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ABSTRACT 
We present  methods  for estimating the  parameters of inheritance  and selection that  appear in a 

quantitative  genetic  model for  the evolution growth trajectories and  other “infinite-dimensional” traits 
that we recently introduced.  Two  methods  for estimating the  additive genetic  covariance function 
are  developed, a  “full” model that fully fits the  data  and a “reduced” model that  generates a smoothed 
estimate  consistent with the sampling errors in the  data. By decomposing the covariance  function into 
its eigenvalues and eigenfunctions, it  is possible to identify potential  evolutionary  changes in the 
population’s mean growth trajectory for which there is (and  those for which there is not) genetic 
variation.  Algorithms for estimating  these  quantities, their confidence  intervals, and  for testing 
hypotheses about  them  are developed. These techniques are illustrated by an analysis of early growth 
in mice. Compatible methods  for estimating the selection gradient function  acting on  growth 
trajectories in natural or domesticated  populations are  presented.  We show how the estimates for  the 
additive  genetic  covariance function  and  the selection gradient  function can be used to  predict  the 
evolutionary change in a population’s mean growth  trajectory. 

A predictive theory  for the evolutionary response 
of growth  trajectories to selection is an  impor- 

tant goal of both  evolutionary biologists and  breeders. 
Evolutionary biologists are interested in growth  tra- 
jectories because of their impact on  morphology, size- 
mediated ecological interactions, and life-history char- 
acters (e.g. ,  EBENMAN and PERSON 1988). Animal and 
plant breeders  are concerned with growth  trajectories 
because of the potential  to increase the economic 
value of domesticated species by altering  growth pat- 
terns  through artificial selection (e.g., FITZHUCH 
1976). Since the sizes  of individuals of the same age 
in a  population typically  vary  in a  quantitative  (contin- 
uous) manner, it has long been recognized that  quan- 
titative genetics provides appropriate  methods  for  the 
study of the inheritance and evolution of growth 
trajectories. 

We have recently extended  the classical quantitative 
model for  the evolution of multiple characters to 
“infinite-dimensional”  traits such as growth  trajecto- 
ries in  which the  phenotype of an individual is repre- 
sented by a  continuous  function (KIRKPATRICK 1988; 
KIRKPATRICK and HECKMAN 1989). In those earlier 
studies, we assumed the  parameters of inheritance 
and selection were known quantities. Our goal in this 
paper is to develop  methods  for  estimating those 
parameters  and  to show  how they can be used to 
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analyze the evolution of a  population’s mean growth 
trajectory. While the  example we discuss deals with 
body  size, the methods apply to any ontogenetic  proc- 
ess. More generally, the infinite-dimensional method 
can be extended  to  other kinds of traits in  which an 
individual’s phenotype is a  continuous  function, such 
as reaction  norms and morphological shapes, and so 
may be of  use  in a variety of  biological contexts. An 
analysis  of several data sets using these  methods, and 
a discussion  of the evolutionary implications of the 
results, is planned  for  a  later publication. 

The infinite-dimensional model is motivated by the 
fact that  growth  trajectories do not immediately fit 
into  the  framework of conventional quantitative ge- 
netics, which treats the evolution of a  finite  number 
of traits. This is because growth  trajectories are con- 
tinuous  functions of time, so that  a  trait in an individ- 
ual requires  an infinite rather  than finite number of 
measurements to fully describe. The infinite-dimen- 
sional model offers several advantages  over  earlier 
attempts  to  adapt  quantitative genetics to growth  tra- 
jectories (KIRKPATRICK and HECKMAN 1989). First, it 
predicts the evolution of the full growth  trajectory 
(rather than at a set of landmark ages) without making 
a priori assumptions about  the family  of curves  that 
are evolutionarily possible. Second, it provides a 
method  for analyzing patterns of genetic variation 
that reveal potential evolutionary changes in the 
growth  trajectory  for which there is and  for which 
there is not substantial genetic variation. Third,  the 
method  appears to have reduced biases  in the esti- 
mates of the genetic variation (and  therefore of the 
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response to selection) when compared with the  alter- 
native approaches. Two additional  advantages  appear 
from the  methods  presented in this paper:  the spacing 
of the ages at which the  data  are collected is correctly 
accounted  for (even when the spacing is uneven),  and 
it allows one  to  project the evolution of the growth 
trajectory even when the  data  on selection and  inher- 
itance are collected at two different sets of ages. 

We will begin with a brief review  of the infinite- 
dimensional model,  then turn  to  the problem of esti- 
mating the parameters of inheritance. T o  make the 
ideas concrete, we will illustrate the genetic methods 
using a subset of the  data of RISKA,  ATCHLEY and 
RUTLEDGE  (1984)  on  the genetics of growth in ICR 
randombred mice. In  a  detailed  study,  these workers 
measured 2693 individuals at weekly intervals be- 
tween ages 2 weeks and 10 weeks  in a half-sib breeding 
design. For the sake of simplicity, we will use only 
their  data  on male body weight at ages 2, 3  and 4 
weeks  in the following. Next the estimation of the 
parameters of selection is treated. Last, we show  how 
the estimates of the genetic and selection parameters 
can be used to project  the evolution of the popula- 
tion's mean growth  trajectory. 

Some of the statistical methods  developed in this 
paper can involve a substantial amount of computa- 
tion.  Computer  programs  for these operations are 
available from the first author. 

THE  INFINITE-DIMENSIONAL  MODEL 

The mean size  of unselected individuals in a  cohort 
through  time is referred  to as the  cohort's mean growth 
trajectory and is denoted by the function j .  Thus  the 
value ofy(a) is simply the  expected size  of individuals 
at  age a in the absence of selection. Selection within a 
given generation generally will cause the observed 
mean size  of individuals to differ  from the mean 
growth  trajectory and also will produce  an evolution- 
ary change in the mean growth  trajectory between 
that  generation  and the  next. 

The evolutionary  change in2 can be determined by 
extending  the  standard  theory of quantitative genetics 
to infinite-dimensional characters (KIRKPATRICK and 
HECKMAN  1989). The growth  trajectory of an individ- 
ual  can be thought of as the sum of two continuous 
functions. The first of these  represents the additive 
genetic component of the growth  trajectory  inherited 
from  the individual's parents. The second component 
is attributable  to  environmental effects, such as nutri- 
tion,  and  to  genetic  dominance. The additive and 
nonadditive  components are defined to be independ- 
ent of each other  and  are assumed to be multivariate 
normally distributed in the  population. This assump- 
tion is standard in quantitative genetic models of 
multiple characters. The normality of genetic effects 
is consistent with a variety of forms of genetic varia- 

tion at  the individual loci involved provided the num- 
ber of  loci is moderate  to  large  and linkage is loose 
(BULMER 1985, Chap. 8; BARTON and TURELLI 1989). 
When genetic effects are not  normal it may be possible 
to  transform  the scale  of measurement to one in  which 
they are (for  example, by taking logarithms) (WRIGHT 
1968, Chap. 10; FALCONER  198 1 Chap.  17). Last, we 
assume that  the  growth  trajectory is autosomally in- 
herited,  that  the effects of random genetic drift, mu- 
tation, epistasis, and  recombination  on  the mean 
growth  trajectory are negligible compared with  selec- 
tion, and that  generations are nonoverlapping. 

When selection acts on  the sizes  of individuals, the 
evolutionary dynamics of the mean growth  trajectory 
are described by the  equation 

Aj(a)  = La'''''' Y(a,  x)P(x) dx, (1) 

where A;(a) is the evolutionary change in the mean 
size  of individuals of age a following a single genera- 
tion of selection, Yis  the additive genetic covariance 
function, and P is the selection gradient  function 
(KIRKPATRICK and  HECKMAN 1989). Equation 1 can 
be modified to accommodate situations in which  se- 
lection acts directly on  growth  rate rather than size 
per se; see LYNCH  and  ARNOLD  (1988). 

