant  example is 

w ( z )  = e-". (48) 

Let us prove first that g > 0; by Proposition 1, this 
implies that Case a  does  not  occur. Appealing to  (3), 
(6a),  (6b),  (7b),  and  (48), we obtain 

g = 2[2(1 - e-'' - e?) + u] ,  (494 
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3 

2 

d 
1.30 

1 

0 1 2 3 
c 

FIGURE 2.-The case map  for  the Gaussian  fitness function (31). 
T h e  boldface letters  refer  to  the cases in Table 3 and  Figure 1 .  
The  coordinate c designates the effect  of the  minor locus; d is that 
of the  major  one. The  other parameters  are  defined in Equations 
3 and 6. 

where 
= e-(d+cji + e-(d-C)2 

= 2e-C2-d2 cosh(2cd) > 2e-"2_d2. (50) 
Substituting  (50)  into  (49a)  produces 

g > 4(1 - e-")(l - e-d2) > 0.  (51) 

Second,  from  (1 8), (20),  (22), and  (48), we find  that 
7 < k if and only if 

- 2veu - 6v - 1 > 0, (52) 

where v = d2.  It is easy to see that  the  equation 
associated with the inequality (52) has a  unique posi- 
tive root. Evaluating it numerically, we infer  from 
Table 4 (since K = 2 here)  that, as c + 0,  Case e applies 
for d < do = 1.30 1, whereas Case f applies for d > do. 

Third,  the asymptotic parameter in (43) is r = 
(In 3/2)1/2 = 0.6368. 

The case map  exhibited in Figure 2 agrees with the 
above analytic results. As expected, it shows that  for 
weak selection one may  use the  quadratic fitness func- 
tion  (44). The symmetric equilibrium (PO) is stable 
above  the  curve = p2; the unsymmetric equilibria 
(P,)  are unstable when they exist (Cases b and c), and 
then  the stability of PO is not global. The most impor- 
tant conclusion from  Figure  2 is that, even for  arbi- 
trarily weak selection at  the minor locus, strong selec- 
tion at  the major locus (d > do)  is necessary for  the 
maintenance of genetic variability at  both loci. 

The case map  for 

w ( z )  = 1/(1 + z') (53) 

3 

2 

d 

1 

0 1 2 3 
c 

FIGURE 3.-The case map  for  the  double-exponential fitness 
function (37). 

0.3 
d 

0.2 

0.1 

V I I I I I 
0.0 0.1 0.2 0.3 0.4 0.5 

C 
FIGURE 4.-The case map for the  double-exponential fitness 

function (37) near  the  origin. 

is qualitatively identical to Figure 2. Direct algebra 
establishes that g > 0. Now do = 1.094  and r = l /& 
= 0.707 1. 

The  doubleexponential  fitness  function: For 

w ( z )  = e-*, z 2 0,  (54) 

by Proposition 1, convexity implies that g > 0 and 
thus excludes Case a. Since K = 1 < 2, Table 4 tells us 
that Case f applies if c is sufficiently small. In (43), we 
have r = In V 2  0.4055. The case map in Figure  3 
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displays these  features.  Near the  optimum ( Iz I  << l), 
(46)  approximates  (54). Therefore, as expected and 
shown in Figure  4,  for weak selection (d  << 1) the case 
map  for  (54)  agrees with Table 7. Thus,  the discussion 
below (47) is pertinent  here. 

Slow  decrease  near the optimum: In Figure 5, we 
exhibit the case map  for 

w ( z )  = e -L4 .  (55) 

Here, K = 4 > 2. Although  Figure  5 shows that Case 
a does not  occur,  a  Taylor series establishes that g < 
0 if d is sufficiently small. Thus,  the conditions in 
Proposition 1 are not necessary. It is not difficult to 
prove, however, that 9 > 0. Hence, in agreement with 
Figure 5, in  which the  boundary  curves  are asymptotic 
to,  but do not  reach,  the  ordinate,  Table  4  demon- 
strates  that Case e applies as c + 0. Figure  5 exempli- 
fies the fact that if w ( z )  decreases slowly near  the 
optimum,  then  strong selection (here, d 5 1.7  19;  the 
minimum occurs at c = 0.4287) is required  for stable 
polymorphism at both loci. Furthermore, if selection 
is very  weak at  the minor locus (c << l), then it must 
be very strong  at  the  major locus (d >> 1). 

