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ABSTRACT 
We demonstrate that, in  a model incorporating weak  Gaussian stabilizing selection on n additively 

determined characters, at most n loci are polymorphic at a stable equilibrium. The number of 
characters is defined  to  be the number of independent  components in the Gaussian selection scheme. 
We also assume linkage equilibrium, and that either the number of loci is large enough that the 
phenotypic distribution in the population can be approximated as multivariate Gaussian or that 
selection is weak enough that the mean fitness of the population can be approximated using only the 
mean and  the variance of the characters in the population. Our results appear to rule out antagonistic 
pleiotropy without epistasis as a  major force in maintaining additive genetic variation in  a uniform 
environment.  However, they are consistent with the maintenance of variability by genotype-environ- 
ment interaction if a  trait  in different environments corresponds to different characters and the 
number of different environments exceeds  the number of polymorphic loci that affect the trait. 

D ETERMINATION of the forces responsible for 
the maintenance of additive  genetic variability 

in natural  populations has been  a subject of great 
interest in recent years. One approach has used the- 
oretical  techniques to investigate the plausibility of 
potential mechanisms that  include  drift  (LYNCH and 
HILL  1986),  environmental variability (e .g . ,  GILLESPIE 
and TURELLI 1989), heterosis (GILLESPIE 1984)  and 
mutation-selection balance (e .g . ,  BULMER 1972,  1980; 
LANDE  1976; TURELLI 1984; BARTON 1986; BARTON 
and TURELLI 1987). 

Many authors, beginning with SEWALL WRIGHT 
(summarized in WRIGHT 1977), have  noted  that pleio- 
tropy is another  factor  that may contribute  to  the 
maintenance of additive  genetic variability. The inter- 
action between pleiotropy and mutation-selection bal- 
ance was examined by TURELLI (1985).  Rather than 
focusing on pleiotropy,  however, this work empha- 
sized the robustness of predictions of mutation-selec- 
tion balance for  genetic systems in which there is 
hidden selection on characters  connected by pleio- 
tropy. ROSE (1 985)  studied the effects of pleiotropy 
on polymorphism in  life history characters. He as- 
sumed  that  mortality and fecundity are controlled by 
a single diploid locus, with reversal of dominance at a 
fixed  age. Under these  conditions, he  demonstrated 
that recessive deleterious alleles may be maintained in 
the population.  More  recently,  GIMELFARB  (1986) in- 
vestigated the  role of antagonistic pleiotropy alone in 
maintaining  additive  genetic variability. In a diploid 
model with two characters  and stabilizing selection, 
he showed that two loci, which contributed additively 
to the two characters,  could be polymorphic at a stable 
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equilibrium.  Consequently, substantial amounts of ad- 
ditive genetic variability could be  maintained in this 
two locus model. 

We sought to characterize the  amount of additive 
genetic variability that  could  be  maintained at loci 
that  contribute additively to n characters all undergo- 
ing weak Gaussian stabilizing selection. We used a 
definition of character based on a  change of coordi- 
nates  determined by the  form of selection: the  number 
of characters is the  number of independent compo- 
nents in the Gaussian selection scheme. We also as- 
sumed that we could approximate  the mean fitness of 
the population using only the  mean,  variance,  and 
covariances of the characters  undergoing selection. 
As noted by BARTON and TURELLI (1987), this will 
hold under  either of the following two conditions: (1 )  
the  number of loci  is large  enough so that  the distri- 
bution of phenotypes in the population  could  be  ap- 
proximated as a  multivariate Gaussian, or (2) weak 
stabilizing selection. As is common in studies of quan- 
titative genetics (BULMER  1980), we assumed that we 
could  ignore  the effects of linkage disequilibrium. 
Under these assumptions, we obtained  the result that 
at most n loci could be maintained at a stable poly- 
morphism if selection were weak enough  that  the 
effects of disequilibrium could be  ignored. Obviously, 
there  are trivial cases where selection on n characters 
in fact maintains n loci polymorphic, e.g., if each 
character  were  determined by a single locus, with the 
heterozygote  corresponding to  the  optimum.  There 
may also be  stable equilibria with fewer segregating 
loci than  the  number of characters. 

When assessing the  importance of pleiotropy in 
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maintaining variability, it must be noted  that pleio- 
tropy may affect allele frequencies  not only through 
correlated responses to selection, but also via differ- 
ential  expression  of  a single trait in different  environ- 
ments. That is,  in some cases, pleiotropy may provide 
the genetic mechanism underlying the  phenomenon 
interpreted as interaction  between  genotype  and  en- 
vironment.  This relationship can be  described explic- 
itly in our formulation. We regard a single trait with 
multiple  states, each of which corresponds  to a  differ- 
ent environment, as separate  characters. Thus,  our 
results can be used to gain insight into  the  role of 
genotype-environment  interaction in the  maintenance 
of genetic variability (VIA and  LANDE  1987; GILLESPIE 
and TURELLI 1989). 