The additive genetic covariance function 59 plays 
the same role in the evolution of growth  trajectories 
that  the additive genetic covariance matrix does in 
the  standard  theory of quantitative  characters (see 
LANDE  1979). The value  of Y(u~ ,u~)  is the additive 
genetic covariance for size between individuals meas- 
ured  at age a l  and those same individuals measured 
at  age a2.  The selection gradient  function P is a 
measure of the forces of directional selection acting 
on body  size (LANDE  and  ARNOLD  1983).  The mag- 
nitude of P(a) reflects the  strength of directional se- 
lection acting  on body size at  age a.  A negative value 
of @(a) indicates selection favors smaller size,  while a 
positive  value indicates the converse. 

Equation 1  predicts  the evolutionary change across 
only a single generation.  In  general, it is possible that 
both  the  strength of selection and  the genetic variation 
will change  from  generation  to  generation.  This  does 
not  present  a  problem  for Equation 1, however, since 
new values can be used  in each generation.  This 
information can come either  from  direct estimation 
of the  parameters or from genetic and ecological 
models that  predict how they will change  through 
time. We  discuss methods  for  direct estimation below; 
theoretical approaches are reviewed by BARTON and 
TURELLI (1  989)  and BULMER (1 989). 

Predicting  the evolutionary dynamics of the mean 
growth trajectory  thus  requires estimating the  param- 
eters of inheritance, described by 5f and  of selection, 
described by P.  In  the  next  three sections, we discuss 
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estimation of .% the analysis of .% and  the estimation 
of p. Before  proceeding, we pause here  to describe 
the notation  conventions used throughout  the  paper. 
Continuous  functions, such as the mean growth tra- 
jectory?  and  the  additive  genetic  covariance  function 
-'are denoted with a script font.  Vectors and matrices 
are written in bold. We  use a  hat or a tilda to signify 
estimates of  quantities;  for  example, the estimate  of 
an additive  genetic  covariance  matrix is written G .  

E S T I M A T I N G   T H E :   A D D I T I V E   G E N E T I C  
C O V A R I A N C E   F U N C T I O N  Y 

T o  estimate the additive  genetic  covariance  func- 
tion we begin with the additive  genetic  covariance 
matrix G familiar from  standard  quantitative genetics. 
The sizes of an individual at two ages a ;  and ai are 
considered to be two different  characters,  and  the 
value of Go is equal to  the additive  genetic  covariance 
for  the sizes of an individual at those two ages. Meth- 
ods  for  estimating  genetic variances and covariances 
of multiple characters have been extensivelv devel- 
oped by animal and plant breeders  (FALCONER  198 1 ; 
BULMER 198.5), and have more recently been applied 
to natural  populations by evolutionary biologists (e.g., 
ARNOLD 1981:  PRICE, GRANT  and BOAC 1984; LOFS- 
VOLD 1986). Given measurements of size at n ages, a? 
n X n estimated  additive  genetic  covariance  matrix G 
can be calculated. M'e refer  to  the vector of n ages at 
which these  measurements  have been taken a s  the age 
zlector, denoted a. 

The entries i n  the matrix G provide  direct  estimates 
of the additive  genetic  covariance  function Y a t  n' 
points, since G,, = $(a,, a,). The relationship between 
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the covariance  matrix G and  the covariance  function 
!4 is illustrated i n  Figures 1 and 2. The values of !4 
I)etween the measured  ages can be estimated by inter- 
polation using smooth  curves. By using smooth  curves, 
we make the implicit assumption that  the genetic 
variances and covariances do not  change in a discon- 
tinuous fashion. (Our method can be modified to 
;lccotnmodate  discontinuities produced,  for example, 
by metamorphosis by dividing the growth  trajectory 
into  pre-  and  ~~ost-~lletanlorpllosis periods, and  deter- 
mining the covariances within and between the two 
periocls.) 

A variety of techniques could be used to  estimate a 
continuous  covariavce  function -V from  an  observed 
covariatlce nmtrix G. U'e have chosen to use ;I family 
of methods  that involve fitting  orthogonal  functions 
t o  the  data. The motivation for using this appro;lch 
for  fitting  smooth  functions to  the  data  rather than 
some other (such as splines) is that the coefficients 
derived  from  fitting  orthogonal  functions are very 
useful for analyzing patterns of  genetic variation i n  
the growth  trajectory, as we describe below. 

A pair of functions 6, and c$~ are said to be normal- 
ized and  orthogonal  over  the interval [u, u]  if 

1'' ~ , ( x ) @ , ( x )  d x  = 0 and 1" (#.)?(x) d x  = 1 .  

Many families of functions  that meet these  criteria are 
available. M'e w i l l  analyze the mouse data using the 
wll-studied  Legendre polynomials. The choice of 
dlich family of orthogonal  functions  to use does not 
affect the estimates  for the covariance function at t!le 
ages at which the  data  were  taken  (the  points i n  G) .  
l 'he choice does,  however, affect the interpolation 
and  therefore can affect conclusions regarding  ages 
other than  those at  which the  data  were collected. (All 
families of orthogonal polynomials, however, w i l l  pro- 
duce  the  same  estimate  for !G if the maximum degree 
of the polynomials is held constant.) M'e favor poly- 
nomials over  series of sines and cosines (Fourier  func- 
tions),  for  exanqde, because on biological grounds we 
expect a  covariance  function  for  growth  to be rela- 
tively smooth rather than oscillatory. I n  an! event, 
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the element of arbitrariness  introduced by the choice 
of orthogonal  functions decreases as the  number of 
ages at which data were sampled increases. 

The  jth normalized Legendre polynomial, Pj, is 
given by the  formula 

/o\ 

where [ .] indicates that fractional values are  rounded 
down to  the  nearest  integer (BEYER 1976, p. 439). 
These polynomials are defined  over the interval [- 1, 
11, and so u = -1 and v = 1 .  From Equation 2 ,  we 
find that  the first three polynomials are: 

4o(x )  = I/&,  (34 

and 

The additive genetic covariance function 9can  be 
approximated to any specified degree of precision 
using a  complete set of orthogonal  functions such as 
Legendre polynomials (COURANT and HILBERT 1953, 
p. 65).  In this form,  the covariance between body size 
at ages a l  and a2 is 

m m  

a2) = C C [GI, +i(af)4j(a2*>, (4) 
r=O ,=o 

where 

and urnin and amax are respectively the first (smallest) 
and last (largest) elements of the  age vector. The 
adjusted age vector a*, calculated from  the  age vector 
a using (5) ,  rescales the ages at which the  data were 
taken to  the  range of the  orthogonal functions. In  the 
case  of the mouse data,  the  age vector is a = [2, 3, 
4IT. Thus anlin = 2 and amax = 4, and so the adjusted 
age vector is a* = [-1, 0 ,  llT. 

The matrix CG in Equation 4 is the coejjcient matrix 
associated with the covariance function .’9 Its  elements 
are constants that  depend  both  on Yand on the family 
of orthogonal functions 4 being used (Legendre pol- 
ynomials, in this example). The full expansion of 
Equation 4 involves an infinitely large coefficient ma- 
trix which can only be estimated with an infinite 
amount of data. Given measurements  on  the sizes  of 
individuals at n ages, however, an n x n truncated 
version  of C G  can be  estimated. We previously found 

that using the  truncated estimate CG consisting of 
relatively few dimensions often  produces  a good ap- 
proximation (KIRKPATRICK and HECKMAN 1989),  and 
this is our present goal. 