The case map is similar for 

w ( z )  = 1/(1 + z4), (56)  

except  that  the rate of convergence of the  boundary 
curves to  their asymptotes is much slower. Again, one 
can prove  that 9 > 0, thereby  confirming analytically 
the most interesting  feature of the case map. 
An example with  Case a: The attentive  reader may 

have noticed that Case a  (the only one with stable 
unsymmetric equilibria) occurs  neither in any of the 

3 

2 

d 

1 

0 1 2 3 
C 

FIGURE 5.-The case map  for w ( z )  = C 4 .  The boundary curves 
are asymptotic to,  but  do  not  reach,  the  ordinate. 

limits in the previous section nor in any of the above 
examples. In  fact,  despite  an extensive numerical 
search, no smooth fitness function for which  Case a 
occurs has been  found. The fitness function 

0 5 z 5  1, 
w ( z )  = (bsz")" (574 

?%=O = T i -  , z > l ,  

b 3 = 6 2 - b l ,  z * = z -  1 (57W 

d 

0 1 2 3 4 
C 

FIGURE  6.-The case map for the fitness function  (57). The  
boundary curves approach  the  ordinate very closely, but do not 
touch it. 

d 

0 1 2 
C 

FIGURE 7.-The case map  for  the fitness function (57) near  the 
origin. 
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has exactly three  continuous derivatives if bl # b2. 

Choosing bl = 0.1  and b2 = 6.0, we obtain the case 
map in Figures 6 and 7, of which Case a occupies a 
small region.  Note  that  the  relative  rate of decrease 
of w(z)  is much greater  for z > 1 than  for 0 < z 5 1. 
Although the  boundary  curves  approach  the  ordinate 
very closely, by Table 4 (since K = 1 here) they cannot 
touch it for d > 0. 

DISCUSSION 

Here we recapitulate our main results and discuss 
extensions and  further applications. Our sole approx- 
imation was to neglect linkage disequilibrium. There- 
fore,  our results are most accurate for weak selection. 
As explained below (2), we expect the inclusion of 
linkage disequilibrium to relax the conditions  for the 
existence of stable two-locus polymorphism without 
changing  them qualitatively. 

Our two-locus model of stabilizing selection is iden- 
tical to  the symmetric viability model in Table 2, with 
the restriction (4) on the selection coefficients. In 
addition to  the  four vertex equilibria PI and Pp, given 
by (9), the two edge equilibria P,, given by (lo), and 
the symmetric  equilibrium Po: ( V 2 ,  %), there may be 
(generically) two unsymmetric  equilibria P*, as speci- 
fied in Theorem 1. Theorems 2 and 3 give conditions 
for  the stability of P, and Po. A complete classification 
of the six  possible global convergence  patterns is pre- 
sented in Table 3 and Figure 1. The unsymmetric 
equilibria are stable only in Case a,  and, as discussed 
at  the  end of the last section, this does  not seem to 
occur  for most simple, smooth fitness functions w(z ) .  

If selection at  the major locus is sufficiently strong, 
Case f applies, i e . ,  the symmetric polymorphism Po 
(where the genetic variance is maximal) is globally 
stable. As shown in Table 4, if w ( z )  decreases rapidly 
near  the  optimum [ K  < 2 in (1 S)], Po is globally stable 
for sufficiently weak selection at  the minor locus. 
Tables 4, 5 ,  and 6 and Equations 26,  28, 32, 35,  and 
40 reveal that,  at least for weak selection at  the minor 
locus, the  more rapid the decrease of w(z)  near  the 
optimum,  the  greater is the  opportunity  for  stable 
polymorphism. For weak selection at both loci, if this 
decrease is fairly rapid ( K  5 0.25), even  a very slight 
disparity between the effects of the major and  minor 
loci produces local stability of Po. This disparity must 
be  substantial, however, for K k 1, and it increases 
extremely fast as K -+ 2. The condition  for global 
stability of Po is more  stringent: it is necessary, but 
not sufficient, that  the disparity d / c  > 2. 