MODEL 

We will describe  a  model with an  arbitrary  number 
of  characters  determined additively by n biallelic loci 
and multivariate Gaussian stabilizing selection. In this 
model, we assume that selection is weak, which allows 
a simple calculation of mean fitness. In accordance 
with our assumption of weak selection, we assume that 
we can ignore  the  role of linkage disequilibrium (BUL- 
MER 1980; TURELLI 1984). We also assume that mu- 
tation  does  not  occur,  and, because gene effects are 
additive, that epistasis and  dominance  do  not affect 
the system. 

The dynamics of the evolutionary system in our 
formulation can be  understood in terms  of  the  mean 
fitness because mean fitness always increases and is 
maximized at stable  equilibria in a system where link- 
age  equilibrium is assumed (FISHER 1930; AKIN  1979). 
By making an assumption that  the population  pheno- 
typic distribution is approximately  multivariate Gaus- 
sian and,  once  again, using the assumption of weak 
selection, we can determine  an  approximation  for  the 
mean fitness of the population. This assumption has 
been widely used in the analysis of quantitative  genetic 
models (e.g., BARTON  1986) and does  not  correspond 
to  an  assumption  of Gaussian effects at a single locus 
(BARTON and TURELLI 1987). We use this expression 
for mean fitness to  examine  the existence and stability 
of  polymorphic  equilibria. 

Our model is couched in terms  of allele frequencies 
at  the various loci. Let  there be two alleles at each 
locus i, with frequencies pi and q i  = 1 -pi, respectively. 
Assume that  the two alleles at locus i have effects a ( i , k )  
and P ( i , k )  on .character k, and  that  contributions  are 
additive within and between loci. Thus, in any indi- 
vidual, the genetic  contribution  to  character k is given 
by: 

n 

;; = c [ x ( i , h )  + y(i,k)], (1) 
i=l 

where the variables x ( i , k )  and y ( i , k ) ,  representing  the 

contributions  from  the two alleles at locus i to  char- 
acter k, take  on the values a(i,k) or P ( i , k ) ,  depending 
on the identity of the alleles at locus i. Thus,  the mean 
phenotype  for  a  particular  character is 

n 

i k  = [a(ih)fi: + P(i ,k)q i ] ,  
i= 1 

with variance 

n 

v(&) = c [a ( i , k )  - P(i,k)12p,q:. (3) 
i= 1 

The covariance  between  any two characters i', and .G 
is 

COV(i j ,G)  

(4) 
n 

= C [a( i j )  - P( i j ) ] [ a ( i , k )  - P(i,k)]piq:. 
i= 1 

Suppose that weak Gaussian stabilizing selection 
occurs around  the  optimum  for each  character.  With- 
out loss of generality,  we_assume that  the  optimum 
value for all characters is i = 0, with a corresp_onding 
symmetric, positive definite selection matrix, C. Note 
that in this formulation, unlike earlier  studies (e.g., 
GIMELFARB  1986), the  optimum  for  a  character  need 
not  equal its mean value. Consequently, in our model, 
the  contribution  to  the fitness of an individual due to 
selection on the  character  states is given by 

w(2) = exp[-('/2)1~&1 (5) 

Now consider the matrix of selection coefficients. 
We have made no assumptions about  the selection 
matrix, e, and  character  set, k. However, it will be 
useful to  transform this matrix and  the set of charac- 
ters  to  forms  that are equivalent but analytically more 
tractable. Since the matrix of selection coefficients is 
symmetric and positive definite, it can be  diagonalized 
by a  linear  change of variables. This is done using a 
unitary  matrix, B, i.e.,  a  matrix whose transpose 
equals its inverse (see, for example, HORN  and JOHN- 
SON 1985): 

BT = B-'. 

Thus, (5) is equivalent to: 

w(2)  = e~p[-('/2)2~B~B~:B-'Bii]. 

Now define  the  diagonal  matrix C as 

c = B ~ B - ' ,  

and a new set of characters % k ,  which are linear com- 
binations of the original  characters, as 

z = BZ. 
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In terms of z and  C, we can rewrite  Equation 6 
describing selection as 

n 

w ( z )  = exp[-(l/,)z‘~z] = exp[-(%) zi2s,], (7) 

where si represents  the selection coefficient corre- 
sponding to  the new character zi, and C is diagonal. 