We have developed two methods  for estimating the 
coefficient matrix Cc. These  correspond  to two dif- 
ferent ways to estimate the  additive genetic covariance 
function 9 The first method yields what we refer  to 
as a  “full” estimate of Y This approach estimates the 
coefficient matrix in such a way that  the  correspond- 
ing covariance function exactly reproduces  the esti- 
mated additive genetic variances andAcovariances at 
the ages that were measured  (that is, G).  Our second 
method  produces  a “reduced” estimate of 52 The 
motivation for this approach is the fact that any esti- 
mate of G includes sampling error. Fitting  a  function 
through every point in G causes the sampling error 
to  be included in the full estimate of 9 This noise 
makes the full estimate of Ysomewhat less smooth 
than  the actual covariance function is. The reduced 
method finds a  smoother  and simpler estimate of 59 
using information  about the sampling error of G: the 
reduced estimate is the lowest-order polynomial that 
is statistically consistent with the  data. A drawback of 
this method is that it excludes higher-order  terms 
from  the estimate of Yeven when they actually exist 
if the  experiment is not sufficiently powerful to  prove 
their presence. Because of this, we recommend inves- 
tigators consider both the full and  reduced estimates 
of 9. 

The full estimate of 9: The full estimate of the 
additive genetic covariance function,  denoted 2 is 
found by calculating the coefficient matrix C G  whose 
corresponding covariance function exactly repro- 
duces the  estimated additive genetic covariance ma- 
trix G. We can write the observed covariance matrix 
in terms of the  orthogonal functions using Equation 
4: 

G = @ CG aT, (6) 

where the matrix @ is defined such that [@Ili = 

$,(a?). The matrix C G  is the estimate of the Coefficient 
matrix appearing in Equation 4. It  is truncated  to 
dimensions n X n by the finite  number (n) of ages 
represented in the data  matrix G. Rearranging Equa- 
tion 6 ,  we find an expression that can be used to 
calculate the  estimated coefficient matrix: 

C G  = 9” G[@T]”. (7) 

The matrix C G  obtained  from this calculation can be 
substituted  into Equation 4 to give a  continuous esti- 
mate of the covariance function Yfor all ages between 
the earliest and latest at which the  data were taken. 

To illustrate, the study of RISKA et  al. produced an 
estimate for  the additive genetic covariance matrix of 
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the log of male body weight at 2,  3 and 4 weeks: 

[ 

[ 40(1) 41(1) 4 2 ( 1 )  1 
[ 

436.0  522.3  424.2 

424.2  664.7  558.0 1 G = 522.3  808.0  664.7 . 

The elements of 9 are calculated by evaluating  the 
first three  Legendre polynomials (Equation 3a-c) at 
the  three points of the adjusted  age  vector a*: 

40(-1) 41(--1) M - 1 )  
a) = do@) 4 l ( O )  4 2 w  

0.7071 -1.2247 1.5811 
= 0.7071 0 -0.7906 . 

0.707 1 1.2247 1.58 1  1 1 
The full +mate of the additive genetic covariance 

function, 9, is found by plugging  these matrices into 
Equation 7 to obtain CG: 

66.5 -1 12.0 
6, = 66.5  24.3  -14.0 . 

r-yl:.O -14.0  14.5 1 
Finally, the full estimate of Yis obtained by substitut- 
ing C G  into Equation 4. This gives 

@(a,, a2) = 808 + 71.2(ar + a:) 

+ 3 6 . 4 ~ : ~ :  - 40.7(ar2a; + ala2  * *2 ) 

- 215.0(ar2 + a;') 

+ 8 1 . 6 ~ ~  a 2  , *2  *2 

which is  valid for ages between a = 2 and a = 4. The 
result can be verified by checking  that  indeed etl = 
@(ai, aj). The full estimate of the additive covariance 
function  for the mouse data calculated in this way  is 
shown in Figure 2. 

The reduced estimate of 9: Our second approach, 
that of finding  a  reduced  estimate  for Y seeks to fit a 
set of k orthogonal  functions  to G ,  where k < n. We 
denote a  reduced  estimate of 9 a s  9 and  the  corre- 
sponding  reduced  estimate of the coefficient matrix 
as e,. The method, which is described in detail in 
APPENDIX  A, consists of two steps. First, a  candidate 
estimate of Y is constructed using weighted least 
squares to fit the simplest possible orthogonal  func- 
tion,  that in which @ is constant for all ages. Second, 
this candid3te  estimate is tested  for statistical consist- 
ency with G. T o  perform this test we have developed 
a procedure  that  produces  an  approximate x 2  statistjc 
for  the goodness of fit of the  reduced estimate to G. 
If this test shows that 9 is consistent with (that is, it 
does  not  differ significantly from) G ,  then it is ac- 
cepted.  If 9 differs significantly from G ,  we then 
consider  a  more complex reduced  estimate by fitting 

the first two orthogonal  functions  to  the  data. The fit 
is again tested using the x2 test. The procedure is 
iterated with  successively more  orthogonal  functions 
until reduced estimates &. and @ are obtained  that 
are consistent with G. If no simpler combination of 
orthogonal  functions will successfully fit the  data,  the 
full estimate consisting of n orthogonal functions will 
always fit the data perfectly. 

Using this method  on  the mouse data (see APPENDIX 
A), we find that the least-squares estimate for @ that 
consists  of the first Legendre polynomial, 40, alone 
is @(al,  a?) = 324. This estimate is rejected because 
the test statistic x2 = 57.3 with 5 degrees of free- 
dom shows the estimate is inconsistent with the  data 
(P  << 0.01). The least squares estimate of Yproduced 
by the first two Legendre polynomials (a constant and 
a linear term) is 

~ ( ~ l , ~ ~ ) = 3 1 2 . 2 - 1 1 . 9 ( a ~ + a ~ ) + 2 4 . 5 ~ : ~ ~ .  

This estimate is also inconsistent with G ( x 2  = 38.7, 3 
d.f., P << 0.01). Consequently, it is not possible to find 
a  reduced estimate of Yfor this data set: only the full 
estimate consisting of the first three  Legendre poly- 
nomials, shown in Figure 2, is statistically consistent 
with G. In  contrast,  other  data sets (particularly cases 
in  which the  number of individuals is smaller and  the 
number of ages is larger  than in this example) will 
often result in a  reduced estimate that is consistent 
with the  data. 

Analysis of the additive genetic covariance func- 
tion. The major motivation for using orthogonal  func- 
tions to  estimate 9 is that  the coefficient matrix Cc 
can be used to analyze the  patterns of inheritance 
(KIRKPATRICK and HECKMAN 1989). In particular, the 
coefficient matrix can be used to calculate the eigen- 
functions and eigenvalues of Y 

Eigenfunctions are analogous to  the eigenvectors 
(principal components) familiar from  the analysis  of 
covariance matrices. Each eigenfunction is a  continu- 
ous function  that  represents  a possible evolutionary 
deformation of the mean growth  trajectory. Any 
mean growth  trajectory can be  thought of as the sum 
of a population's current mean growth  trajectory plus 
a combination of the  eigenfunctions of  its additive 
genetic covariance function.  Paired with each eigen- 
function is a  number known as  its eigenvalue. The 
eigenvalue is proportional  to the  amount of genetic 
variation in the population corresponding  to  that ei- 
genfunction. Eigenvalues (and  the  eigenfunctions as- 
sociated with them)  are conventionally numbered in 
order of decreasing size, beginning with the largest. 

Eigenfunctions with large eigenvalues are  defor- 
mations for which the  populations has substantial ge- 
netic variation. The shape of the mean growth  tra- 
jectory will  therefore evolve rapidly along  these 
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deformations if they are favored by selection. Eigen- 
functions with  very  small (or zero) eigenvalues, on  the 
other  hand,  represent  deformations  for which there 
is little (or no)  additive  genetic variation. If selection 
favors a new mean growth  trajectory  that is obtained 
from the  current trajectory by some combination of 
these deformations, there will be very  slow (or  no) 
evolutionary progress  towards it. The eigenfunctions 
and eigenvalues therefore contain  information  that is 
of great value  in understanding  the  evolutionary po- 
tential of growth  trajectories. The ith  eigenfunction 
and eigenvalue are  denoted I)i and X i ,  respectively. 

