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ABSTRACT 
Variation in recombination frequencies may  lead to a bias in the  estimated  interference  value in a 

linkage  experiment.  Depending on the pattern of variation, the bias may be  toward  negative 
interference or toward positive interference, even  when there is positive interference at the cytological 
level. In this  paper we have  mainly concentrated  on  the case of negative  interference. We use models 
to  quantify  this effect when data are derived from a backcross  experiment or from the selfing  of F1 
individuals. The effect is quantitatively similar in the two  cases. There is an upper limit to the size the 
bias may reach for every  given level of recombination. T w o  reported cases of negative interference 
in Drosophila  and  cultivated  barley  fall  within  this  possible  parameter  range, i .e.,  the observed  negative 
interference values could-at least in principle-be due solely to a variation in the recombination 
frequencies in the experiments. 

A fundamental  problem in the study of genetic 
linkage is the  degree of dependence  between 

recombination  events in adjacent  chromosome seg- 
ments. This  dependence is usually measured by the 
coefficient of coincidence, c, defined by 

c = (the observed  number of double  crossovers)/(the 
number of double crossovers expected if crossing 
over  occurs  independently in the two segments). 

The dependence is often  expressed in terms of the 
interference I, which is defined by I = 1 - c. 

In eukaryotes the coefficient of coincidence is usu- 
ally  less than  one (positive interference)  for closely 
linked  markers, and increases towards one  for  mark- 
ers  further  apart (BAILEY 196 1). In  bacteriophage, on 
the  other  hand,  the coefficient of coincidence is usu- 
ally larger  than  one  (negative  interference;  STAHL 
1969). It is customary to distinguish between two 
different types of negative interference,  “high  nega- 
tive interference”  and “low negative interference.” 

High negative interference, also referred to as “lo- 
calized negative interference,”  occurs only for very 
closely linked markers  and decreases with increasing 
recombination  frequencies. Such high negative inter- 
ference has been  described  for several bacteriophage 
(STREISINGER and  FRANKLIN  1956; CHASE and DOER- 
MAN 1958; AMATI and MESELSON 1964),  but was first 
observed in a  eukaryote,  the  fungus Aspergillus  nidu- 
lans (PRICHARD  1955). The effect may have several 
causes but  the  phenomenon is normally considered to 
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be  due  to  gene conversion at  one of the centrally 
located markers (STAHL 1969). 

The  other type of negative interference  found in 
phages, “low negative interference,” is independent 
of the distance  between the markers and takes a 
constant value given the type of phage and  the  exper- 
imental  conditions. This type of negative  interference 
can be  explained by heterogeneity among  the individ- 
ual virus chromosomes with respect to  their  recombin- 
ing  opportunities (VISCONTI and DELBRUCK 1953). 
Thus,  the effect arises because the descendant viral 
chromosomes are heterogeneous with respect to  the 
recombination processes under which they were 
formed. Some of the virus particles stem from  parents 
that  never  mated,  whereas  others  originate  from  par- 
ents  that mated and recombined several times. 

Instances of negative  interference  are  rare in ani- 
mals and plants, but  the  phenomenon has been ob- 
served, for example in Drosophila (MORGAN, STUR- 
TEVANT and BRIDGES 1925;  GREEN  1975)  and barley 
(Hordeum  vulgare) (SBGAARD 1977; LARSSON 1985; 
T. SALL and B. 0. BENGTSSON, preliminary results). 
These results have normally been interpreted as  being 
due  to conversion of the  central  marker with no 
associated crossover [see, e.g., GREEN (1 975)  and VON 
WETTSTEIN, RASMUSSEN and HOLM  (1984)],  but  a 
detailed analysis of the  phenomenon has not  been 
made. 

In this article we consider an  alternative explanation 
of negative interference in eukaryotes. The explana- 
tion, which  is analogous to  the  one used to explain 
low negative interference in bacteriophage, relies on 
the finding that a variation in recombination  frequen- 
cies  may produce a negative interference  estimate, 
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even when there is no  “true”  interference  at  the 
cytological level. Some simple models are used to 
investigate how much negative interference may be 
produced by this effect alone; in particular we deter- 
mine the maximum value of negative interference 
that can follow from  the variance effect as a  function 
of the estimated  recombination values. We have also 
tried to assess whether this effect can be the cause of 
some of the  reported cases  of negative interference in 
Drosophila and  Hordeum. 