In  other words, without loss of generality, we change 
coordinate systems rather  than analyzing the model 
in terms of the original  coordinates. In  the new co- 
ordinates,  the  matrix of selection coefficients is diag- 
onal and  the axes composing the  coordinate system 
are mutually perpendicular. Each axis corresponds to 
a new character, which is formed  from  linear combi- 
nations of the original  characters. Further, because 
each new character is independent of the  others,  the 
number of characters is the  number of independent 
components in the Gaussian selection regime. Because 
the new characters are linear  combinations of the 
original  characters, it is straightforward  to  rewrite  the 
means and variances (2)-(4) in terms of the new char- 
acters. Finally, the transformation means that we ex- 
amine selection relative to  the new set of characters. 
It is important  to  note  that we are  not restricting 
attention  to  the case where, in terms of characters 
observed, selection is on only a single character. Our 
results hold for  any  Gaussian  stabilizing selection regime. 

Now assume that  the  phenotypic structure of the 
population  can  be  described by a  multivariate  normal 
distribution with mean i and variance covariance ma- 
trix M. We will use (7) and  the multivariate  normal 
approximation  to  derive  an  approximation  for  the 
mean fitness of the population. 

Following WRIGHT ( 1  935) (see also BARTON 1986), 
we approximate  the  evolutionary dynamics of the 
multilocus system  as: 

:= 1 

dp;/dt = pi(l - pi)d In W/dp;. (8) 

Mean fitness, W, is given by 

where p ( z )  is the probability distribution  describing 
the phenotypes in the population.  After  substitution 
and some algebra, using the assumption that  the phe- 
notypic distribution is given by a  multivariate  normal 
distribution, this becomes 

W = 1/[(2x)” I MI ]‘I2 

r 
. J exp(-%[(zrCz) + (z - Z ) ~ M - ~ ( Z  - Z)]Jdz.  

Equation 9 is simply the multidimensional version of 
the expression that  often is used for single characters 
(e.g. ,  BARTON 1986). Now recall that  under weak 

Gaussian stabilizing selection, mean fitness depends 
only on the mean and variance of the phenotypic 
distribution (BARTON and TURELLI 1987), since 
higher order moments are negligible. This is true for 
all phenotypic  distributions. Also, W is a Lyapunov 
function  (HOFBAUER and SIGMUND 1988). Th‘ 1s means 
that small (higher order) changes in W will not  alter its 
qualitative features. Thus,  regardless of the underlying 
phenotypic distribution, (9) and  results  derived  from (9) 
are  applicable to any genetic system in which mean  fitness 
does  not dqfer  from (9) to terms of second order. 

Algebraic manipulation and application of.the weak 
selection assumption (see Appendix) yields 

W Z [ 1 - Tr(MC)]”2e~p[-(%)iTCZ] (10) 

where Tr denotes  the  trace of the matrix. Therefore, 
using the relationship  that 

ln[l - Tr(MC)] = -Tr(MC) 

when Tr(MC) is small  (as  it would be under weak 
selection), we find from ( 1  0): 

In W E -(%)Tr(MC) - (%)ZTCZ. ( 1   1 )  

We will use this formulation to prove our main 
result, which  follows: In a system in which m characters 
(defined below  as independent  components) undergo 
weak Gaussian  stabilizing selection, at most m loci will be 
polymorphic at a  stable equilibrium,  assuming linkage 
equilibrium. We outline the proof of this result in 
biological terms. 

A simple example of a system  with m characters  and 
m polymorphic loci  is one in  which each character is 
determined by only one locus and  the heterozygote 
has the highest fitness. In this case, it is obvious that 
polymorphism can be  maintained at all  loci.  Now 
consider the case where there  are  more loci than 
characters. We will use contradiction to show that this 
cannot yield a stable polymorphism. Assume that 
there is a stable polymorphic equilibrium with m char- 
acters  determined by n loci, where n is larger  than m. 
Denote the equilibrium values of the allele frequencies 
by the vector p*, and  the  corresponding  population 
mean phenotype vector by 2”. Since there  are  more 
loci that  characters, there  are many combinations of 
allele frequencies  that can produce  a  particular mean 
phenotype. More precisely, since there  are  more loci 
than  characters, and  the characters are  determined 
additively, there must be  a  nonempty set of allele 
frequencies, 9, which contains p* (linear subspace of 
dimension n - m),  for which the population  mean 
phenotype  vector is Z*. 

For p* to be  a stable equilibrium, In zi, must  be 
maximized at p*. This also means that p* must max- 
imize In zi, when the set of possible allele frequencies 
is restricted to those in the set 9 Recall, however, 
that  the mean phenotype is constant in 9 Conse- 
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quently,  for  those  gene  frequencies within 9, maxi- 
mizing the logarithm of the mean fitness can be 
achieved only by altering  the population  genetic var- 
iance of the  phenotype.  Denote  the  term describing 
the  contribution of variance of the log mean fitness 
by 

f = -(%)Tr(MC). 