In principle,  a covariance function has an  infinite 
number of eigenfunctions and eigenvalues. (Many of 
the eigenvalues may, however, be zero.)  In  practice, 
we are able to estimate only a few  of them because 
experiments give information  about the covariance 
function at only a finite number of points (ages). The 
number of eigenfunctions and eigenvalues that can be 
estimated equals the dimensionality of the estimated 
coefficient matrix, which will be  equal to  the  number 
of ages at which  size was measured when dealing with 
a full estimate of 9 but will be smaller when using a 
reduced  estimate. 

Estimates of the  eigenfunctions I)l and eigenvalues 
X, are calculated from  the coefficient matrix CG. The 
ith  eigenfunction is constructed  from  the  relation 

Tl-1 

$,(a) = C [c+tIl4j(a*), (8) 
j = O  

where [c+,]] is the j th  element of the  ith  eigenvector 
of CG (KIRKPATRICK and  HECKMAN 1989). The ith 
eigenvalue of Yis identical to  the  ith eigenvalue of 
CG. Eigenfunctions are adjusted to  a  norm of unity by 
convention in order to allow meaningful comparisons 
between the eigenvalues. This is conveniently done 
by requiring  that  the  norms of the eigenvectors c+i 
equal unity. (Virtually all software packages which 
compute eigenvalues and eigenvectors do this as a 
matter of course.) Thus  to obtain estimates of  the 
eigenfunctions and eigenvalues, we determine  the ei- 
genvectors and eigenvalues of our estimate of the 
Coefficient matrix CG, then use these in Equation 8. 
The method can >e applied using either  the full 
coefficient matrix CG or a  reduced coefficient matrix 

Sampling errors in the estimate of the genetic co- 
variance matrix G produce biases  in the estimates of 
the eigenvalues (HILL  and THOMPSON 1978). Al- 
though  the  estimate of the arithmetic mean of the 
eigenvalues (ie., 1/n X i )  is unbiased,  the  larger 
eigenvalues are consistently overestimated while the 
smaller eigenvalues are consistently underestimated. 
This problem, which is general  to all multivariate 
quantitative  genetic studies, becomes particularly ob- 
vious in data sets that  produce  one or more eigenvalue 

C G .  

estimates that  are negative. (Covariance matrices are 
by definition positive semidefinite, and so have no 
negative eigenvalues.) HAYES  and  HILL (1981) pro- 
posed transforming  the  estimate of G using a  method 
they term  “bending” in order to  remedy this problem. 
Their  method can be  applied to G whenever negative 
eigenvalues are  encountered if an estimate of the 
phenotypic covariance matrix P is available. 

Often  one would like to know the sampling distri- 
butions of the eigenvalues estimated  for  the  additive 
genetic covariance function. We have developed two 
methods and describe them in detail in APPENDIX c. 
The first method  constructs  separate  confidence limits 
for each eigenvalue by numerical simulation. The 
approach is to  generate ;d simulated covariance matrix 
whose expectation is G but  that includes random 
deviations in the  elements  that  correspond to  the 
sampling error.  The eigenvalues for  the coefficient 
matrix corresponding  to each simulated G are calcu- 
lated.  This  procedure is iterated many times, and  the 
distribution  for each eigenvalue is constructed  empir- 
ically  with the results. The second method uses a chi- 
squared statistic to test hypotheses about  one or more 
of the eigenvalues. Typically, the hypothesis of inter- 
est is whether or not  the observed eigenvalues are 
statistically distinguishable from zero. 

We will now illustrate the  methods  for analyzing 
genetic covariance functions with the full estimate pf 
59 from  the mouse data. All three eigenvalues of CG 
are positive, and so bending  the  data  matrix is unnec- 
essary. Using a  standard  computer Rackage, we find 
that  the first (largest) eigenvalue of Cc is XI = 1361, 
and  the eigenvector associated with it is 

= [0.995, 0.0504, -0.0831IT. 

By substituting this into Equation 8, we obtain the full 
estimate for the first eigenfunction of 9 

$ ] (a )  = 0.7693 - 0.0617~”  - 0.1971~*2. 

The second and  third  eigenfunctions are obtained in 
the same way. The three eigenfunctions are shown in 
Figure 3. The eigenvalues associated with the eigen- 
functions are XI = 1361, X2 = 24.5 and As = 1.5 
(Figure 4). 

Any conceivable evolutionary change in a popula- 
tion’s mean growth  trajectory can be written in terms 
of  a weighted sum of the eigenfunctions. The rate at 
which a population will evolve from its current mean 
trajectory to some new trajectory  favored by selection 
is determined by the eigenvalues associated with the 
eigenfunctions responsible for  that  change.  A  large 
eigenvalue indicates that  a  change  corresponding to 
that  eigenfunction will happen rapidly, while a small 
(or  zero) eigenvalue indicates that  the  change will be 
slow (or will not  happen  at all). 

The first  eigenfunction is a  deformation involving 
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AGE (weeks) 
FIGURE J."Estimates of the three  eigenfunctions and their ei- 

genvalues for  the additive genetic covariance function % 

an overall increase or decrease of size at all ages 
(Figure 3). The large size of the first eigenvalue indi- 
cates that selection will produce  rapid  changes if this 
kind of alteration in the mean growth  trajectory is 
favored. The second eigenfunction  corresponds to 
genetic  changes that increase (or decrease) size be- 
tween ages 2 to 3 weeks, and decrease (or increase) 
size after 3 weeks of age. The third  eigenfunction 
shows a more complex pattern. The second and  third 
eigenvalues, however, reveal that  the  amount of ge- 
netic variation associated with these  eigenfunctions is 
small in comparison with the variation associated with 
the first eigenfunction. These eigenvalues indicate 
that  the  evolutionary response to selection would be 
two or more  orders of magnitude slower for  changes 
involving the second and  third  eigenfunctions  than 
for  those involving the first eigenfunction. 

The 95% confidence  regions  for each of the eigen- 
values constructed by the numerical simulation 
method (described in APPENDIX c) are [ 1 100, 17001 
for A,, [ 17, 331 for AB, and [-2.7, 5.11 for A3 (Figure 
4). We are  therefore  quite confident  that the large 
differences between the estimate of the first eigen- 
value compared with the second and  third  are real. 
The conclusion that  the  estimate  for A3 is not statisti- 
cally different  from zero is confirmed by the chi- 
squared test (also described in APPENDIX c). The hy- 
pothesis that AS equals zero gives x;,, = 0.65 which is 
not significant (P  > 0.1). The hypothesis that  both X2 

and A3 are zero,  however, is rejected (x& = 40.4, 

A qualitatively similar picture of the  pattern of 
genetic variation for mouse growth  emerges  from an 
analysis of the full data set for ages 2- 10 weeks. This 
analysis and its evolutionary implications will be dis- 
cussed in a  later publication. 

P << 0.0 1). 

10000 1- 

7;.3 

EIGENVALUE 
FIGURE 4.-The three eigenvalues of the additive genetic covar- 

iance function Yand their 95% confidence limits (determined by 
the numerical simulation method) on linear (above) and logarithmic 
(bdour) scales. The confidence limits for A3 include zero. 

ESTIMATING T H E  SELECTION GRADIENT 
FUNCTION /3 

Having developed the methods  for  estimating the 
additive genetic covariance function .Y we now turn 
to methods  for  estimating the selection gradient func- 
tion P. The techniques are extensions of the results of 
LANDE (1 979) and  LANDE  and  ARNOLD ( 1  983). Appli- 
cations and difficulties with these  methods are dis- 
cussed by ARNOLD  and  WADE ( 1  984a, b) and MITCH- 
ELL-OLDS and  SHAW (1 987). 

