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ABSTRACT 
The effect of large population size on selection response was investigated using Drosophila melano- 

gaster, with four “small” lines of 160 selected parents/generation compared to two “large” lines  of 
1600 selected parents/generation. All lines were selected under similar conditions at  a selection 
intensity of approximately 0.55  standard deviations, for 65 generations, for increased ethanol vapor 
resistance (measured in minutes required  to become anesthetized). Two unselected control lines of 
320 parents/generation were  also maintained. A significant effect of population size  was found. The 
final treatment means and standard errors were: 27.91 f 1.28 min (two “large” lines); 19.40 f 1.54 
min (four “small” lines); and 4.98 f 0.35 min (two control lines). To  estimate the mutation rate  for 
the  trait, two isogenic  lines  of about  400 selected parents were  selected for 29 generations. The mean 
increase in additive genetic variance per generation was 0.0009 times the initial environmental 
variance of the  outbred lines. This is comparable to  other  reported mutation rates. Mutation can 
explain part of the difference in evolved resistance between treatments, but it appears that even at 
rather large population sizes, a large difference in long-term response can  be obtained in larger 
outbred lines, from more complete utilization of the initial genetic variation. 

L ARGER populations have two related evolution- 
ary  advantages,  as  explained by FISHER (1930). 

One advantage of larger size is the  greater accumu- 
lation of new genetic  variation,  arising  from all types 
of mutation and  from  the synthetic aspect of recom- 
bination.  Another  factor is the  greater efficiency of 
selection in sorting existing genetic diversity: as pop- 
ulation size increases, the threshold of effective neu- 
trality (FISHER 1930, p. 102) is lowered, so that  more 
genes of smaller effect can  be enlisted. 

Sorting efficiency alone,  as  an effect of population 
size, was first modeled in quantitative  genetic  terms 
by ROBERTSON (1  960), with some debt  to DEMPSTER 
(1955)  and KIMURA (1957).  Mutation was omitted in 
the belief (CLAYTON and ROBERTSON 1955)  that it was 
negligible on  the time scales of artificial selection. 
More  recently,  FRANKHAM  (1  980a) and Yo0 (1  980b) 
have demonstrated  that  mutation can contribute  to 
response during selection experiments, especially  in 
large populations. Since then mutation has been in- 
corporated  into  the Robertsonian model by HILL 
(1  982a,b)  and FRANKLIN  (1  982). 

In ROBERTSON’S (1 960) model assuming infinitesi- 
mal gene effects, selection of intensity i on a popula- 
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tion with  size Ne, phenotypic  standard deviation S,, 
and additive  genetic variance Sf, produces  a maxi- 
mum  eventual response of  2N,iSz/Sp. By extension 
(HILL  1982a,b), if new mutational variance accumu- 
lates steadily at Sf per  generation,  then,  after all the 
original  genetic variability is depleted, 2NeiSf/Sp is the 
maximum eventual  response rate per  generation,  for 
continuous evolution fueled by fresh  mutations. 

It is not clear whether significant response rates can 
be sustained by mutation.  DARWIN  (1859), FISHER 
(1 930), MULLER (1  964), KIMURA (1  979),  and  others, 
have all pointed out in different  arguments  that  larger 
populations  can  accumulate  higher levels of heritable 
variability, and should therefore evolve faster  than 
smaller populations when equal selection is applied. 
However,  complete  divergence of opinion has existed 
over  the ability of mutation to supply continual new 
additive  genetic variation to populations under selec- 
tion, at rates sufficient for substantial continuous 
change. If new additive  mutations are  rare (WRIGHT 
1977a: “exceedingly rare”),  then  after  the initial ad- 
ditive variation is used up,  continuing gains in large 
populations  might only come with selection between 
interaction systems among subpopulations, diversified 
by drift.  According to WRIGHT, DARWIN and  others 
since him have  overlooked the indispensable role of 
between-population selection (and of interactive 
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genes) in evolution and in the improvement of do- 
mestic breeds (WRIGHT 1982).  However, if additive 
variation arises continuously, and if it provides the 
main material of major  change (MULLER 1932),  then 
sustainable rates of evolution may actually rise indef- 
initely with population size (FISHER 1930; MULLER 
1964). An intermediate view  is also  possible (MAY- 
NARD SMITH 1976; HILL 1982a), in  which mutation 
rates suffice to raise eventual response in proportion 
to population size, but only up  to some size range 
where all potential sites are  represented by their full 
range of potential mutations. 

How large  a part of the genome can contribute, 
immediately or potentially, to  the additive genetic 
variation affecting any trait? If much  additive  genetic 
variation resides in  many genes of individually small 
effect (FISHER 1930; GREGORY 1965),  then  the in- 
creased efficiency of selection in larger  populations 
could  extract significantly larger gains. At the  other 
extreme, if quantitative  traits are typically determined 
by few  loci  with  few alleles, very large size  in a pan- 
mictic population becomes superfluous, under any 
model of gene  action. 

The experimental results presented  here  include 
assays  of long-term response rates in large,  replicated 
inbred  and  outbred lines, for  the  trait of ethanol  vapor 
resistance. The outbred populations were of two 
sizes-the “small” populations were nearly as  large  as 
the largest previously reported long-term selection 
lines for this type of study (JONES, FRANKHAM and 
BARKER 1968),  and  the  “large” populations were ten 
times larger  than  the “small.” The population size  of 
the  inbred lines (during selection) was nearly inter- 
mediate to these on a log scale. Response in the  inbred 
lines can be used to estimate the  rate  at which new 
additive  genetic variance is generated  for this trait.  In 
the  outbred lines, response results partly from new 
mutation and partly from  preexisting variability. As 
the  outbred lines of different size were all founded 
from  the same genetic base and selected by identical 
procedures,  the  combined results give some idea of 
the relative importance of old and new variation, and 
of population size itself, in a size range where no 
previous long-term studies exist. 