MODELS 

Basic  assumptions  and definitions: We base our 
study on  the observation of gametes  produced by a 
set of individuals heterozygous  for three linked loci 
( A ,   B ,   C ) .  The gametes can be  grouped  into  four 
classes, i .e. 

1 .  gametes  produced with no recombination = paren- 

2. gametes produced with recombination between 

3 .  gametes produced with recombination between 

4. gametes  produced with recombination in both seg- 

tal type gametes 

locus A and B only 

locus B and C only 

ments A-B and B-C. 

Let the recombination  frequency in segment A-B be 
TAB and in segment B-C be TBC.  If the coincidence 
between the two segments is c ,  then  the  frequencies 
of the  four types of gametes in the gametic pool are 

1 .  1 - TAB - r B [ ;  + C r A B r B [ ;  

2. TAB( 1 - C r B C )  

3 .  rBC( 1 - CTAB) 

4. C r A B r B C .  

Consider now the case where linkage is studied 
through a backcross to  the triple recessive parent. Let 
x1 be  the  proportion of offspring with a  parental 
phenotype,  corresponding to  the transmission of type 
1 gametes, let x2 be the  proportion of offspring  cor- 
responding to type 2 gametes, and let x3 and x4 be 
defined similarly. Note  that in a backcross of this type 
the phenotype of an  offspring describes exactly the 
genotype of the transmitted  gamete  (haplotype)  from 
the heterozygous parent. 

Given such a set of observations the  standard way 
to estimate  the values T A B ,  rBc and c is to use the 
estimators R A B ,   R B c  and C ,  defined by 

R A B  = + x4 ( 1 )  

R E ( ;  = x3 + x4 (2) 

C =  x4 
( 3 )  

(x2 + + x4) 

(see any standard  textbook in genetics, e .g . ,  SUZUKI, 
GRIFFITH  and  LEWONTIN 1981). It can be shown that 
all three expressions are maximum likelihood esti- 

mators (see, e.g., BAILEY 196 1 ) .  The estimators of the 
recombination  frequencies have the expectations 

E(RAB) = r A B ( 1  - CTBC) + C r A B r B C  = TAB 

E(RBc) = r B C ( 1  - CTAB) + C r A B r B C  = T B C .  

Thus, these  estimators are unbiased. 
The estimator C ,  on  the  other  hand, is a  ratio  and 

the  expectation of a  ratio is usually not  the  ratio of 
the expectations.  However, since C is a maximum 
likelihood estimator we know that it is asymptotically 
unbiased, i. e . ,  

AsE(C) = - - - c ,  
C r A B r B C  

~ A B ~ B C  

where AsE(C)  is the asymptotic expectation. This 
means that  the expectation of C is close to its desired 
value for  large sample sizes. In  order  to obtain  infor- 
mation  about the relation between the size of the 
sample and  the  magnitude of the bias, computer sim- 
ulations were  made.  For each parameter  configura- 
tion the size of the bias was calculated from 20,000 
independent estimates of the coincidence value. We 
found  that  the bias is very small for small values of c 
(one or less) for sample sizes above 100. The bias 
grows for  larger values; however, with a sample size 
of 400 the difference  between the estimated coinci- 
dence  and a true value of c = 10 was only 0.23, i . e . ,  
2.3%. Our conclusion is therefore  that  for sample 
sizes  of 500 and above the bias is very  small for all 
relevant values of c .  

The asymptotic variance of C can be calculated from 
the likelihood equation and has the following form 

AsV(C) 
1 - C r A B  - CrBC - C r A B r B C  + 2c  r A B r B C  

= c (  
2 

N r A B r B C  ) (4) 

where N is the total sample size (STEVENS 1936). 
Model  with  variation in recombination  frequen- 

cies: The purpose of the present study is to see what 
happens to these  estimators when the assumptions 
used in this simple situation are slightly changed.  Of 
particular  interest is the effect produced by a variation 
in recombination  frequencies. 