Our strategy here is the same as is used to estimate 
9 The values of p at a  finite number of ages are 
estimated, and  then a continuous  function is estimated 
by interpolating between these points. The selection 
gradient  acting  on any trait is defined as the partial 
regression of the  phenotypic value of that  character 
onto relative fitness, holding the phenotypic values 
for  other traits  constant  (LANDE and  ARNOLD 1983). 
In the  context of growth  trajectories,  the partial 
regression coefficients of relative fitness at each of 
several ages ontp size form  an  estimated selection 
gradient vector b. The continuous selection gradient 
function canJhen  be  estimated by fitting  orthogonal 
functions to b. 

A selection gradient function can be written in 
terms of the same orthogonal functions that were used 
to describe the additive  genetic covariance function: 

(KIRKPATRICK and  HECKMAN 1989). In (9), cg is the 
coefficient vector associated with the selection gra- 
dient  function P. The full estimate of cg that passes 
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through every point in 6 is found using the relation 

to = 0” 6. (10) 

The continuous selection gradient  function is esti- 
mated by substituting the 60 into  (9). Alternatively, 
given informatio? on  the  errors in the estimates of 
the  elements of b, a  reduced  estimate of p can be 
calculated using weighted least squares as described 
in APPENDIX A. 

Estimating the selection gradient  function P thus 
requires  an  estimate of the selection gradient vector 
b. The basic methodologies for  estimating b are dis- 
cussed by LANDE and  ARNOLD  (1983),  ARNOLD  and 
WADE  (1984a,  b),  and MITCHELL-OLDS and SHAW 
(1 987). The methods can be-applied to growth  trajec- 
tories in  two  ways. The first requires  data  on the sizes 
of individuals at each of several ages and  a measure 
of their lifetime relative fitnesses. The selection gra- 
dient vector can then  be  estimated directly as the 
partial regressions of  size onto relative fitness at those 
ages. This is the preferable  approach, but is limited 
to cases in which there is data  on  the lifetime fitnesses 
of individuals. 

In the absence of such data,  an  indirect  method  that 
makes  use  of data on the effects of  size on fecundity 
and mortality can be used if relative fitnesses are 
constant in time. Under  that assumption,  a result from 
LANDE  (1  979) can be  extended  to show that 

6 
p(a) da = - In@), s,- 

where @ is the  population’s mean fitness and 
(6/i$)ln(W) represents  the first variation of ln(v) with 
respect to2 (see COURANT and  HILBERT  1953, p. 184; 
K. GOMULKIEWICZ, in preparation).  Equation I I is 
analogous to  the equation  for  a finite number of 
quantitative  characters, @ = Vln(m) (LANDE  1979; 
LANDE  and  ARNOLD  1983). 

We can make use  of Equation 11 if  we have some 
understanding of  how  size affects fitness. If,  for ex- 
ample, fecundity and mortality rates are functions 
only of size and  age,  then  the  relationship between 
the selection gradient  and  these life history attributes 
is 

O(a> = fdaW ’(a) - fz(a)l*’(a) (1 2) 
where 

and 

Here, l(a) is the probability a  newborn survives to age 
a, m(a) and ;(a) are, respectively, the average  birth 

and mortality rates  among surviving individuals at  age 
a,  and primes denote derivatives taken with respect 
to>*(a),  the mean size  of individuals alive at  age a 
(KIRKPATRICK 1984,  1988). Fitness, on the  other 
hand, may be determined in part by factors other than 
size and  age, such as growth  rate. In these cases, 
Equation 12 can be modified to  account  for the way 
in  which these other factors determine fitness (LYNCH 
and  ARNOLD  1988). 

Using the  indirect  method of estimating  the selec- 
tion gradient  function ,kl depends  on evaluating the 
components of Equation 12  (or its analog, if fitness 
depends  on  more  than size and age  alone). The term 
m ’(a) is the  rate  at which the average  birth  rate of 
individuals alive at age a changes per unit increase in 
the mean size  of individuals. Given census data  about 
a  cohort of individuals at ages ai and a I c l ,  this term 
can be  estimated using the regression of fecundity on 
body size, divided by the  duration of the  interval: 

where ai = (a, + a;+1)/2 is the  midpoint of the interval 
between a, and a,+l. Equation 13 is a  linear  interpola- 
tion that  attributes  the effects of  size on  birth  rate  to 
the midpoint of the interval being  measured. The 
term Cov[m, f ( 4 ]  is the covariance between the num- 
ber of births  over  the interval and body size among 
those individuals that survived through  the  entire 
interval. The average of an individual’s size at  the 
beginning and at  the  end of the interval should be 
used for this purpose. The term u2*(i,) is the mean of 
the variance in  size at  the  start of the  interval and  the 
variance in  size at  the  end of the interval among those 
individuals that survived throughout  the period. Only 
individuals that survive are used  in the calculation 
because the fecundity of individuals that  died in the 
interval is reduced by the reduced time they had in 
which to reproduce. 

The term ;’(a) in Equation 12  represents  the effect 
of a change in the mean body size on  the  average 
mortality rate  at  age a. This is estimated  from the 
relation: 

In (1 4), 2+(a,) is the mean size at age a, of individuals 
that survive to reach  age U ~ + ~ , ~ ( U ~ )  is the mean size  of 
all individuals alive at  age a,, and u2*(al) is their 
variance in size. Equations 13  and  14 follow from 
Equations 11,  12,  and the results of ROBERTSON 
(1 966) and PRICE  (1 970). 

The interpolations of Equations 13 and  14 become 
increasingly accurate as the  amount of growth  that 
occurs over  the interval becomes small relative to  the 
variation in  size among individuals present  at  the  start 
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of the interval. The remaining  terms involved in 
Equation 12, which are the survivorships and mean 
birth  rates  at  different ages, can be  estimated directly 
from census data. 

Given census data  from n times during  the ontogeny 
of a  cohort, this method will estimate the selection 
gradient  function at n - 1 ages. These n - 1  point 
estimates form  a selection gradient  vector b which can 
then be used to estimate the continuous selection 
gradient  function /3 via Equations 9  and  10. 

PREDICTING  THE  EVOLUTIONARY  DYNAMICS 
OF THE  GROWTH  TRAJECTORY 

The estimates of the additive genetic covariance 
function Yand the selection gradient  function P can 
be used directly in Equation 1 to  predict Ay, the 
evolutionary  change in the mean growth  trajectory. 
Using Equation 1 directly is awkward, however, be- 
cause the  integration in (1) must be  performed  for 
each age a at which Aj((a) is to be evaluated. A method 
making use  of Cc, the coefficient matrix  for  the  ad- 
ditive genetic covariance function, and co, the coeffi- 
cient vector  for the selection gradient  function,  cir- 
cumvents this difficulty. Using a  result  from KIRKPAT- 
RICK and HECKMAN (1989),  the evolutionary  change 
in the mean growth  trajectory is 

A,.@) = c [cAJ=]di(U), (1 5) 
2 

where the coefficients cy are given by the matrix 
equation 

CAf = C G C o .  (16) 

The summation in (15)  extends  over all i for which 
[cA,-]' I i s nonzero. 

These formulas allow us to estimate  the evolution- 
ary  change in the mean growth  trajectory following 
one  generation of selection. The full or reduced esti- 
mates of the coefficient matrix Cc and coefficient 
vector cp are determined using the methods described 
in the last two sections. These  are used  in Equation 
16  to  estimate cA2 The result is then  substituted  into 
(1 5) to give an estimate of the evolutionary  change. 

Equation 16 can be applied  regardless of whether 
or not the additive  genetic covariance function and 
the selection gradient  function were estimated at  the 
same ages: transforming  the  measurement  into load- 
ings on orthogonal  functions  puts  the  measurements 
on the same basis. In the event  that  the  number of 
ages used to estimate  the covariance function differs 
from the number used to estimate  the selection gra- 
dient  function, CC and 20 will be  of different  dimen- 
sions. Equation 16 can be applied in such cases by 
truncating  the dimensions of the  larger  one  to match 
those of the smaller. 