MATERIALS AND METHODS 

Experimental  apparatus: Selection for ethanol vapor 
resistance was performed using an apparatus which sorts 
large samples of  flies automatically for resistance to gas- 
phase agents. The original “inebriometer”  and methods of 
its operation are described in detail in  WEBER (1986, 1988). 
Replicas  of  this  system  have been used by COHAN and  GRAF 
(1985), WHITAKER and NASH (1 987), and  FRANKHAM, Y o 0  
and SHELDON (1988). The measurement of ethanol vapor 
resistance requires only a stream of air diffusing through 
liquid ethanol, then passing through an anesthetization 
chamber and  out an exhaust. With this arrangement, if the 
air flow rate  and  the  temperature of the evaporating ethanol 

are strictly controlled, a constant and uniform vapor con- 
centration can be maintained throughout  the anesthetiza- 
tion chamber. Flies  placed  in the chamber are gradually 
anesthetized and lose the ability to cling.  Eventually  they 
fall through  an exit funnel in the bottom of the chamber 
and  into successive test tubes of a fraction collector, where 
they recover. This gives a bell-shaped distribution with time 
as a  parameter of resistance. The key to the system is the 
design  of the anesthetization chamber, which is a 122 cm x 
7 cm vertical glass cylinder, filled  with a series of  sloping 
mesh  baffles on alternate sides. These interpose a large 
surface area of excellent footing below the flies, so that they 
are unlikely either to wander or fall through  the exit until 
fully incapacitated. The precision  of fractionation increases 
with this area. 

Selection on outbred lines: The base  stock for  the present 
experiments came from wild  flies caught at  a cider press 
near Lincoln, Massachusetts,  in September 1981. Out of 
350 isofemale  lines, 10 were chosen for good growth on 
cornmeal medium. Equal numbers of  flies from these 10 
lines were combined to set up the lines for  the  present study, 
which began  in December 198 1. Four “small” lines were set 
up to be continued each generation with 160 selected par- 
ents, and two ‘‘large’’ lines to be continued with 1600 
selected parents. Two control lines were also maintained 
with 320 parents/generation. All cultures were grown in 
half-pint milk bottles with cornmeal medium, set up with  40 
flies per bottle. Insertion of  half a  paper towel into each 
bottle made cultures highly productive. 

Progeny were always allowed to  mature  and mate at 
random in the  culture bottles before selection. Selection was 
always of the  top  20% of each sample, and sexes  were not 
distinguished during selection nor in setting up the next 
generation. Since  females are a little stronger than males, 
unequal selection differentials are applied to  the sexes  in 
this system (about 30% of  females  were selected, and  10% 
of  males).  Because  females mate randomly before selection, 
selection on males is actually approximately at  random,  and 
therefore  the  true selection differential is one half the 
selection differential applied to females. The average true 
selection intensity (i) was thus only about  0.55 standard 
deviations. Since about  75% of selected flies  were premated 
females, each representing a pair of parents, the number of 
parents per line is actually 2 X 0.75 times  as large as the 
number of  flies  used to set up the cultures, so that in  “small” 
and  “large” lines about 240 and 2400 parents  per line could 
be represented genetically each generation. The control 
lines were set up with unselected flies and  therefore with 
equal numbers of  males and females, so that  the  true found- 
ing density was about 20 pairs per bottle for  the 8 bottles in 
each control line. 

Selection on inbred lines: The inbred selection  lines were 
derived from the Bowling Green Stock Center strain of the 
mutant raised, which  was inbred for 26 generations by 
crossing brothers  to virgin sisters, through  a single  line of 
descent. This line was then expanded to give three identical 
lines.  Lines A  and  B were selected at 25% of  all  flies, 
equivalent to approximately 35% of  all  females. These fe- 
males mated randomly before selection, so that i = 0.529 
(FALCONER, 1981). Approximately 400 selected flies were 
used  as parents each generation in  lines A and B (respective 
harmonic means were 425  and 379). Line C was maintained 
without selection or  further inbreeding, with 50 to 400 
parents per generation. There were 29 generations of selec- 
tion. Four additional interspersed unselected generations 
occurred,  but these were near  the  end of the experiment SO 

their effect on the average mutation rate is ignored. 
The scale of ethanol resistance. Resistance time is a 
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function of  vapor concentration, which is controlled by the 
temperature of the  evaporating  ethanol. Thus the mean 
resistance  time  of a sample  depends  on the ethanol  temper- 
ature setting,  and with higher or lower  means the whole 
distribution  expands or contracts  proportionately. The coef- 
ficient of variation is constant  for  replicated  samples  meas- 
ured at different  ethanol  temperatures (WEBER 1986). 

The temperature of the evaporating  ethanol is controlled 
by  means  of an  enclosing  circulating  water  bath.  In  the  early 
generations of  selection  lower ethanol  temperatures were 
used to  elevate  and  expand  the  distributions,  for  increased 
precision in determining  the 20% truncation  point. But as 
the selected  lines  evolved  longer  resistance  times, it became 
a practical  necessity to  raise  the  ethanol  temperature  for  all 
lines  periodically, so that  selection  runs  could still be  kept 
within the  convenient  time of 60 min  maximum,  while 
control  runs were  compressed to  shorter  times.  Eventually 
resistance  time in some  selected  lines  was  over 500% as  long 
as  resistance  time in the controls.  Meanwhile the  ethanol 
temperatures used to  measure  resistance  time  had  been 
increased  from 19" to 24". Tests  showed that  the  ratio 
between  real-time  resistance  means of  any  two  lines is con- 
served  within the  range of temperatures  that were  used 
(WEBER 1986). Therefore over  the  long term, all  resistance 
parameters of  selected  lines  can  best  be  given  as  ratios to 
the control  lines' mean for the same generation,  measured 
at the same ethanol temperature. The units of this scale are 
minutes/control  minute, so that any parameter of a selection 
line is convertible  to  real  minutes for some ethanol  temper- 
ature if multiplied by the mean  of controls at that  temper- 
ature (or by the square of the mean in the case  of variances). 

Ethanol  vapor  resistance  appears  to  be a typical quanti- 
tative  trait  under  control of multiple loci (WEBER 1986; 
COHAN,  HOFFMANN and GAYLEY 1989).  Neither  the fre- 
quencies (COHAN and GRAF 1985; WEBER 1986)  nor  the 
activities (G. CHAMBERS and WEBER, unpublished) of the 
fast and slow  allozymes  of  alcohol  dehydrogenase  predict 
ethanol  vapor  resistance in this  system. 

RESULTS 

Selection on outbred  lines: The evolution  of 
ethanol resistance in all 6 lines is shown in Figure  1, 
averaged  over  periods of 10,  15, 15, 15,  and  10 
generations. Resistance is graphed  as  the  ratio of 
selected  mean to control  mean, i .e. ,  in units  of min- 
utes/control minute (see MATERIALS AND METHODS). 
Mean resistance rose from 1  (equal to controls) to 
over 5 (>500%  of  controls) in the  large lines by the 
last generation.  At  the  beginning, response  rates  were 
indistinguishable, with realized heritabilities  of  ap- 
proximately 0.22, as determined by regression  of re- 
sponse on cumulative selection differential  over the 
first  9  generations. The response rate declined  a  little 
in the  larger lines, but declined  much more in the 
smaller lines. As early as generation  20,  total  response 
in all lines was already in order of population size. 
During  a  period halfway through  the  experiment, 
response appeared  to lag and  then rise again  in  some 
lines, but  this was due  to a  temporary  environmental 
change.  During  this  period,  malfunctioning  of the 
walk-in culture  chamber  kept  the  relative  humidity 
almost at zero,  depressing the  measured resistance of 
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FIGURE 1.-Response to selection for  ethanol resistance, aver- 
aged over intervals of 10,  15,  15, 15 and 10 generations. Resistance 
is  in minutes/control-minute, ie., the ratio to control resistance in 
the same generation.  Large populations: L1 (-); L2 (----). 
Small populations: S1 (-..-. .-..); S2 (.....); S3 (-----); 54 
(-.-.-.- ). 