Figure 2 demonstrates that  for  the Gaussian fitness 
function (which has K = 2), strong selection at  the 
major locus ( d  k 1.30 1) is necessary for  the mainte- 
nance of genetic variability at  both loci. This conclu- 
sion holds for all fitness functions that  are smooth at 

TABLE 8 

Classification of the  convergence  patterns for GIMELFARB’S 
(1986) pleiotropic model 

Case Condition 

A Sz 5  SI/(^ + S I )  

B $,/(?I + SI) < S2 < %SI 
C %SI 5 S p  5 SI 

The parameters are defined in (58); 0 < SP 5 sI  5 %. Figure 8 
shows the global convergence patterns in the three cases. 

p24 

FIGURE 8.-The three possible convergence patterns  for GIMEL- 
FARB’S (1986) pleiotropic model. The coordinates are the  gene 
frequencies at the two  loci. 

the optimum. As Figure 5 exemplifies, if w ( z )  de- 
creases slowly near  the  optimum ( K  > 2) and selection 
is  weak at  the minor locus, then selection must be very 
strong  at  the  major locus. 

Despite the biological  simplicity  of the model 
treated  here, its analysis requires  considerable alge- 
bra.  Therefore,  the study of the model’s natural  ex- 
tensions is likely to be more numerical  than analytic 
and much less complete  than our investigation. The 
incorporation of linkage disequilibrium would deter- 
mine the accuracy of our approximation for various 
parameter combinations. Would moving the  optimum 
to  an  arbitrary  point affect our results qualitatively? 
The importance of generalizing to multiple loci is 
obvious. Yet settling even the simplest question ap- 
pears to be nontrivial: If we neglect linkage disequi- 
librium and posit equal effects, we expect instability of 
the symmetric polymorphism (with gene  frequency 
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1/2 at each locus) for any symmetric, monotone  de- 
creasing fitness function. Instability for two loci sug- 
gests, but  does  not  prove, multilocus instability. 

Our results and approach have other, closely related 
applications. GIMELFARB (1986)  noted  that his  two- 
locus model of pleiotropy for two quantitative  char- 
acters is a special  case  of the symmetric viability model: 

(Y = 4 S p ,  6 = 4 S 1 ,  (584 

p = y = s1 + sp - SIS2, (58W 

where SI and sp, 0 < sp 5 SI 5 %, denote  the intensities 
of quadratic stabilizing selection on the two charac- 
ters. Since p = y here, this model is much easier to 
analyze than  the  general  one in Table 2, Nevertheless, 
slight modifications of our results are  required be- 
cause y < a is possible, so that (4) may not hold. The 
four  edge equilibria 

x = TV2, y = +(SI - sp)/(sl + sp + sIsp), (59a) 

X = +(SI - s~)/(sI + s:, + sIs~), J = T1/2 (59b) 

exist if and only if Sl / (3  + SI) < sp 5 SI. The pair of 
unsymmetric internal equilibria 

X = +[(SI - 3 ~ p ) / ( 4 ~ 1 ~ p ) ] ” ’ ,  J = --X (60) 

exists if and only if s1/(3 + SI) < sp < %SI. 
In Table 8, we classify the  three possible conver- 

gence patterns  exhibited in Figure 8. If selection on 
one  character is considerably stronger  than  on  the 
other, Case A applies and both loci are ultimately 
fixed. In a  narrow  range of appreciable disparity 
between the two selection intensities, Case B applies 
and  the gene  frequencies  converge to  one of the two 
unsymmetric polymorphisms. If the disparity is at 
most a  factor of three,  there is global convergence to 
the symmetric polymorphism (Case C). 

These approximate analytic results agree com- 
pletely with GIMELFARB’S (1 986)  numerical examples. 
For various combinations of sl and sp, he  computed 
for  the exact model the maximum value of the recom- 
bination frequency, T * ,  for which a stable symmetric 
polymorphism exists. He  found  that r* < ?h for SI/S~ 
2 4 and r* = Y2 for sI/sp 5 3; he did  not study the 
unsymmetric equilibria. 

A. GIMELFARB’S (unpublished  manuscript) two-locus 
epistatic model is invariant under  the  interchange of 
the  gene  frequencies at  the two loci ($11 t.) f ~ ) ,  unlike 
the symmetric viability model, which is invariant un- 
der  the simultaneous interchange of each gene  fre- 
quency and its complement ( P I  t, q l  and $I2 t.) q 2 ) .  

Therefore, this model requires  a new  analysis. 