A difficulty that arises when studying  natural pop- 

ulations is that  ongoing selection makes it impossible 
to directly observe the unselected distribution of in- 
dividuals at any given age, since mortality at earlier 
ages can alter  the  distribution  that will appear  at  later 
ages. The observed mean size  of individuals surviving 
to  age a ,  for  example, will generally differ  fromy(a) 
because of selection at earlier ages. The same problem 
appears when one  tries to estimate the additive genetic 
covariance function from data  on a population expe- 
riencing selection. The quantities  can, however, be 
estimated if selection is weak by calculating what the 
cumulative effects of selection at  earlier ages have 
been on  the  distribution of sizes among  the survivors. 
The basic methodology has been outlined by LYNCH 
and ARNOLD (1  988). 

DISCUSSION 

The infinite-dimensional method  for analyzing the 
evolution of growth  trajectories  joins two alternative 
methods in current use. Previous workers either have 
treated  the sizes  of individuals at  a set of landmark 
ages as a finite number of traits or have fit parametric 
families  of curves to  the  growth  trajectories. Our 
alternative offers several types  of advantages over 
those methods,  including  the ability to  treat  the full, 
continuous  growth  trajectory without making restric- 
tive assumptions about  the  form of growth curves that 
a population's genetic variation will allow (KIRKPAT- 
RICK and HECKMAN 1989). 

Two additional  benefits to  the infinite-dimensional 
method  appear  from  the  techniques  introduced in this 
paper. First, the  method explicitly accounts  for  the 
spacing of the ages at which the  data were taken. 
There  are advantages to designing breeding  experi- 
ments with unequally spaced sample intervals. Genetic 
variances and covariances change rapidly during  cer- 
tain periods of ontogeny,  often  corresponding  to  crit- 
ical events such as weaning (see Figure 2; see also 
HERBERT, KIDWELL and CHASE 1979; CHEVERUD, 
RUTLEDGE and ATCHLEY 1983; ATCHLEY 1984). Pe- 
riods in which the variance structure is changing 
rapidly should receive a  greater sampling effort. 
(Ideally, the  frequency at which data is collected 
should be proportional to how rapidly the variances 
are changing at that  point in development.) The infi- 
nite-dimensional approach allows an investigator to 
concentrate  effort  on the critical periods,  but also  give 
these measurements  the  appropriate weights when 
estimating the population's response to selection. 

A second additional benefit to using this approach 
is that  the ages at which the genetic parameters  are 
estimated and  the ages at which the  strength  of selec- 
tion is evaluated need not be the same. I t  may often 
be the case that logistical reasons make it hard or 
impossible to  take these data  at  the same ages. This 
w i l l  immediately eliminate  the possibility  of using con- 
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ventional quantitative-genetic  methods, since they re- 
quire  that  the  characters  on which the  genetic and 
selection parameters are measured are homologous. 

The price paid for  these  advantages is that  our 
method relies on  an assumption of infinite-dimen- 
sional normality in the  distribution of the additive- 
genetic component of the growth  trajectories. The 
normality assumption is basic to classical quantitative 
genetics, and has support  from both empirical studies 
and several kinds of models for  the effect of genes at 
the  underlying loci (FALCONER  198 1 ; BULMER 1985; 
BARTON and TURELLI 1989). The genetic effects for 
even a single trait  can,  however, depart  from normal- 
ity ( e .g . ,  ROBERTSON 1977). Thus an important ques- 
tion in quantitative genetics is the  extent  to which 
multiple quantitative  traits (including growth trajec- 
tories) conform to multivariate normality. This is an 
empirical question, since at present it seems unlikely 
that it can be resolved by theory (TURELLI 1988). 
Models such as ours that  are based on a normality 
assumption, however, may provide reasonable ap- 
proximations for the evolution of the mean pheno- 
types even when this assumption is violated if the 
departures  are small. 

We are  grateful  to R. GOMULKIEWICZ  and F. H. C. MARRIOTT 
for  important suggestions regarding  the mathematical analysis. We 
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TURELLI, and two anonymous reviewers made  numerous helpful 
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Science Foundation  grants BSR-8604743 and BSR-8657521 to M. 
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APPENDIX A 

Here we present  a  method  for  fitting  a  reduced 
estimate of Yand testing  for its consistency with the 
data. We then  illustrate the  procedure using the  data 
on the log of male mouse weight at ages, 2, 3  and 4 
weeks from RISKA, ATCHLEY and RUTLEDCE (1984). 

Finding a reduced estimate: Recall that a  reduced 
estimate is one consisting of k orthogonal functio;s, 
where k is smaller than n (the dimensionality of G, 
which equals the  number of ages at which measure- 
ments of body size were obtained). Given a set S of k 
orthogonal  functions, we use the  method of weighted 
least squares to fit the k X k reduced coefficient matrix e,. This produces the most statistically efficient esti- 
mate of the coefficient matrix  that can be  obtained 
from  a  linear  function of the  elements of G (DRAPER 
and  SMITH  166, p. 80). T o  apply weighted least 
squares, we begin by forming  the vector g by stacking 
the successive columns of G: 

1 -  g = (611, . . . )  G,l, G12, * * e ,  e n 2 ,  . * e ,  d,,)T. 

This vector has dimension n2. The vector 2. = (&I, 
. . . , ckO, cOl, . . . , e k l ,  . . ., &k)T is formed in the same 
way from  the (as yet undetermined) coefficient matrix e,, and has dimension k 2 .  In this notation,  the  relation 
between the  undetermined coefficients and  the ob- 
served genetic covariances is given by the regression 
equation 

* . \ .  

g = X s 2 . + e ,  (AI) 

where e is a  vector of errors  and  the matrix Xs is 
determined by the set S of orthogonal functions. The 
matrix Xs is calculated by first forming Qs, the n X k 
matrix  obtained by deleting the columns of 9 corre- 
sponding to those 4 not in S, then  taking the Kron- 
decker  product of Qps with itself: 

XS = Qs €3 = [ (Qs)~; Q s ,  (Qs)~; 9 s  : -1 . (A2) 
( Q S ) l I  Qs ( W 1 2  Qs * 

This is a  matrix of dimensions n 2  X k2. 
Calculating 2. also requires the covariance matrix-V 

of the  errors in the estimates of g: V,,k, = Cov[G,, 
6 ~ 1 .  V can be  estimated given the particular design of 
the  breeding  experiment used to estimate G .  We 
present the general  method  for calculating e, the 

estimate of V, and apply it to  three widely  used 
experimental designs (parent-offspring  regression, 
half-sibs, and full sibs)  in APPENDIX B. 

In typical regression applications, a least-squares 
estimate of the coefficients in c would follow directly 
from  the linear form of Equation A1 and  the specifi- 
cation of Xs and V. The symmetry of G ,  however, 
produces  redundancies in the  vector g that cause V 
to be singular and so prevents us from calculating 2. 
from Equation A1 immediately. We therefore make 
the following modifications: 

1. Delete from 9 those columns and rows corre- 
sponding to elements of g whose entry G, has i < j .  

2. Delete from Xs the rows corresponding to those 
elements of g for which G,j- has i C j. 

3. For each element of 2. for which Cy has i < j, add 
the corresponding column of Xs to  the column  cor- 
responding to Cj,, then  delete  the  former column. 

4. Delete from g the elements  for which G,j- has 
i < j .  

5. Delete from 2. the elements for which C,j- has 
i < j .  
Following these operations, 9 has dimensions n(n + 
1)/2 X n(n + 1)/2, Xs becomes n(n + 1)/2 X k(k + 1)/ 
2, g becomes n(n + 1)/2 X 1, and 2: becomes k(k + 1)/ 
2 x  1. 