TABLE 1 

Ethanol  vapor  resistance 
~~ 

Response to selection 
~~ 

Source d.f. SS MS F 

Population size 1 96.498  96.498 12.15* 
Replicate lines 4 3 1.778 7.944 

* P = 0.025. 

some lines more  than  others.  After this was corrected 
all the lines were again clearly differentiated in order 
of population size, and  the  magnitude of the differ- 
ences  continued  to  increase. 

The total  response  of  each line was estimated from 
the mean  of the last three  generations,  measured with 
ethanol  evaporating  at 24". The final treatment 
means of resistance time, with standard  errors, were 
27.91 k 1.28 min for  the two  large lines, 19.40 1 
1.54 min for  the  four small lines, and 4.98 1 0.35 
min for  the two control lines. The final mean  response 
(selected - control)  of  the  larger lines is therefore 
59%  greater  than  the mean  response of the smaller 
lines. A one-way analysis of  variance on  the total 
response  means  of the six selected lines, with treat- 
ment as main effect, shows a significant effect  of 
population size (Table  1, P = 0.025). 

By the  end of the  experiment,  the six selection lines 
appear  to fall into two distinct  categories, with a lower 
group comprising S 1, S2 and S4, and  an  upper  group 
comprising L1,  L2  and S3. However,  the resistance 
of flies in line S3 is not actually as high as it appears. 
In all other selection lines flies tumble  out when they 
become unconscious, and  then  recover. The flies in 
line 53 developed  a  unique unconscious clinging re- 
sponse which prevented many of them  from falling 
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FIGURE 2.-Response to selection  as a function  of  cumulative 
selection  differential.  Same  symbols as in  Figure 1. 

until actually dead. The upper  end of each sample 
exhibits  a  long tail of extremely  high  scoring individ- 
uals  which inflate the mean by their suicide, requiring 
larger samples in order  to obtain  enough survivors. 
[A comparable  outcome of ethanol vapor selection 
was observed by COHAN  and HOFFMANN (1986 and 
personal communication) in a  pair of lines from  one 
locality.] Thus S3 is not actually in the same resistance 
category as L1 and L2, or any other line. Since we do 
not know  how to  correct  the  apparent resistance of 
S3, the scores of this line are taken at face value here, 
although this reduces the difference between treat- 
ment means and  the significance level  of the analysis 
of variance (Table 1). Except for  the anomaly of line 
S3, the means of the lines are well grouped by treat- 
ment. 

The standard deviation in the early generations of 
all  lines was nearly constant (0.578 in units of minutes/ 
control  mintue),  but began to increase in selection 
lines as they continued to evolve. Consequently selec- 
tion differentials also increased proportionately  as 
lines became more resistant. Figure 2 shows the same 
response data as Figure 1, plotted as a  function of 
cumulative selection differential (again in minutes/ 
control  minute). This removes the “scale effect” infla- 
tion of response rates, caused by rising selection dif- 
ferentials, and makes the slope of the plot  equal to 
the realized heritability (FALCONER 198 1). Realized 
heritabilities were falling in  all the lines, but  the effect 
of this decline was offset more in the  more resistant 
lines, by the increasing selection differentials. The 
total response of the  large lines is 59% higher  than 
the response of the small lines, but  the mean cumula- 
tive selection differential is only 24% higher. This 
means that the higher accumulation of realized selec- 
tion differentials is only a  partial  explanation  for the 
higher response of larger lines. If the total responses 
are normalized for scale increase by division  by the 

average  standard deviations, the mean responses for 
large and small lines are 3.71 and 3.01. 

Selection on inbred  lines: No response was detect- 
able  for at least 5 generations in the replicate inbred 
lines A and B, but  after 29 generations of selection a 
clear difference was measurable. In  the final genera- 
tion, five separately cultured  replicate samples of each 
line were measured with ethanol at 12”. The means 
and  standard  errors of each group of means were 
11.20 2 0.13 min for line A, 10.68 f 0.09 min for 
line B, and 9.64 f 0.09 min for line C  (the  control 
line). The mean resistance times of selected lines (A 
and B) were  thus 1.162 and 1.108 minutes/control 
minute, relative to  their own inbred, unselected con- 
trol  (inbred line C); for a  mean response of 0.135 
minutes/control  minute. 

Previous published calculations of mutation  rates 
from selection experiments  on  inbred lines have  em- 
ployed the “infinitesimal” model,  where it is assumed 
that mean  gene  frequencies undergo little change, 
and  that  the  change in genetic variance from selection 
itself is small compared to  the loss from  drift  (CLAY- 
TON and ROBERTSON 1955; LYNCH 1988). This loss  is 
taken to be  approximately 1/2Ne of total  additive 
genetic variance per  generation. The same method is 
applied in the  present case. It is assumed that the 
additive  genetic variance of the selection lines was 
initially at equilibrium  between  drift loss and mutation 
for long-established sib-mated lines, i e . ,  S,’ = 4Sf 
(LYNCH  and  HILL 1986). Some additional  genetic 
variance would be  accumulated during  the initial ex- 
pansion of each population, in two generations,  from 
a single pair to  about 400 individuals, bringing the 
amount of genetic variance to  an  estimated 5.8s: 
before selection began.  Additional  genetic variance 
then  accumulated during  the 29 generations of selec- 
tion,  at  the  rate of Sf per  generation.  During this 
period,  the  decrease in genetic variance each genera- 
tion by drift loss  of 1/2N,, would be an insignificant 
amount in populations this size. Ignoring  drift loss, 
the cumulative response after t generations of selec- 
tion is given approximately by: 

R, = 5.8t + n iSf/S,. 