Therefore assume as before  a backcross situation 
but let the heterozygotes  be  heterogeneous with re- 
spect to  their meioses  in such a way that they do not 
have the same recombination  frequencies.  More spe- 
cifically, let the  triple  heterozygotes  produce  gametes 
that belong to two “gamete  populations,” 1 and 2, of 
relative size p and q (q = 1 - p ) .  Gamete  population 1 
is derived  from meioses where the recombination 
frequencies are TAB1 and r B C 1  and gamete  population 
2 is derived  from meioses with recombination  fre- 
quencies TAB2 and rBC2. The coefficients of coincidence 
in the two gamete  populations are c1 and cp, respec- 
tively. 
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If the descendants are scored as before,  the  four 
phenotypic classes have the following frequencies: 

1 .  p (  1 - r A B l  - r B C l  + C l r A B l ~ B C l )  + q( 1 - rABZ - rBCZ + 
C Z r A B Z r B C 2 )  

2. p r A B l ( 1  - C l r B C l )  + q T A B P ( 1  - CBrBC.2) 

3. p r B C l ( 1  - C I T A B l )  + q r B C Z ( 1  - CZTABZ) 

4. P C l r A B l r B C l  + q C Z r A B Z r B C 2 .  

If the recombination  frequencies are estimated 
from  the cross using the estimators (1) and (2), the 
frequency estimates will now have the following ex- 
pectations: 

E ( R A B )  = P r A B l  + q r A B Z  ( 5 )  

E ( R B C )  = P r B C l  + qTBC2.  (6) 

Thus,  the expectations of the frequency estimates are 
equal to  the averages of the recombination  frequen- 
cies  in the two gamete  populations. This result is 
reassuring in that this is how we want the estimators 
to behave, given the  added complexity. 

If the coefficient of coincidence is estimated by the 
estimator (3), the problem of expectations of ratios 
arises again.  However, as in equation (3), it can be 
shown that when the sample size grows large the 
expectation of C also converges to  the  ratio of the 
expectations;  thus 

The asymptotic variance of C under these  conditions 
is found by substituting (5) ,  (6) and (7) for T A B ,  rBc and 
c, respectively, in Equation 4. That this is so follows 
from  the fact that  under  the model of heterogeneity 
the distribution of x1 to x4 has the same general  form 
as  before,  a multinomial distribution, only with new 
values for ?-AB, rBc and c. Thus,  the value of the 
variance depends only on the values of rz4B, rBc and c, 
irrespective of whether they are generated by a ho- 
mogeneous or heterogeneous process. 

The model above allows a very large number of 
combinations of the recombination  parameters,  each 
giving different values of AsE(C). T o  show some of 
the  properties of (7) we assume that  the investigated 
situation is such that no interference  occurs in any of 
the two gamete  populations, i . e . ,  c1 = cp = 1 .  Any 
value different  from 1 for AsE(C)  then indicates that 
the estimator (3) is sensitive to the assumption of 
constant  recombination  frequencies in the studied 
material. Three principal cases will be  recognized. In 
the first case there is heterogeneity in recombination 
values in only one of the segments, say between loci B 
and C .  In case two, the recombination  frequencies in 
both  segments are reduced by the same factor, k ,  in 
gamete  population 2. In case three,  the recombination 
frequency  between loci A and B is reduced in gamete 
population 2, while the recombination  frequency be- 

tween loci B and C is reduced by the same factor in 
gamete  population 1 .  One can say that in case two 
there is a positive correlation  over  the  chromosome 
between the recombination  frequencies, while in  case 
three  the correlation is negative. 

In the first case the recombination  frequencies  can 
be written in the following way ?-AB2 = ?-AB1 and r B C 2  = 
krBCl, where 0 5 k C 1 .  (Note  that  the  numbering of 
the populations is arbitrary so that k can  be  defined 
as less than  one.)  Under this model we get 

Thus, in the case of recombination  variation in only 
one of the segments and with no interference  between 
the segments, the asymptotic expectation of the coef- 
ficient of coincidence is not  influenced by the  heter- 
ogeneity. 

In  the second case the recombination  frequencies 
can be  written, ?-AB2 = krABl and rBCz = krBcl, where 0 
5 k < 1 .  In this case the expectation will be 

In  contrast to case one,  there is a  clear  influence of 
the heterogeneity.  More specifically it can be shown 
that  the expression given by (9) is always larger  than 
one  (or equal to  one  under certain  conditions, see 
below). Thus  the heterogeneity will cause an observed 
negative interference. The properties of (9) will be 
investigated in greater detail below. 