Since the selection matrix  C is a positive diagonal 
matrix, f is a  sum of terms of the  form -r#i( 1 - pi) 
for some positive constants yi. Consequently,  any  crit- 
ical point off, a  point  where the derivative off with 
respect to  the allele frequencies is zero, must corre- 
spond  to a  minimum off. This also must be a  minimum 
when restricted  to  the set 9 (Here we use linearity, 
which corresponds  to  our assumption that  there is no 
epistasis.) As a  result,  becausefrepresents  the  contri- 
bution of variance to In W, mean fitness cannot  be  at 
a  maximum. This is a  contradiction, since mean fitness 
must  be maximized at stable  equilibria. Thus, in a 
system undergoing weak Gaussian stabilizing selec- 
tion,  a  polymorphism in which m characters are  deter- 
mined by the sum of the effects of n loci cannot  be 
stable if n > m. 

DISCUSSION 

The most obvious  point of discussion is whether 
our  arguments  rule  out  the possibility that antago- 
nistic pleiotropy is a valid explanation for  the main- 
tenance of additive  genetic variability in natural  pop- 
ulations. Obviously, in our model we have not speci- 
fied the  contribution of  environmental variability to 
the  characters  that we consider. Since we cannot use 
this  model to  compare  the level of observed variability 
to environmental variability, we propose to use the 
number of polymorphic loci per  character as a meas- 
ure of the  importance of antagonistic  pleiotropy as an 
explanation for maintaining variability. We consider 
that observed levels of additive  genetic variability 
require  the  maintenance of polymorphism at some- 
where  between  ten and  one  hundred loci. In  our 
development, we have  defined  the  number of  char- 
acters as the  number of independent  components, ie., 
uncorrelated  characters,  undergoing Gaussian stabi- 
lizing selection. For selection in a single uniform en- 
vironment, our  arguments suggest that pleiotropy 
coupled with additive  determination of characters will 
not lead to  the levels of variability typically observed 
in natural  populations, unless there  are a  large  num- 
ber of characters all controlled by the same loci. Weak 
mutation  does  not  change our conclusions, as it will 
cause only a small change in the equilibrium. 

Genotype-environment  interaction, which is a ubiq- 
uitous feature of most natural systems, may be impor- 
tant in maintaining  genetic variability (GILLESPIE and 
TURELLI 1989). This is consistent with our analysis 

because under  our definition of a character, a single 
trait in several environments with differing selective 
pressures is treated as several distinct  characters. Our  
deterministic  results, which show that  the  number of 
polymorphic loci is less than or equal  to  the  number 
of characters, with equality possible for a wide range 
of selective regimes,  indicate that  the  number of 
polymorphic loci can be as large as the  number of 
different  environments.  If  the  environmental variable 
is continuous,  the  number of characters can be un- 
bounded. 

However, with a  continuous  environmental vari- 
able,  our deterministic analysis is inappropriate,  and 
the actual level of polymorphism may be set by sto- 
chastic factors. It is possible that as the differences 
among  characters  diminish,  drift may overcome selec- 
tion,  and  the  number of polymorphic loci will be 
smaller  than  predicted by a  deterministic  model.  More 
work is needed  to  answer  these questions. 
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APPENDIX 

Derivation of expression for mean fitness: Recall that 
we assume weak selection and Gaussian distribution of phe- 
notypes. For  notational simplicity, denote 

M" = Q. 

Throughout  the  appendix, we use the fact that since C, M, 

and Q are symmetric they commute. The mean fitness of 
the population is given by 

W = 1/[(27r)" 1 MI]'/' exp(-%[(z%z) ( A l l  

+ (Z - Z)TQ(z - Z) ]Jdz .  

The integration in ( A l )  can be performed by expanding 
terms in the  exponent  and completing the  square, yielding: 

W = [I(Q + C)"11/IMI]1/2 
(A2) 

exp[(-L/2)ZT(Q - Q'(Q + C)")Z]. 

Because selection is weak  by hypothesis, C is near zero, 
hence Q-'C is small. As a result, we can write 

(Q + C)-' = Q-'(I + Q"C)" z Q-'(I - Q"C). (A3) 

Thus, using (A3), terms in (A2) become 

Q - Q'(Q + C)-' = Q(I - Q(Q + C)") z C, (A4) 

and 

[I(Q + C)"11/IMI11/2 (A5) 
= I I - MC I I" = [ 1 - Tr(MC)]'/'. 

The final step in (A5) is an approximation which depends 
on MC being small. Substituting (A4) and (A5) into (A2) 
yields ( 1  0); we obtain ( 1   1 )  by taking the logarithm of both 
sides. 