The summation term is just 0.5 (t2 + t). The estimated 
mean selection intensity (i) was 0.529; the mean stand- 
ard deviation (S,)  was 0.527 ratio  units  (mean  of 
selected and unselected lines). Solution for Sf gives 
0.00022 unit of variance. (A value of 0.00023 was 
obtained when drift loss  was simulated.) For  compar- 
isons between  traits the mutational  increment is USU- 

ally divided by the environmental variance of outbred 
lines (here  estimated as 0.248): Sf/S; = 0.0009. When 
this ratio is calculated separately for  the two lines, the 
two values have a  standard deviation of 0.00018. This 

( ) 
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mean  mutation rate is within the lower range of 
similar determinations  for  other  traits in D. melano- 
gaster (LYNCH  1988). 

Observations of an increase in the relative liveliness, 
viability, and productivity of the selected inbred lines, 
compared  to  their  controls, suggested that mutations 
alleviating the  inbreeding depression of fitness could 
contribute  to  the  measured  ethanol resistance and be 
selected for.  Therefore  the measured  mutation rate 
might  overestimate the  rate  at which variance specific 
for  ethanol resistance would be  generated in an 
outbred line. 

DISCUSSION 

This  and  the companion  paper (WEBER 1990)  both 
report substantial increases in long-term selection 
gains in populations unusually large  for this type of 
study. Both studies will be discussed here,  and com- 
pared with other long-term selection experiments in 
the  context of existing theory. 

The effect of large vs. very  large  population  size: 
We can only approximately  estimate effective popu- 
lation sizes  in these  experiments.  A  conventional esti- 
mate would be about  60% of the estimated  numbers 
of parents (Ne/N,  = 0.6). This is comparable to or 
below past experimental  determinations of Ne/Np ,  as 
listed in CROW and MORTON (1955)  and NOZAWA 
(1970).  A mean proportion of N,/Np = 0.60 was also 
estimated by COHAN and  HOFFMANN  (1  986), based on 
the divergence in ADH  frequencies, in ten  control 
lines in a  culture system resembling  ours. In  the two 
sets of large, long-term experiments most comparable 
to these, Ne/Np  was estimated at 0.60 (Yo0 1980a) 
and 0.70 (JONES, FRANKHAM  and BARKER 1968; as 
estimated in FRANKHAM 1983). This  proportion is also 
predicted  for  the selected lines by the experimemtal 
data of NOZAWA  (1970)  on  the effect of founding 
density on Ne (Figure  3),  although the comparison 
does  not  take  into  account  productivity, which was 
probably higher in our cultures. 

Another  influence on Ne, evident in NOZAWA'S data, 
is the depression of Ne by variance in male mating 
success when populations are founded with virgin 
females. The same effect was measured by CROW and 
MORTON (1 955), who found  that N,/Np was only 0.48 
for males when it was 0.71  for females. This effect 
would depress Ne in typical selection experiments 
where selected virgins are mass-mated to selected 
males, but in the present  experiments this factor is 
virtually eliminated, since females mated at random 
before selection. Because of the high yields of cultures, 
even  more males were available for mating  than the 
numbers  that were measured during selection. Under 
these circumstances the probability that any two fam- 
ilies are sired by the same male becomes very low. 

Although the  precedents discussed above would be 
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FIGURE 3.-Experimental determinations of N J N ,  for males 
0 and females (0) in cultures of D. rnelanogaster on cornmeal 
medium. Abscissae are founding densities in pairs/cm2 of medium 
surface area. Calculated from data of NOZAWA ( 1  970). Approximate 
founding densities of ethanol resistance and wing height lines 
(WEBER 1990), estimated from average number of (premated) fe- 
males/half-pint bottle, would be consistent with conventional esti- 
mates of N,/N,  = 0.6 (A). 

consistent with a value of N,/Np in the  neighborhood 
of 0.60,  there is one piece of direct  evidence  for  a 
lower value. During  the  course of the experiments, 
43 determinations of the frequency of ADH allozymes 
were made in different  generations of the two ethanol- 
resistance control lines. The small shifts in frequency 
between successive determinations allow estimates of 
inbreeding  rate by the  method of KRIMBAS and 
TSAKAS (1971), with a  resulting value of Ne/Np = 0.22. 
This estimate may be imprecise, because on a few 
occasions founders  for  the  next  generation were not 
drawn  from all control bottles (this would reduce Ne) ,  
and also because there were some instances of simul- 
taneous  fluctuation in ADH  frequency between the 
two control lines, which might imply influences of 
natural selection (if true this would reduce  apparent 
Ne). Nevertheless, in our judgment this determination 
is not definitely compromised by these facts nor is it 
impossibly low, bearing in mind  that our cultures were 
extremely  productive, and  that  the  founding density 
per bottle in terms of premated females was 50% 
higher in selected cultures  than in these  controls. In 
any case the  arguments  to  be  presented  here do not 
depend critically on  whether NJNP was nearer  20% 
or 60%, although they are somewhat reinforced at 
the higher  figure. Because there is no  other  direct 
empirical evidence in regard  to  these effective sizes, 
they will be given here provisionally as 20% of the 
estimated number of parents (as noted in MATERIALS 

AND METHODS), i . e . ,  48  and  480  for  ethanol resistance, 
and 1 1.2,56,  and 280  for wing height (WEBER 1990), 
although  these may be  regarded  perhaps as low-end 
estimates. Even by these  cautious estimates, the largest 
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lines are much larger  than any previous long-term 
selection lines. 

The largest previous study of the effect of popula- 
tion size on long-term selection response was that of 
JONES, FRANKHAM  and  BARKER (1 968), whose largest 
lines (with 80 parents) have been  estimated to have an 
Ne of 56  (FRANKHAM  1983).  This is approximately the 
size we estimate here (at NJNP = 0.20) for our “small” 
ethanol resistance lines and  for  the  “medium” wing 
height lines in the companion  paper (WEBER 1990). 
These results therefore cover a new  size range,  and 
show that  larger  population size can have a significant 
benefit, even above the largest sizes previously tested. 
If we consider only population sizes  of about  50 or 
higher, it is permissible to combine the  ten largest 
lines from  both  present studies in a significance test 
since they are independent tests and  represent, with- 
out exclusion, all known comparisons of long-term 
response among lines in this new  size range. The 
random probability of the rank order  found  among 
the 4 larger wing height lines is one in 6, and  the 
probability of the  rank order  found  among  the 6 
ethanol resistance lines is one in 15. The probability 
of the combined results is then  one in 90,  or  0.01 1 
(one-tailed test). Therefore with significant frequency, 
populations  that were approximately the size  of the 
largest lines in JONES, FRANKHAM  and BARKER (1 968), 
were surpassed by even larger populations. 