In case three, with a  negative  correlation of the 
recombination values over  the  segments, the recom- 
bination  frequencies can be  written r A B 2  = krABl and 
rBc2 = ( l / k ) r B C l .  Under these circumstances the expec- 
tation of C will be 

In this case there is also an influence of the  hetero- 
geneity, but in contrast  to  the  former, it can  be shown 
that expression ( 1  0) always  gives an expectation that 
is  less than  one. 

With  these three cases we have shown that  a varia- 
bility  in recombination  frequencies  can  influence the 
estimate of coincidence  both  upward and downward. 
In the first and  third cases the estimate is unaffected 
or biased downward, which means that  the effect will 
probably go unnoticed in most experiments due to 
the normal effect of positive interference  along  chro- 
mosomes. This holds true even if we allow more 
complex models with positive interference in the ga- 
mete  populations, since, as was seen from (7), such 
interference  can only decrease the value of AsE(C)  
irrespective of the  other  parameters.  In case three, we 
could also consider the case where the  degree of 
heterogeneity is different  on  the two chromosomal 
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FIGURE 1.-Effect  of meiotic heterogeneity in a backcross. 
Shown here is the relationship between the proportion p of gametes 
with a high recombination frequency and the expected estimated 
coefficient of coincidence, AsE(C).  

segments. However, it can be shown that  the value of 
AsE(C)  in such a case  falls between the values ofAsE(C) 
that  are obtained if the maximum and  the minimum 
of the two k values are inserted in Equation 10. Thus, 
no  extra insight is gained by introducing this extra 
complexity. We will therefore  not investigate these 
cases any further. 

However, in  case two, the heterogeneity leads to  an 
estimated negative interference which could well be 
detected-with surprise-in a practical crossing ex- 
periment. The phenomenon also occurs if the varia- 
bility  in recombination  frequencies  differs  between 
the two chromosomal segments. As in  case three, 
different k values cause an effect that is intermediate 
to  the effect given by the maximum and  the minimum 
of the two k values. We have therefore  made  a  detailed 
investigation of the  properties of Equation 9 for dif- 
ferent  parameter  combinations  and, in particular,  de- 
termined  the maximum size it may take when there is 
no  interference  at  the cytological level. We have also 
studied  the effect of recombination variation when, 
within each gamete  population, there is a  “standard” 
amount of positive interference (as given by KOSAMBI 
1944). 

Negative  interference  due  to  variation in recom- 
bination  frequencies: Equation 9 has several interest- 
ing  properties. First of  all it can be seen immediately 
that AsE(C) is independent of the recombination  fre- 
quencies TAB and rBc. It can also be seen that AsE(C) 
= 1 for  the trivial cases p = 1 or p = 0 and  for  the 
case k = 1 .  However,  for all other  parameter config- 
urations AsE(C)  > 1 .  Thus, heterogeneity in recom- 
bination fractions will cause an  expected coincidence 
above one. 

The dependence of  AsE(C) on p and k is shown for 
some different values of k in Figure 1 .  From  the  figure 
it is seen that  the maximum value of AsE(C) is larger 

for smaller values of k. For AsE(C) to be noticeably 
different  from  one, k should  be less than 0.5, i .e. ,  the 
gamete  populations  should have clearly different  re- 
combination  frequencies. 

In most  cases the  true recombination  frequencies 
T A B I ,  rBcI, TAB2 and rBcz are unknown; all that is avail- 
able are  the estimated  recombination  frequencies with 
expectations ( 5 )  and (6). An important  problem is 
then: what is the largest possible coincidence that can 
be  generated purely by the bias of the estimator, given 
specific values of the estimated  recombination  fre- 
quencies? Obviously, this occurs at maximum hetero- 
geneity, i . e . ,  k = 0 and TAB1 = 1/2 (we designate the 
loci so that L rBcI). It can then  be shown that  the 
maximum value becomes 

AsE(C),,, = l/p = 1/2E(rAB). ( 1   1 )  

Thus, a  large bias can be  produced only when the 
investigated loci are closely linked most of the time 
but  a small fraction of gametes is produced with much 
larger  recombination values. The differing  gametes 
must,  however,  be so few that  the estimates of the 
recombination  fractions in the total  material  remain 
small. 