We  now can calculate 2. using standard weighted 
least squares procedures [see, e.g. DRAPER and SMITH 
(1966, pp. 77-81) and BULMER (1985, pp. 60-61)]: 

2. = (XsT iT-' XS)" XsT 9-1 g. (A3) 

The reduced coefficient matrix e G  is then  constructed 
from 2.. First, form  a  matrix by restoring  the  elements 
deleted in Step 5 above, and "unstacking" the col- 
umns. Then insert a row and a  column of zeroes in 
the positions corresponding to those orthogonal func- 
tions not  included in Qs to obtain e,. (For  example, 
if the  first-order  orthogonal  function, has been 
omitted,  a row of zeroes would be  inserted  into Cs 
between the  0th  and  2nd rows, and  a column of zeroes 
between the  0th  and  2nd columns.) The reduced 
estimate @of  the additive  genetic covariance function 
is then  obtained by substituting e G  into  Equation 3. 

Having produced  the  reduced estimate 9 using the 
set of orthogonal  functions S, we want to test the 
goodness of fit of 9 to G. We have adopted  a proce- 
dure that  approximates  the  distribution of errors in 
the  estimated 6,, by a multivariate normal. Using this 
approximation, the consistency of 9 and G can be 
determined using the  standard test for  the fit of a 
regression model [see DRAPER and SMITH (1966, pp. 
77-81) and BULMER (1985, pp. 60-61)]. We test the 
chi-squared statistic 

= (g - xs ;)T 9" (g - Xs E), (A4) 
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where m = n(n + 1)/2 is the  number of degrees of 
freedom in G and p = K ( K  + 1)/2 is the  number of 
parameters  being fit. A significant result indicates that 
the model is inconsistent with the  data, in  which case 
we attempt  to fit a model consisting of a  larger  number 
of orthogonal functions. 

Because we are approximating  the errors in the G,’s 
as multivariate normal,  the chi-squares test does  not 
produce  exact probability values.  We expect  it, how- 
ever,  to be a reasonable guide that discriminates be- 
tween candidate covariance functions  that fit the  data 
reasonably well and those that do not. More accurate 
tests could be developed with numerical simulation. 

In summary, the algorithm for finding  the  reduced 
estimate of the covariance function is as  follows.  Esti- 
mates of the additive covariance function are obtained 
by fitting  orthogonal  functions in a stepwise manner 
using weighted least squares  (Equation Al). Each  es- 
timate is tested against G using an  approximate statis- 
tical test given by Equation A4. The reduced estimate 
is the simplest set of orthogonal  functions (e.g., the 
polynomial of  lowest degree) which when fit produces 
an estimate of Y that is not statistically different  from 

A worked example: T o  illustrate the  method, con- 
sider a  reduced  estimate  for  the mouse data consisting 
of the first two Legendre polynomials (that is,  th_e 
polynomials of degrees 0 and 1). The data  matrix G 
is given in the text (following Equation 7). Following 
the steps outlined  above, we have 

g = [436.0,  522.3,  424.2,  522.3, 

A 

6. 

808.0,  664.7,  424.2,  664.7, 558.0IT. 

The matrix CPS is found by deleting  from  the  matrix 
CP (given in the  text, following Equation 7) the  third 
column,  corresponding to  the missing 2nd degree 
polynomial. This gives: 

[ 
0.7071  -1.2247 

0.7071  1.2247 O 1- CPS = 0.7071 

From Equation A2 and  the steps listed above we find 
that 

-0.5 -0.866 -0.866 1.5- 
0.5 0.0 -0.866 0.0 
0.5 0.866 -0.866 -1.5 
0.5 -0.866 0.0 0.0 

0.5 0.866 0.0 0.0 

0.5 0.0 0.866 0.0 
-0.5 0.866 0.866 1.5 - 

Xs = . 0.5 0.0 0.0 0.0 

0.5 -0.866  0.866  -1.5 

Using the  method described in APPENDIX B, we find 
that 6, the  estimated covariance matrix  of errors in 

g, is 

2752 3187 2541 3187 
3187 4527 3504 4527 
2541 3504 3057 3504 
3187 4527 3504 4527 
3692 6210 4708 6210 
2944 4830 4058 4830 
2541 3584 3057 3584 
2944 4830 4058 4830 
2347 3754 3477 3754 

3692 2944 2541 2944 2347- 
6210 4830 3584 4830 3754 
4708 4058 3057 4058 3477 
6210 4830 3584 4830 3754 

7921 6673 4058 6673 5562 
4708 4058 3057 4058 3477 
7921 6673 4058 6673 5562 
6005 5562 3477 5562 5 155- 

10453 7921  4708  7921 6005 . 

We  now  follow the steps prescribed ?hove. Step 1, 
which deletes rows and columns from V, produces 

2752 3  187 2541 3692 2944 2347 
3187 4527 3504 6210 4830 3754 
2541 3504 3057 4708 4058 3477 
3692 6210 4708 10453 792 1 6005 ‘ 

2944 4830 4058 7921 6673 5562 
2347 3754 3477 6005 5562 5155 1 

By deleting rows from XS (Step 2 above) yields 

0.5 -0.866 -0.866 1.5 
0.5 0.0 -0.866 0.0 

0.5 0.866 0.0 
0.5 0.866 0.866 

The vector of coefficients, c = [coo, clo, cui, clIlT, 
contains the  element col for which i <j .  In Step 3 we 
therefore  add  the  third column of Xs to  the second, 
then  delete the  third  column.  This leaves the  matrix 
in  its final form: 

0.5 -1.732 

xs = 0.5 0.0 0.0 . 
0.5 0.866 0.0 
0.5 1.732 

Removing the  redundant elements in g (Step 4) 
gives 

g = [436.0,  522.3,  424.2,  808.0,  664.7,  558.0IT, 

and  doing  the same for Z: (Step 5) produces = [ C O O ,  

co1, 6111 , 
T 
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The reduced coefficient vector E is calculated using 
Equation  A3. This gives 

E = 1624.3, -13.8,  16.3IT, 

and so 

[ 0.0 0.0 0.0 1 624.3 -13.8 0.0 
CG = -13.8  16.3 0.0 . 

By using these coefficients in Equation  3, we arrive 
at  the  reduced  estimate of Ythat consists of the 0 and 
1 st degree  Legendre polynomials: 

@(al,  ~ 2 )  = 312.2 - 11.9(a: + a:) + 24.5a:~:. 

The reduced  estimate .!@ can be  tested against the 
observed  genetic covariance matrix G using the chi- 
squared statistic of Equation  A4. We find x2 = 38.68. 
Since G has m = 6  degrees of freedom  and we have 
estimated p = 3 coefficients, we test the statistic with 
3  degrees of freedom  and find that  the difference 
between the  reduced  estimate @ and  the observed 
values G are highly significant. We therefore reject 
the  reduced  estimate consisting only of the 0 and 1st 
degree  Legendre polynomials. 

Following the same procedure  for all other combi- 
nations of 0, 1st and  2nd  degree  Legendre polyno- 
mials  shows that only the-full estimate consisting of all 
three is consistent with G. The  error variance of the 
Gq's in these  data is therefore sufficiently small that 
no reduced model is acceptable,  although this may 
often  not  be  the case for smaller data sets. The full 
estimate 9 is shown in Figure 2. 

APPENDIX B 

This  appendix describes methods- to calculate V, 
the covariance matrix of errors in G ,  the estimated 
additive  genetic covariance matrix. We use the nota- 
tion vij,kl to  denote  the covariance of Gij and 6 k l .  Below 
we present  formulae  for  estimating V Yrom three 
widely  used breeding designs: half sibs, full sibs, and 
parent-offspring  regression. 

In  the following calculations, we will often  need  an 
expression for  the covariance of two mean cross prod- 
ucts. From classical statistics theory we have the result 

Cov(Mq, M U )  = (MikMjl + MilMjk)/fr (B1) 

where M ,  is the mean cross product of variables i and 
j ,  and f is the  number of degrees of freedom  (ANDER- 
SON 1958, p. 161; BULMER 1985, p. 94). Replacing 
each of the M ' s  with its estimate M and dividing by 
(f + 2) rather  than f yields fi,,hi, an unbiased estimator 
of the covariance. 