The  sources of increased  response  in  very  large 
populations: In  larger populations more  mutations 
eventually accumulate, allowing greater response to 
selection. According to the infinitesimal model of 
gene effects as applied to finite populations, an equi- 
librium variance of 2N$: (e .g . ,  CLAYTON and ROB- 
ERTSON 1955;  HILL  1982a;  HILL  and KEICHTLEY 
1988) would be  approached, so that eventually the 
difference in response rates  could become very large. 
But large  populations would require so long to ap- 
proach  mutational variance equilibrium  that there is 
no practical information in mathematical expressions 
for  their asymptotic response rates, particularly in the 
time  range of the  present  experiments. The only 
immediate prospect for  the  present  populations would 
be  an almost linear  (and almost identical) accumula- 
tion of new mutational variance arising at  the size- 
independent  rate of S i ,  with a very  small  loss by drift 
of 1/2Ne per  generation. Since we have an estimate 
of Sf for this trait,  the  predicted  cumulative response 
from new mutation can be calculated by the following 
recurrence  equations, assuming an initial value of zero 
for genetic variance: 

S,.,+l = S,2,t(l - 1/2N,) + s f  2 

R,+] = R, i iSg,f /Sp.  

This predicts cumulative responses from  mutation 
alone of 0.47 and  0.39  standard deviations for  the 

large and small ethanol resistance lines. Since the 
actual  normalized  total responses in the two treat- 
ments were about 3.7 and 3, it appears  that  although 
mutation  can  account  for part of the response in both 
treatments, it can only explain about 11% of the 
observed  difference in response. 

Even  less  of the observed  difference in response 
could  be  explained by mutation if population sizes 
were estimated at  60% instead of 20% of parent 
number.  This is because as the estimated  population 
sizes become larger  the  amount of response attribut- 
able to mutation in 65 generations  not only increases 
but also becomes more nearly identical at  both  popu- 
lation sizes, approaching  a limit. It should also be 
pointed out  that  the estimate of S i  applied here is not 
based on small population results but  on  inbred pop- 
ulations in the same size range as  the  outbred  popu- 
lations under consideration. Since the  role of  size  in 
the prediction of mutational  contributions is still 
somewhat untested, this can increase our confidence 
in these  predictions. 

The tentative conclusion is that  the accumulation 
of mutational variance for  ethanol resistance must 
have contributed  to  the elevation of response in the 
larger lines, but it is insufficient to explain much of 
the observed  difference in as short  a  time as 65 
generations. Therefore,  although  the smaller popu- 
lations of Ne = 48 would already  be  considered rather 
large  for  long-term  experimental selection lines, it 
seems that  the tenfold increase in population size  in 
the  larger lines (Ne = 480) nevertheless facilitated a 
significant gain in response rates simply from  the 
recruitment of more  and smaller existing allelic dif- 
ferences. Expectations about  the  amount of useful 
genetic variance that can be  extracted  from  an 
outbred  gene pool are still based upon  a  tradition  of 
mostly short-term or small experiments.  A comparison 
of our results with other long-term selection experi- 
ments and with theoretical  predictions will make this 
point  clearer. 

The  classical  model  and  the  available  evidence: 
Some implications of the infinitesimal model for finite 
populations were derived by ROBERTSON (1  960). If Rl 
is the response to selection in the first generation,  the 
Robertsonian limit for response to selection on exist- 
ing variation is 2NeR1, proportional  to  population size. 
This implies a limiting response rate, given constant 
mutation, of 2N,R f (where R f is the response  from 
mutation in the first  generation), as has been shown 
by HILL (1  982a,b)  and  FRANKLIN (1 982). 

ROBERTSON’S model is convenient to use here as a 
limiting case to  compare with the experimental  data. 
It applies particularly to small populations, or  to large 
populations under weak selection, but  there  are  no 
explicit limits on  the population size to which the 
Robertsonian  formula can be  applied at typical selec- 
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tion  pressures. It is only required  that  the value of NJ 
at individual loci be small, where s is the coefficient 
of selection. If the  number of contributory loci is 
sufficiently large, this condition may be  approached 
even  for  moderately  large  populations  (BULMER 1980, 
FALCONER 198  1; HILL  1985),  and  thus if effects were 
infinitesimal the limits 2NeR1 and 2NeRT would apply 
to populations of any size. 

These limits are frequently involved in interpreta- 
tion or prediction of selection results (e.g. JAMES 1965; 
JONES, FRANKHAM  and BARKER 1968; Y o 0  1980a; 
FALCONER 1981 ; FRANKHAM  1983; HILL  1982a, 
1985; ENFIELD 1986; OLLIVIER 1988).  However,  iden- 
tification of limits is rather subjective. It would be 
more useful to have, instead,  a  form of the theory 
that makes specific predictions of response as a  func- 
tion of the  number of generations. This can be  derived 
in a few steps. 

The critical assumption of ROBERTSON’S (1960) 
model is that  during selection, the additive  genetic 
variance decreases each generation by a  constant  pro- 
portion.  This  proportion  represents  drift loss and is 
based on population size. It is hard  to  formulate 
ROBERTSON’S model of geometric decay mathemati- 
cally without briefly addressing the unruly fact that in 
long  term selection experiments  the  additive  genetic 
variance,  as  measured by traditional  techniques,  does 
not in fact regularly  decrease during selection. It may 
indeed  decrease to zero  (BROWN  and BELL 1961; 
ROBERTS 1966b),  but it frequently is not  reduced by 
selection. It may even increase,  despite  long  periods 
of gradually declining response (e.g., ENFIELD 1980; 
Yo0 1980c), or even while response declines com- 
pletely to zero (e.g., LERNER and DEMPSTER 195 1 ; 
TANTAWY, MALLAH and TEWFIK 1964; WILSON et al. 
1971). Conversely, response may continue  after  ad- 
ditive  genetic variance appears  to have been ex- 
hausted (SHELDON 1963). Thus, in the  context of the 
standard  prediction  equation for  short-term  response 
( r  = iSph2), the factor h2 (the “narrow-sense  heritabil- 
ity”  defined as Sf/S,’) becomes nonpredictive in long- 
term selection, as was already  noted some time  ago 
(CLAYTON and ROBERTSON 1957; SHELDON 1963).  It 
is also well known that gains in the total  phenotypic 
variance frequently  occur during  protracted artificial 
selection (e.g., CLAYTON and ROBERTSON 1957; WIL- 
SON et al. 1971; ENFIELD 1980; YOO 1980c), which 
increasingly inflate the factor is, (the  apparent selec- 
tion  differential). In  the typical long-term selection 
experiment,  then, it is often only the  factor i (the 
selection intensity) which remains  constant,  reflecting 
the constant  percent selected. 