A  comment on  the variance of C should also be 
made  for this case. Equation 4 shows that  the variance 
of C is a third  degree polynomial of c, which starts at 
zero, then  either increases to a  peak,  drops slightly 
and  then increases again for  large values of c or 
increases all the time  depending  on  the values of TAB 

and rBc. The positions of the peak and  the valley,  if 
any, also depend  on  the values of TAB and rBc. As a 
rule it can be said that  the variance increases for small 
values of TAB and rBc. Thus,  parameter configurations 
that  create  large values of AsE(C) and small values of 

and E(rBc) will also be associated with a  large 
variance. 

One way to study the effect on  the variance is to 
consider the  ratio  between  the variance of C in the 
case of heterogeneity and  the variance of C with no 
heterogeneity, given the same average  recombination 
frequencies.  It can be shown that  the  ratio is  always 
smaller than AsE(C)  but approaches this value when 
the recombination values decrease. 

Model  with  Kosambi  interference: In the investi- 
gation  above only the case without  interference in any 
of the  gamete  populations has been  considered. If 
interference is allowed, the complexity of the problem 
increases considerably. In  the following we have in- 
vestigated case two when the  interference in the two 
gamete  populations follows a specific type of interfer- 
ence,  the KOSAMBI interference which is of the general 
form 

see for  example KOSAMBI (1944) or BAILEY (1961). 
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P 
1.Q 

FIGURE 2.-Effect of KOSAMBI interference  on  the  expected 
estimated coefficient of coincidence AsE(C). The effect is compared 
to the case with no interference  (the uppermost curve)  for two 
values of r (where r = rABI = rBcI) over the  range of p .  The 
comparison is made for k = 0.1. 

This  interference has been chosen because it is one of 
the most simple and most widely used mapping  func- 
tions considering  interference.  It has also, in a number 
of cases, shown a  good fit to empirical data; see BAILEY 
(1 96 1). For simplicity we have studied the case where 
?-AB1 = rBcl = r. Thus,  for cl, r has been  inserted  for 
TAB and rBc in (1 2), and  for cp kr has been inserted. In 
Figure 2 the effect of the KOSAMBI interference is 
shown for k = 0.1 and two different values of r. For 
comparison the  curve  for k = 0.1 without  interference 
is included.  It  can be seen that  the effect on  the 
estimated  coincidence is of the same  general  form as 
when there is interference in the  gamete  populations, 
with only a slight shift in the position of the maximum. 
It is also evident that  the value of AsE(C)  is strongly 
affected by the value of r. For r = 0.5 the  reduction 
in AsE(C)  is very small for most values of p ,  but  for 
r = 0.1 the level  of coincidence is strongly  reduced. 

Model  with  several  gamete  populations: So far  a 
model with only two gamete  populations has been 
considered. Let us now assume that  the  heterozygous 
parents  produce n gamete  populations 1, . . ., n in the 
proportions e, ,  . . . , p, ,  with the recombination  fre- 
quencies kirAB and kirBC, where k l  = 1, and ki I 1. 
Then  the frequency in the total  gamete pool of 

1. Parental  gametes is pi( 1 - kZrAB)( 1 - AirBC) 
2. Gametes with recombination in A-B only is 

3. Gametes with recombination in B-C only is 

4. Gametes with double  recombination is 

C @ i k r A B (  1 - h B c )  

C pikirBC( 1 - k r A B ) ,  and 

pikz 2 r A B r B C .  

We assume here  that  there is no  interference be- 
tween recombination  events in the two segments in 
any of the  gamete  populations.  In analogy with ( 5 )  

and (6) the estimators of the recombination  frequen- 
cies have the following expectations 

E(RAB) = TAB piki 

E(&) = rBC C p i k ,  

while the asymptotic expectation of 
becomes 

the estimator C 

This expression can  be  rewritten as 

where V ( k )  stands for  the variance of k. This is con- 
sistent with the  earlier results: when V ( k )  = 0 the 
gamete pool is homogeneous so that AsE(C)  = 1.  In 
all other cases we expect  to  score AsE(C)  > 1. 

It is important to note  that  the largest variance of k 
for any recombination  frequencies is achieved when 
there  are only two gamete pOpUlatiOnS with r A B l  = 0.5 
and k p  = TABZ = rBcz = 0. Thus,  the  upper limit that is 
set by (1  1) also applies to (13), so that  the most 
dramatic effect of recombination variation occurs 
when there  are two gamete  populations  having widely 
different  recombination  frequencies. 