Half-sib  analysis: In  the classic half-sib analysis, s 
sires are each mated  to n dams, and  one offspring is 
measured  from each mating. An  analysis of variance 

and covariance partitions the observed variation 
among  the  offspring  into  components  among sires 
and a residual [see FALCONER (198  1, p. 140) and 
BECKER (1984, pp. 45-54, 113-1 IS)]. The additive 
genetic component of variance is estimated as 

6,. 'I = 4(M aJJ .. - Me,q)/n,  (B2) 

where Ma,q is the mean cross-product among sires, Mea 
is the residual mean  crossproduct, and n is the  number 
of offspring per sire in a balanced design. (The mean 
crossproducts Ma,v and Me,q are defined so as to be 
independent.) The sampling covariance is therefore 

Ijrl ,kl  = Is [Cov(Ma,v, Ma,,,,) + Cov(ke,g, ke ,~) ] ,  (B3) 
n 2  

where the covariances of the M ' S  are given by Equa- 
tion B1. 

We often want to  estimate V from  data summaries 
in the  literature  that do not  include  the  estimated 
mean cross products. These quantities  can, however, 
be back-calculated from  the  estimated  acditive  genetic 
and phenotypic covariance matrices G and P that 
frequently are  reported.  In a half sib analysis, the 
necessary relations are 

A M . = p. .  - - G . .  - 1 -  
~ J J  'I  'I (B44 

and 

M a , q  = - 6, + i$. (B4b) 
n- 1 

4 

Substituting (B4) into (B3) then gives an estimate of 

Full  sib  analysis: In this breeding  design, each of s 
sires is mated to d dams, and n progeny are measured 
per  dam [see FALCONER (1981,  pp.  140-141)  and 
BECKER (1984, pp. 55-65, 119-127)]. The resulting 
nested analysis  of variance and covariance yields two 
estimates of the genetic covariance: 

vij,kl. 

63.9 = ~(Ms, ' I  - Md.q)/nd, (B5a) 

and 

&,q = 4(Md,q + Me,q)/n, (B5b) 

where M s , q ,  Gd,q, and M e , q  are respectively the esti- 
mated  among sires, among  dams, and residual 
crossproducts. The two estimates of the G's give rise 
to two estimates for  the V's:  

V" - -y,kl  - - [cOV(k~,,j, M s , k l )  cOV(fid,q, f i d , ~ ) ]  (B6a) 
16 

n2d2 

and 

16 
n 

@qj,kl = 7 [COV(Me,q, h e , k l ) +  COV(M~,~,  f i d , k l ) ] ?  (B6b) 
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where the covariances are again calculated using 
Equation A 1. The two estimates of V obtained  from 
(B6a) and (B6b) can be averaged to give a single 
composite estimate. 

The k7s that  appear in (B6a,b) can be  obtained 
from reported values of Gs,  Gd, and P using 

1 
M,,q = Pi, - - ( G q  + Gd,q), 4 (B7a) 

and 

Parent-offspring  regression: When parent-off- 
spring regression [see FALCONER (1 98 1, pp.  136-  140) 
and BECKER (1984,  pp.  103-106,  133-134)] is used, 
the  additive  genetic  covariance of trait i with trait j 
can be  estimated using 

Gq = (Mq + M9)/2,  038) 

where Mq is the estimated  crossproduct  for  trait i in 
the parents and  trait j in the offspring. That is, 

where z b  is the mean of trait i in  family k, ZP is the 
overall mean of zi in the  offspring, z$k is the midparent 
value of trait j in  family k, Zf is the overall mean of 
trait j  in the  parents,  and f is the degrees of freedom. 
Our estimate of the sample covariances of the genetic 
covariances are  then readily obtained  from  Equation 
B1 as 

Variation in  family  size can be taken into  account 
using a  form of weighted regression (KEMPTHORNE 
and TANDON 1953). Doing so results in each mean 
crossproduct, Mu, being multiplied by a weight, wi, 
which is the reciprocal of the variance of the offspring 
means about  the regression line. The weight of trait 
zi is 

where pi is the intraclass correlation of trait zi in the 
offspring (= h2/2 for midparent regression in the 
absence of dominance and environmental  correlations 

between sibs), /3q is the slope of the parent-offspring 
regression, P,i is the phenotypic variance of zi, and n 
is the  number of offspring per family (KEMPTHORNE 
and TANDON 1953;  BOHREN, MCKEAN and YAMADA 
1961;  BULMER 1985, p. 79). If  family  size varies, 
weighted regression should be used to estimate the 
genetic parameters. pi and p,, can either be guessed, 
or estimated  from the data and used to iteratively 
calculate the regression coefficients (cf: BULMER 1985, 
pp. 83-84). Note, however, the latter  method yields 
biased estimates of the  parameters  (BOHREN, MCKEAN 
and YAMADA 196  1). 

APPENDIX C 

This appendix describes in detail two methods  for 
testing hypotheses about  the  estimated  additive ge- 
netic covariance function 9 The first tests whether 
one  or  more  of  the eigenvalues of Yare statistically 
indistinguishable from 0. The second is a numerical 
method  for  constructing  the  confidence limits of  the 
eigenvalues of 9 In this appendix we make use of the 
notation and results of APPENDIXES A and B. 

T o  find confidence limits on  the estimates of the 
eigenvalues of we begin by forming  the n(n + 1)/ 
2-dimensional vectorAg  from  the diagonal and subdi- 
agonal elements of G (as described in APPENDIT A) 
and  the n(n + 1)/2 X n(n + 1)/2  error matrix V (as 
described in APPENDIX B). The elements of an  additive 
genetic covariance matrix simulated with error  are 
calculated as 

g' = + $'/.e, (C1) 

where $'" is the matrix  square root of 9 and e is a 
n(n + 1)/2-dimensional vector of uncorrelated,  nor- 
mally distributed  random variates with expectation 0 
and variance 1. The simulated covariance matrix G' 
is then  reconstructed  from  the  elements of g'. The 
corresponding coefficient matrix CG' is determined 
using Equation 5,  and its eigenvalues calculated. The 
values are  recorded,  and  the  entire  procedure reiter- 
ated. We have been using 1000  iterations in our 
analyses. 

The a-percent confidence limits for each eigenvalue 
can then  be  determined directly by the  range included 
by 1 - a of the values. Confidence  regions  for  the 
values  of the  eigenfunctions at any specified points 
(ages) of interest can be  determined  at  the same time. 

Our second method tests the hypothesis that  one  or 
more of the estimated eigenvalues of !Y is statistically 
indistinguishable frFm 0. We can write  the  estimated 
coefficient matrix Cc in terms of  its eigenvalues and 
eigenvectors: 

C G  = u A UT, (C2) 

where A is a dia_gonal matrix whose elements are  the 
eigenvalues of CG and U is a  matrix whose columns 
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are  the  corresponding eigenvectors.  We then  generate 
a coefficient matrix CL by setting  one  or  more of the 
eigenvalues in A in Equation C? equal to 0. The 
genetic  covariance  matrix G* is constructed using 

G* = 9 CE aT, (C3) 

from which vector g* is formed  from  the lower diag- 
onal  elements of G* in the same way that g was. The 
hypothesis of  zero eigenvalues is then  tested with the 

chi-squared statistic 
x 2  = (g - g*)T +-yg - g*) (C4) 

with t( t  + 1)/2 degrees of freedom,  where t is the 
number of  eigenvalues that have been set to zero.  If 
this reaches  a significant value, then  the hypothesis 
that those eigenvalues are zero is rejected. The same 
procedure can be used to test a hypothesis that  one 
or  more eigenvalues are equal to some specified values 
other  than zero. 