These observations make it desirable to reformulate 
ROBERTSON’S original model of the steady geometric 
decay of selectability in a way that avoids assuming 
either  that additive  genetic variance declines, or  that 

phenotypic variance does  not increase. To   do  this one 
could simply  say that “selectability” (7) declines, if this 
parameter is only defined as the  ratio of observed 
response ( r ,  in generation t )  to  the selection intensity 
i, based on  the  percent selected from  an assumed 
normal  distribution. Then if z is the factor by which 
7 declines, response in generation t is given by: 

rt = iqor“’ 

and cumulative  response by 

R, = ivo 2 z-’ 
1- 1 

3=0 

= ivo(1 - z y ( 1  - z). 

If at some point  mutation  produces an immediate 
increment of v* in selectability, then it follows that 
the cumulative response  from  that  increment  over the 
following t generations is: 

R,* = is*( 1 - zf)/(1 - Z) 

so that if a similar increment is added every generation 
by continuous  mutation, the cumulative  response 
from all mutation is: 

f 

RF = iv* (1 - zj)/(l - z) 
j= I 

which  solves  as: 

RT = iv*[t/(l - Z) - (Z - zf+’)/(1 - z)’]. 

The combined cumulative response from  preexisting 
and new mutational variation is given by: 

I 

R, = ir]o(l - zf)/(l - z) + io* (1 - zj)/(l - z) 
j= 1 

t 

= Rl(1 - zf)/(1 - z.) + R; (1 - ~j)/(l  - z). 
j= 1 

As t becomes large, the first term  approaches the 
limit RJ(1 - z). The second term approaches the 
simpler form tR?/(l - z), and increases perpetually. 
The exact  difference between consecutive values of 
the second term is: 

R;+, - Rf = RT(1 - zt+*)/(l - z) 

so that its continuous rate of increase approaches the 
limit R ?/( 1 - z) as t becomes large. If z is equal to  the 
rate of drift loss of genetic variance per  generation 
(z = 1 - 1/2Ne),  then the limit to  the first term 
converts to 2NeR1 and  the limit rate of the second 
term converts to 2N,R?. These  are, respectively, the 
same limits found by ROBERTSON (1  960)  for  the gain 
from  preexisting  variation, and by HILL  (1982a)  for 
the asymptotic rate of gain. This  demonstrates  the 
identity of the present  formulation with the original 
of ROBERTSON (1  960). 
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FIGURE 4.-Cumulative response at  generation 50, divided by 

response in the first generation, as  a function of effective population 
size on a log  scale. The broken line is the  Robertsonian limit for 
total  response with no  mutation,  equal  to 2 N , R I .  The  pair ofsigmoid 
curves  represent  the  Robertsonian  predictions  for  generation 50, 
with no  mutation (lower curve),  and with mutation  at a rate of 
.Tf/Si = 0.001. The  data points represent mean values of Rso/RI 
from DUDLEY  (1977) (0); ENFIELD (1980) (0); JONES, FRANKHAM 
and BARKER (1968) (0); MATHER and HARRISON  (1949) (A); RAS- 
MUSON (1955) (+); REEVE and ROBERTSON (1953) (0); ROBERTS 
(1966a,b) (V); WEBER (1990) (m); Y o 0  (1980a.b) V; and this paper 
( 4  

The point of this rederivation is to obtain  a  form of 
ROBERTSON'S model which is suitable for calculation 
of the predicted cumulative response in any given 
generation. Previously the limits  which arise from 
ROBERTSON'S approach  (2NeR1  for  the  approximate 
"plateau" and 2NeR T for  the asymptotic response rate) 
have been compared to experimental results (e .g . ,  Yo0 
1980a; HILL 1985),  but it is certainly more objective 
to compare real data with finite-time predictions. 

Accordingly, some data have been assembled here 
(Figure 4) representing cumulative response in the 
50th  generation  from published selection experiments 
over  a wide spectrum of population size. (The data 
represented in Figure 4 are tabulated in the APPENDIX, 

with methods of analysis.) The set of experiments 
included here is not exhaustive at  the low end of the 
range  where most work has been done,  but it repre- 
sents nearly all  work above Ne = 40, for  experiments 
of  50  or  more generations under constant  conditions. 
Although some of these studies were  continued  for 
even longer  than  50  generations, one of the most 
important studies for the effect of population size 
stopped at  that  point (JONES, FRANKHAM and BARKER 
1968),  and  another was altered by a  major  change in 
regime soon after  that  point (DUDLEY 1977), SO that 
at longer  durations much less information exists. In 
ROBERTSON'S model, heritabilities and selection inten- 
sities cancel out of the  ratio R50/R], permitting  these 
diverse experiments to be  compared  on  a single graph. 

The response values suffer  from  the imprecision of 
ratios with  small denominators,  and  are subject to  the 

usual interline and  intergenerational variability of  se- 
lection results. The particular choice of scale for each 
trait also affects the result. But the condensation of 
many disparate lines into  the fewest possible data 
points yields a  coherent  pattern, within and even 
between experiments. Initial rates of response tend  to 
be sustained longer in larger  populations, even up  to 
the largest sizes. 

In Figure 4 the  order of publication is virtually the 
same as the  order of population size.  Early long-term 
selection experiments  on small populations explored 
the phenomena of limits. Later long-term experi- 
ments, with larger  populations, suggested upward es- 
timates of the limits, the  number of loci, and  the 
potential  role of mutation (ENFIELD 1986). In Figure 
4 most  of the  data points for Ne < 20 represent 
response plateaus, which were attained even before 
generation  50.  Larger populations were usually  still 
responding at  generation  50. 

The pair of solid lines in Figure 4 shows the  ratio 
R50/R1 as a  function of population size, as calculated 
from  the model with and without  mutation.  For this 
calculation the model can be expressed in the  form: 

[ , = I  1 1 

R, = R1 (1 - zt)/(l - Z) + p (1 - 9)/(1 - Z )  

where p = V * / V O  is the spontaneous  mutation  rate. 
The mutation rate  for quantitative  characters has 
usually been  expressed as a  ratio  to base population 
environmental variance since LANDE (1975), but was 
originally expressed as a  ratio  to base population 
additive  genetic variance (CLAYTON and ROBERTSON 
1955), as it is here.  In this form  the  rate would be 
higher,  but of the same order of magnitude. The rate 
1.1. was assumed to be 0.001 in these calculations. 

This finite-time form of the model permits  deriva- 
tion of another limit, which is the response in a finite 
time, in an infinite population. If z = 1 - 1/2Ne,  then 
as population size becomes very large the previous 
equation  approaches  the limit: 

R, = Rlt + pRlt(t + 1)/2. 