Model  with selfing: So far  the calculations have 
been applicable to  the situation  where haplotypes are 
scored,  as in a backcross program.  In self-fertilizing 
organisms linkage is usually studied by looking at  the 
progeny of selfed heterozygous F1 individuals. For  the 
present  purpose there  are two important  differences 
between backcrosses and intercrosses such as the self- 
ing of F1 individuals. In a backcross, as pointed out 
above, the gametes  produced by the F1 heterozygotes 
can be  scored immediately and used in the estimation 
of linkage. In  an intercross,  however,  both  chromo- 
somes in an  FZ individual come  from  a  heterozygous 
FI individual and  are  thus informative. Secondly, the 
genotype of the gametes  uniting in the F2 individual 
will normally not  be known if there is dominance  at 
one  or  more of the loci (unless the analysis is taken 
one  generation  further).  This implies that  the simple 
and intuitive  estimators (1) and (2) cannot  be used 
when the recombination  frequencies are  to be  studied. 
Instead maximum likelihood estimates of the recom- 
bination  frequencies must be  derived  from  the  pro- 
portion of different  phenotypes in the FZ generation. 
The same method must also be used to estimate the 
coincidence. There  are, unfortunately,  no analytical 
solutions to these likelihood equations (RAO 1947), so 
numerical  methods must be relied on. We have used 
the  standard likelihood equations  derived under  the 
assumption that all gametes have been  produced  un- 
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ASEC) 

1 

k= .5 ,p= .3  
1 

.1 .S 

5 6 1  

FIGURE 3.-Relationship between the recombination frequency, 
TAB,,  and the expected  coefficient of coincidence, AsE(C),  in the 
case of selfing. In  all cases the recombination frequencies are the 
same in segments A-B and B-C ( h  = 1). 

der identical recombination  frequencies to see what 
happens when the gametes  belong to different  gamete 
populations  instead. The type of cross we have consid- 
ered is the case  of selfing where the male and  the 
female gametes have the same recombination  frequen- 
cies  in  all fertilizations, but where there  are recombi- 
nation  frequency  differences  between fertilization 
events. An example  where this may occur is in a self- 
fertilizing plant  where there  are differences in recom- 
bination frequencies between different flowers de- 
pending  on  their positions in the influorescence,  a 
situation that may occur  in, e.g., barley. 

To investigate the effect of recombination variation 
on  the coincidence estimate under selfing we have 
used the same model as in section “Negative  interfer- 
ence due  to variation in recombination  frequencies” 
above. The likelihood equations  for the estimate of 
coincidence and recombination  fractions have been 
solved numerically for  different cases, but  here, we 
shall concentrate  on  the results obtained  for the esti- 
mator of the coincidence. Only the  situation with 
three loci and  dominant alleles in coupling will be 
considered. As before, we assume that  there is no 
interference in any of the gamete pools, so that any 
deviation from AsE(C)  = 1 derives  from the bias due 
to meiotic variation among  the  parents. 

T o  simplify the description of the effect of different 
TAB1 and rBcI values the factor h = rBCI/rABI is intro- 
duced. We  still assume that r A B l  takes the  larger value, 
so that h 5 1. 

The values given to AsE(C) by the  standard maxi- 
mum likelihood function are shown in Figures 3 and 
4 for  different values of ?“ABI, k ,  h and p .  From the 
figures it can be seen that, as before,  a variation in 
recombination  frequencies  among fertilizations intro- 
duces a bias to  the estimator of coincidence making 
its estimates greater  than  one even when no coinci- 

FIGURE 4.-Comparison between the backcross and the selfing 
cases. In both situations a fraction 0.10 of the  gametes has higher 
recombination values. The recombination frequencies are the same 
in both segments A-B and B-C ( h  = 1) .  Two curves are shown for 
the selfing  case, representing different levels of recombination. The 
backcross curve is labeled B.C. 

dence exists in any of the gamete pools. It is also seen 
that  a  difference exists between the backcross and 
selfing cases. In particular, the value of AsE(C)  under 
selfing turns  out  to be dependent  on  the recombina- 
tion values (rABI and h )  as well as on k and p .  The 
dependence  on h is illustrated in Table 1 for  three 
combinations of parameters. The dependence is such 
that AsE(C)  increases with decreasing h, but  the effect 
must be  considered to be small. The dependence of 
AsE(C) on is illustrated in Figure 3, which shows 
that AsE(C)  increases with a  decrease in TABI .  The 
effect of a  change in r A B l  is clearly greater  than a 
change in h, especially for small k and p values around 
the maximum point  for the curve. Still one should 
note  that  the effect is limited, as seen from  Figure 3, 
i . e . ,  the function  does  not run away towards infinity 
for small TAB1 values. 