1 an1 grateful  to R. BAHADUR, A. GIMELFARB,  R. LANDE,  and B. 
MERRIMAN for helpful discussions, G. WAGNER  for perceptive  com- 
ments on the  manuscript,  and B. MERRIMAN for highly professional 
numerical  calculations. This work was supported by National Sci- 
ence Foundation  grant BSR-8512844. 
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Proof of Theorem 1: To locate the  unsymmetric  internal 
equilibria, we assume  that x # 0 or y # 0, and set (A5) equal  to 
zero. By (A5), x = 0 if and only if y = 0 ,  so we assume xy # 0, 
which implies 

(f - gy2)(h - gx') # 0 .  ('49) 

Therefore, (A5) gives 

x = -- mY mx 
f - gy2' Y = --. (A 10) 

Multiplying  these equations,  dividing by xy # 0, and  eliminating 
y lead to 

m 2 h   = f ( h  - gx')'. ('41 1) 
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APPENDIX 
Here we prove  Theorems  1,  2,  and 3. Let ~ 1 . 1 1 ,  ~ 1 . 1 2 ,  ~ 1 . 2 2 ,  

w 2 . 1 1 ,  w2.12, and w2,22 represent  the  marginal fitnesses of AA,  Aa,  
a a ,  BB, Bb, and bb individuals,  respectively. Then we can  express 
the  mean fitness  in the  two  convenient  forms ( i  = 1, 2) 

W = ~ 8 . 1  Ip:2 + 2wt.12piqi + wz,22q?, (AI) 

w1.11 = 1 - spH - 2pp292 - cuqpf, ('424 

W l . 1 2  = 1 - 7 ( p ;  + 4 3 ,  (A2b) 

w1.22 = 1 - appf - 2 P P 2 q 2  - 69;; (A2c) 

w2.11 = 1 - sp: - 27p,q1 - cuq:, ( A 3 4  

w2.12 = 1 - P ( p :  + q?), (A3b) 

w2.22 = 1 - cup: - 2-fp1q1 - sq:. (A34 

and  Table 2 yields 

We  need  the first two  partial  derivatives  of G; when  calculat- 
ing  these [in contradistinction  to  the  definition in (2)], we always 
set q, = 1 - pi (i = 1, 2). From  (Al), (A2), (A3), (6), (7) ,  and 
(1 1). we obtain 

"= 1 a$ 
2 ap, 

~ 1 . 1 2  - ~ 8 . 2 2  + ( W L I I  - 2wz.12 + Wi,22)p t ;  (A4) 

-- - = 1 aw 
2 ap, my + (f - gy%, (A54 

-- - = 1 aw 
2 ap, mx + ( h  - gx2)y; (A5b) 

1 a% "= 2 ap: p - X - gP292 (A64 

= % ( p  - X )  - p + g y 2 ,  ( A W  

"=- 1 a% 
2 appf X - gPlql ('474 

= -%(p + X )  - p + gx2, (A7b) 

"= 1 a% 
2 aplap2 -m + Y z g W  - qd(P2 - 92) (A84 

= -m + 2gxy. ( A W  

P < 1, (A 12) 

and  then (A1 1) gives 

gx2 = h T m m j  ('413) 

Substituting (A13) into  (AlO), we get 

y = T J j p x .  (A 14) 

In view of (1 I),  roots  are  acceptable if and only if 0 < x2, y 2  
< $4. But (7a) informs us t h a t f s  h,  whence  (A14) implies that 
y2 s x2. We  conclude  that 0 < x2 < % is necessary and sufficient 
for acceptability  of unsymmetric  internal  equilibria. 

Let us prove first that  the plus sign in  (A13) yields no 
acceptable equilibria.  Since m > 0 and h > 0 by (6a) and (7a), 
we infer  from (A13) that x' > 0 if and only if g > 0 (i.e.,  X < 
2 7 ) .  Straightforward  manipulation  of  (A13)  then reveals that 
x *  < $4 if and only if both left-hand  inequalities  in  (A15) hold; 
we can easily demonstrate  their  equivalence  to  the inequalities 
on  the  right by employing (6) and (7): 

% g - h > O @ h < O ,  (A 15a) 

m2h < f ( $ 4 g  - h ) ' w  6 > p. (A15b) 

By (8c), the  right-hand inequalitics in (A15) are inconsistent, 
which establishes our assertion. 