The two terms  on the  right  are  the cumulative re- 
sponses from  preexisting variation (rising as t), and 
from new mutation (rising as t' + t ) ,  at generation t 
in an infinite  population. Both limits are closely ap- 
proached on  the right-hand  margin of the  graph in 
Figure 4. In  terms of this model,  populations of 
10,000 would be effectively infinite in the time span 
of  fifty generations, and populations of 1000 nearly 
so. In only 50 generations, little of the cumulative 
response is attributable  to  mutation  under this model, 
at any population size, although eventually the contri- 
bution  from  mutation would be overwhelming. 

The experimental  data show response falling short 
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of  the model’s predictions, but  at 50 generations  the 
infinitesimal model is still not  too unrealistic as an 
extreme  upper  bound  for finite populations. This 
argues  that many loci can  contribute  to selection re- 
sponse. However, some of the largest populations in 
Figure 4 owe part of their high responses to scale 
inflation (e.g., YOO 1980a; ENFIELD 1980;  and  the 
present  ethanol resistance lines), which may be due 
partly to multiplicative gene action (YO0 1980b; COM- 
STOCK and ENFIELD 1981). 

The broken line in Figure 4 shows  ROBERTSON’S 
final selection limit of 2NeR1,  for the total response 
from  preexisting  variation. This limit was not ex- 
pected to apply to very large populations unless selec- 
tion were very weak, but  the sizes at which  it does 
apply, in  typical experiments,  can only be  determined 
empirically. Figure  4 suggests that as Ne increases, the 
value of the expression 2NeR1  swiftly exceeds any 
rational significance as a limit. Populations that have 
actually been selected to  the point of near-exhaustion 
of response (e.g.,  REEVE and ROBERTSON 1953; ROB- 
ERTS 1966a,b; ENFIELD 1980; Yo0 1980)  indicate that 
ROBERTSON’S  upper limit  of 2NeR1 cannot  be  attained 
except in  very  small populations.  For  populations of 
10 it is realistic; for  populations of 50 it is not  remotely 
possible. 

The half-life of selection response for  the infinites- 
imal model was given by ROBERTSON (1960) as 1.4Ne 
generations. Using the present  terms, if g is the half- 
life then: 

Rl(1 - zg)/(l - z) = (1/2)RI/(l - z). 

This solves as g = ln(0.5)/ln z, and, using the  approx- 
imation 1 - 1/2Ne = it follows for  the case 
where z is a function of drift  that g = 2Neln(0.5) or 
1  .386Ne.  This is the same as the half-life for  the decay 
of neutral variation (FISHER 1930).  In  the infinitesimal 
model gene effects are  too small for frequences to be 
affected by selection, and only drift acts. 

BULMER  (1 974,  1976) has demonstrated  that selec- 
tion  reduces initial genetic variance by generating 
linkage disequilibrium.  In his model of this effect in 
“very  large”  populations (BULMER 1980),  the main 
effect is in the first generation.  A fixed equilibrium 
genetic variance is attained within a few generations 
and maintained without drift loss. If the Bulmer effect 
were incorporated  into  the  present  model,  differences 
in selection intensity and heritability would no  longer 
cancel out of the response ratio  R50/R1, and  the  proper 
estimation of R1 would not  be by linear regression as 
used here (see APPENDIX). Any influence  of this effect 
would reduce  the response ratios,  bringing the theo- 
retical predictions somewhat closer to experimental 
results. 

Selection on a finite genome in a finite popula- 
tion: At 50 generations, the predictions  of the Rob- 
ertsonian infinitesimal model for finite populations 

seem to bear  an  encouraging  resemblance to experi- 
mental results, as long as one disregards  information 
not  presented in Figure  4 such as the  degree  to which 
highly selected lines typically plummet when selection 
is relaxed. But clearly this model of simple additive 
genes, of such vanishingly small effect that they do 
not rise in mean frequency, has limited validity in the 
interpretation of selection experiments at typical pop- 
ulation sizes and selection pressures. Selection re- 
sponse frequently is controlled as much by the oppo- 
sition of natural selection as by the decline of additive 
genetic variance, and many experiments show individ- 
ual alleles of major effect rising in frequency. 

Often  a  large  part of the genetic variance of a 
quantitative  trait  can  be  explained by a few major 
genes (THOMPSON 1975).  For  example, in a classic 
study of polygenic inheritance, SPICKETT and THODAY 
(1966)  identified five  loci or factors  contributing 
87.5% of the variance in sternopleural bristle number. 
However,  genetic analysis  of this trait was only under- 
taken in the first place because response to selection 
had  occurred in such a way that  a few  easily locatable 
genes of major effect were to be  anticipated (THODAY, 
GIBSON and SPICKETT 1964). Also, since this selection 
experiment  had  an Ne of only 8 it could  hardly have 
concentrated  the effects of  many minor  genes in any 
case. The point is that such data do establish the 
importance of major  genes (see also DAVIES 1971), 
but  cannot  be used as  evidence against a  large  poten- 
tial component of additional response from  genes of 
small effect. 

The data  presented  here can be well explained if it 
is assumed that  for any trait  there are likely to be a 
few common  segregating  genes of major  effect, which 
can be selected to rise in frequency  even in the rela- 
tively inefficient context of a small population;  but 
that a  large pool of genes  of progressively lower effects 
or frequencies also exists which can only be  tapped 
efficiently by larger  populations.  For  example, selec- 
tion with a gamma distribution of  gene effects and 
several frequency  distributions, in a  finite  genome in 
finite populations, has been modeled by HILL and 
RASBASH (1986),  under  the assumptions of additivity 
and  no linkage. However, fitness interactions are a 
large part of the story, and linkage may become 
important if  in fact the potential  number of contrib- 
utory loci  is high. Negative effects on fitness may arise 
due  to  nonrandom linkages between deleterious al- 
leles and selected alleles in a  finite  population. Such 
disadvantageous combinations can be better over- 
come in a  larger  population because a  more  exhaustive 
set of recombinants is available each generation. Neg- 
ative pleiotropic effects of selected alleles can also be 
circumvented in larger  populations in several ways. In 
the first place the  greater efficiency of selection in 
larger  populations allows the  more consistent utiliza- 
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tion of alternative  genes with smaller pleiotropic ef- 
fects. Secondly, larger  population size  allows the  per- 
sistence of more variety, permitting balancing or com- 
pensatory combinations in  which pleiotropic effects 
are ameliorated.  Second-order effects of selection, in 
which the selected allele in turn selects for modifiers 
in the genetic background which alleviate its pleio- 
tropic effects, will only be possible  in large  populations 
with their many recombinants. Such considerations 
may provide some real insight into  the  trend of data 
in Figure 4. 