Despite the difference  between the backcross and 
the selfing situations, the two cases are basically similar 
in that k must  be  considered as the major  determinant 
of AsE(C).  Figure 4 also shows that  the general  shape 
of AsE(C) over p is the same for  the selfing and  the 
backcross curves. For  a given k they both stay within 
the same order of magnitude. 

An interesting observation from  the selfing case is 
that  the  expectation of the recombination value de- 
rived from  the  estimator RAB is not  the same as the 
expectation  for the backcross case [ i e . ,  rABI(p + q k ) ;  
see (4)]. Thus, with variable recombination  frequen- 
cies the  standard maximum likelihood equation gives 
a biased estimate of the mean recombination  fre- 
quency. Under selfing the E(&) value is always 
smaller than  the  corresponding value in the backcross. 

For our purpose,  the most important  question is 
still: for  a  certain  parameter  configuration giving a 
particular value for E ( R A B )  and E(&), what is the 
largest possible AsE(C)  that can be  generated by the 
effect of heterogenous meioses  in the selfing case? T o  
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TABLE 1 

Dependence of AsE(C) on h in the selfing model for three 
parameter sets 

AsE(C) 

P k rAB1 h =  1 h = 0.001 

0.3 0.5 0.4 1 . 1  1 1.12 
0.1 0.1 0.4 3.04 3.35 
0.01 0.01 0.1 34.62 36.03 

answer this question  a systematic study of different 
examples has been  performed. The largest bias seems, 
as  before,  to  occur  for k = 0 and r A B l =  0.5. As E(C),,, 
is then numerically identical to  the  corresponding 
value in the backcross case, although  the p values 
giving the maximum are not  identical. This is illus- 
trated in Table 2. If k > 0 or TAB1 < 0.5  then  the 
maximum in the two cases are  not exactly the same 
which also is illustrated in Table 2. It can be seen that 
either  the selfing case or  the backcross case gives the 
highest value of AsE(C),, , ,  depending  on  the case 
considered. 

DISCUSSION 

A coefficient of coincidence greater  than  one is 
expected in a linkage experiment if the offspring  arise 
from  heterogenous meiotic events when there is a 
positive correlation  between  recombination  frequen- 
cies along  the chromosome. This holds for backcross 
experiments as well as  for  experiments based on self- 
ing. In  the case of selfing, only the situation with 
complete  dominance  at all three loci has been consid- 
ered, since this is the most extreme case  in comparison 
with a backcross. If there is codominance at  one, two, 
or  three loci  in the selfing case, the information in- 
creases as we approach  the  situation  where  the  geno- 
type of each chromosome  can  be  deduced. The re- 
sponse of AsE(C) on  recombinational  heterogeneity 
will then  be  more similar to  the backcross situation. 
A complete similarity is reached when each allele in 
the offspring can be  traced back to its maternal or 
paternal  origin.  Such  a case occurs,  for  example, in 
the study of seed  markers in self-fertilizing plants 
where  the  dose effect in the  endosperm allows for  a 
complete  scoring (see e.g. DOLL and  BROWN  1979). 

We have also shown that  the effect of gametic 
heterogeneity  on  the  estimated  coincidence will be 
limited under most reasonable  parameter  configura- 
tions. In Figure  1 it is seen,  for  example, that a 
reduction of 50% of the recombination  fractions in a 
part of the  gamete pool has only a small effect on  the 
coincidence. It is only when the  reduction  approaches 
90%  or more (k < 0.1) that a substantial effect is 
produced.  It is then also required  that  the  gamete 
population  characterized by the  larger  recombination 
fraction is so small that it has only a small effect on 
the mean recombination  fraction. 