Hereafter we confine our analysis to  the minus s i g n  in (A 13). 
There are three cases: (i) g = 0 ,  (ii) g < 0, and (iii) g > 0. In  the 
last two, (A 13) and (A 14)  give (1 2) .  

(i) g = 0: T h e  homogeneous  linear system (A5)  has  a non- 
trivial solution if and only if m 2  =p; by (6c) and (7a),  this is 
equivalent  to p = p2. Since h > 0, (13) follows from (A5b). 
Invoking (6), we can  demonstrate  that X = 27 ( i e . ,  g = 0) and 
p = p2 both  hold if and  only if (14)  does. Observe  that  the 
condition m 2   = f h  follows directly from (All)  and  therefore 
implies (A 12). 

(ii) g < 0: Here we have 

X > 27, (A 16) 

which implies (A12). From (A1 3) we see that x* > 0 if and only 
if the first  inequality below holds; by (6b) and (7a),  it is equiva- 
lent  to  the  second inequality: 

h < m  q f * p < p 2 .  (A 17) 

Rearranging  (A13)  and recalling (Al5b), we can  show that x2 
< % if and only if t > p. 

To prove  that this is Case a  in Table  3, we must demonstrate 
that c > p and p < p2 jointly imply (A16). Observe  first  that, by 
(Sc), c > p implies X > 0, so (8d)  holds.  Since p < p2 < e', (8d) 



248 T. Nagylaki 

yields (A 16):  stable if 

x > 2 p + e > 2 p + p = 2 y .  

(iii) g > 0: Here we have 

X c 2y. (A 18) 

From  (A13) we now infer  that x 2  > 0 if and only if the 
inequalities in (A17)  are  reversed.  Invoking (6c), we see imme- 
diately that p > p2 implies (A1 2). Employing (A 13) and (A 15), 
we deduce  that x 2  < % if and only if either X 5 0, or X > 0 and 
t < p .  Since, by (8c), X 5 0 implies that t C 0 5 p,  we can 
simplify our  conditions  to t < p and p > p 2 ,  in addition  to  (A18). 

To prove  that we have Cases b and c here, we must demon- 
strate  that t < p and p > p2 jointly imply (A18).  If X 5 m, we 
note first that p > p2  implies that 1 > 2m, whence 

m 2 X > 2m - 2p, 

which gives 

X 5 m < 2p 5 2y. 

This is Case b. If X > m, then t > 0 by (8c), and consequently 
p > p 2  > e', so (8d) yields 

X - 2 p c c c p ,  

which is precisely (A1 8). This is Case c. 
Proof of Theorem 2: We posit that a > p, which is necessary 

and sufficient for  the existence  of the equilibria (10). By sym- 
metry, it suffices to test the stability of (loa). Since (loa) is an 
overdominant  equilibrium, rir must be maximized along PI = 0, 
so 

a% "<o ap :: (A 1 Sa) 

at ( 1  Oa). A Taylor expansion then shows at  once  that  (1 Oa) is 

a6 - c o  
ap 1 

(A19b) 

at  (loa)  and unstable if the inequality (AI 9b) is reversed. 
Appealing to (A5a), (loa), (1 l), (6), and (7), by direct calculation 
we find 

at  (1 Oa), which proves  the first part of Theorem 2. 
If t = p, the  above analysis is inconclusive, but we may test 

stability as if (loa)  were  an  internal  equilibrium:  (loa) is stable 
if  (APOSTOL 1974, p. 379) 

(A21a) 

and 

(A2  1 b) 

at  (loa); it is unstable if either of the inequalities (A21) is 
reversed.  From  (A6b),  (A7a), (A8b), (loa),  (1  l), (6), (7), t = p, 
and (Sc), we derive 

D, = -2m2/X C 0, (A22a) 

D2 = -4m2gh/h2, (A22b) 

which proves the  second  part of Theorem 2. 
Proof of Theorem 3: At  the symmetric equilibrium (Po), x = 

y = 0. Appealing to (A6b),  (A7b),  (A8b), (6b),  and (6c), we 
deduce  at  once 

D I  = p - I ,  0 2  = p - p2. (A231 

If p > p2, then D2 > 0 and (6c) gives 1 > p ,  so Dl < 0, and 
therefore Po is stable.  If p < p 2 ,  then D2 C 0, so Po is unstable. 