TABLE 2 

Comparison of the selfing and the backcross cases with respect 
to the dependence of AsE(C),., on different combinations of 

rml, k and p, given that E(rM) = 0.1 

Type of ex- 
periment k rAB1 AsE(C),,, 

Selfing 0 0.5 5.0 
Backcross 0 0.5 5.0 

Selfing 0 0.4 4.2 
Backcross 0 0.4 4.0 

Selfing 0.1 0.5 2.9 
Backcross 0.1 0.5 3.0 

For all examples shown, h = 1 .  The values of AsE(C),,, in the 
selfing case are approximate. In neither of the three comparisons 
the maxima are obtained at the same p value. 

Thus, only in special circumstances will a significant 
negative interference  be  found in a linkage experi- 
ment.  This is true in particular if one considers  that 
there may be positive interference in each of the sep- 
arate  gamete populations. In the case of KOSAMBI 
interference  the effect is especially pronounced if 
and rBcz are small. If,  on  the  other  hand,  the recom- 
bination frequencies are large,  the  reduction of 
AsE(C)  becomes quite small and  the conclusions that 
have been  drawn  above also apply to  the case with 
KOSAMBI interference. 

Given these  considerations one may  ask whether 
the observed cases  of (weak) negative interference in 
eukaryotes can be explained by the effect of meiotic 
heterogeneity. Years after  an  experiment was per- 
formed it is, of course, normally impossible to know 
whether  any  recombinational variation occurred in 
the material. A theoretical analysis can,  however,  be 
made to see whether  a variation in the material  could 
produce  the  observed results and find the  amount of 
variation that must be  postulated  for the coincidence 
estimate to have the  right  expectation.  It  should  be 
remembered  that  the estimator of the coincidence has 
a variance and  that this variance increases with the 
expectation of the estimator; we will, however,  restrict 
our analysis only to considerations of the  expected 
value. 

We have made such a reanalysis of the results  re- 
ported by GREEN  (1975)  and SBGAARD (1977). Com- 
binations of p ,  k and r A B J  have  been  found  that give 
the identical values for  the recombination  frequencies 
and  the coincidence value obtained in their  experi- 
ments. In  Figure 5A the result of our reanalysis of the 
backcross experiment  made by GREEN  (1975) in Dro- 
sophila  melanogaster is described. The estimated  re- 
combination  frequencies between the  marker loci 
were 0.039  and  0.029, while the estimated coefficient 
of coincidence was 1.56.  It is seen that a  range of 
parameter  combinations can produce  these  results, 
including the high  coincidence value. The least re- 
strictive case occurs when about a  fifth of the flies are 



942 T. Sal1 and B. 0. Bengtsson 

k 

0, 
.1 1 .25 

P 

FIGURE 5.-Fitting the model to empirical data. Shown are pos- 
sible combinations of parameters  that will lead to  the observed 
values for the coefficient of coincidence and the largest recombi- 
nation frequency. The  dotted line shows the values of the recom- 
bination frequency in the high recombination gamete population, 
rAB,, and the solid line shows the  needed variability in recombination 
frequencies, given by k .  In  (A) the  data from GREEN (1975) has 
been fitted, where the Coefficient  of coincidence was 1.56 and the 
largest recombination frequency was 0.039. In (B) the  data from 
S ~ A A R D  (1977) has been fitted, with a coefficient of coincidence 
of 3.4 and a largest recombination frequency of 0.095. 

derived  from meioses  with four times the normal 
recombination  rate. The negative interference ob- 
served in this case  may thus  be due  to a variation in 
recombination  rates; we are  not, however, able to 
judge how likely it is that such a variation existed in 
the material that was used for  the  experiment. 

In the case of the barley experiment  reported by 
SBGAARD (1 977)  the  estimated  recombination  fre- 
quencies were 0.095 and 0.030, while the estimated 
coefficient of coincidence was 3.4. Our reanalysis of 
her  data is given in Figure 5B. In this case more 

drastic variation is needed  to  produce  the  observed 
values. For  example, it is necessary to assume here 
that some meioses had  recombination  frequencies  that 
were more  than 10 times larger  than  the normal 
values (ie., k must be smaller than 0.10). In experi- 
ments  currently  under way  we study  whether such 
extensive variation in recombination  frequencies is 
normal in barley plants, for example  between flowers 
in different positions in the spike or between primary 
and secondary spikes. 
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