Implications for evolutionary  and  quantitative ge- 
netics: On  the scale  of evolutionary processes, popu- 
lations even of a million might  be  considered small, 
and a hundred thousand  generations  short-term, at 
least by the  criterion that  phenomena within both of 
these limits are generally invisible in the fossil record. 
This is a  thousand times the scale  of time and size  of 
the present  experiments. It is interesting to consider 
how far  the  advantages of larger  population size in- 
dicated here could be  extrapolated  toward such hori- 
zons, where  mutation becomes the limiting factor. 

If even a part of the large response improvement 
in larger lines is due  to a  higher  accumulation of  new 
mutation, as seems clearly to be true, this contradicts 
any view (e .g . ,  WRIGHT  1977b) of large panmictic 
populations as evolutionary  dead  ends, and  supports 
instead the  more  open-ended views on population size 
and evolutionary  potential  of,  for  example, FISHER 
(1930)  and MAYNARD SMITH (1  983).  It is conceivable 
that selection between small randomizing  subpopula- 
tions (WRIGHT 1977b)  might have yielded even 
greater increases in response. Nevertheless, the  dem- 
onstrated  rates of generation of  new additive  genetic 
variance, in this trait  and in a variety of others  (LYNCH 
1988),  are evidently high  enough  to  challenge  the 
idea that  large size per se makes a panmictic population 
incapable of perpetual  evolution  except at “extremely 
slow” rates  (WRIGHT 1977b, p. 441). Given any ap- 
preciable additive  genetic  mutation rate,  larger size  in 
a panmictic population  does  not limit its evolutionary 
potential,  but instead increases it (FISHER 1930;  HILL 
1982a). 

Very small populations are routinely invoked as the 
arena  for evolutionary creativity. Some experimental 
evidence (BRYANT, MCCOMMAS and COMBS 1986) sug- 
gests that episodes of  small population size can in- 
crease heritability for some traits, but  there is no 
evidence that this improves the capacity for sustained 
evolution. Evidence to  the  contrary is available 
(FRANKHAM  1980b,  and  references  therein). There is 
almost no experimental  evidence on  the long-term 
evolutionary  potential of large  populations,  although 
exploration of this area is not  quite technically infea- 
sible. 

In breeding  for  agricultural  production, selection 

on massive numbers could often  be simply engineered. 
For  example, in Soviet silkworm breeding  an  appa- 
ratus capable of selecting on 40,000 pupae per day 
for cocoon silk content has been reported (STRUNNI- 
KOV 1983). In selection on oil content in corn, non- 
destructive biochemical analyses of whole kernels can 
be accomplished “in seconds” (SILVELA et al. 1989) 
using nuclear magnetic resonance spectroscopy. For 
large animals such as dairy  cattle, advances in data 
processing and  reproductive  control can eventually 
integrate  populations  over any area; this is already 
well underway (FRANKLIN  1982;  HAMMOND  and 
MCCLINTOCK 1982; SKJERVOLD 1982). 

In every feature including scale, the present  exper- 
iments can be  regarded  as pilot studies: only two traits 
are involved, replication is limited, and effective pop- 
ulation sizes can only be estimated  crudely.  Neverthe- 
less, these  studies  demonstrate  large effects of popu- 
lation size on long term response in populations almost 
an  order of magnitude  larger  than those previously 
investigated for these effects. No  asymptote in the 
effects of population size on  long  term response was 
encountered. 
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APPENDIX 

Each data point in Figure 4 is a mean  value  of R50/ 
R , ,  representing all  of the selection  lines  having the 

same Ne within one set of experiments, including  lines 
selected in opposite directions or  at different intensi- 
ties. (Intensity cancels out of R,/R1 in the present 
model.)  In Table  2  the same data are broken down to 
the level  of  individual treatment means. To derive 
these  means,  all raw data from experiments by others 
were  first extracted from the graphs of selection re- 
sponse  published in the cited papers, by measuring 
enlarged photocopies of the original graphs on a  50 
X 50 cm digitizing pad. Response  values for individual 
generations were estimated as the means  of three 
repeated measurements. 

Estimates  of R50 were then improved by averaging 
response among adjacent generations before and  after 
generation 50, including generations 45  through 55. 
If  any  value  in  this interval was missing, the value for 
the symmetric generation before or after generation 
50 was also dropped. The study OfJONES, FRANKHAM 
and BARKER (1968) stopped at generation 50 so in 
this  case  this method could not be applied. The values 
of  individual generations are not all  given  in ENFIELD 
(1980), but values for generations 41, 47, 53 and 59 
are given and are symmetric about generation 50  and 
so were averaged. 

Estimates  of R1 represent the slopes  of linear regres- 
sions  of phenotypic mean on generation number, con- 
strained to pass through  the base population or R, 
value. The number of generations included represents 
a compromise, since  with too few generations, the 
estimate of R 1  may  be distorted by random inter- 
generational variations; but if too many generations 
are included R 1  will be underestimated. The under- 
estimation of the initial rate will tend to be more 
serious in smaller  populations.  For example, the Rob- 
ertsonian response  half-life for the smallest  popula- 
tions (Ne  = 4) is only 5.6 generations. Because  of these 
considerations the regression is based on generations 
0 to 3 for all  lines  of Ne < 10 and on generations 0 to 
6 for all  lines  of Ne > 10, except that for ROBERTS 
(1966b) the first 8 generations were  used and  for 
JONES, FRANKHAM and BARKER (1968) and ENFIELD 
(1 980) only  values for generations 0 and  5 were  used 
as plotted in the cited figures. The value  of R1 for 
REEVE and ROBERTSON (1953) had to be obtained 
from ROBERTSON and REEVE (1 952) as  half the slope 
of the first 3 generations of the plotted divergence 
between the long-wing and  the shorter-term short- 
wing  selection  lines,  using the mean of both sexes. 
The value  of R ,  for WEBER (1989) is based on the 
largest  lines. One pair of divergent lines (RASMUSON, 
1955; Figure lb) was excluded because  with an ap- 
parent response of zero over the first 5 generations, 
it could not be  analyzed by these methods. 

Wherever lines  were replicated, the value  of R ~ o / R I  
represents the ratio of the means of replicates  within 
treatments (this includes RASMUSON 1955),  but where 
different treatments (e .g . ,  divergent selection or dif- 
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TABLE 2 

Long-term selection  responses 

597 

Species and Trait N. i Replicates Rso RI R s o l R ~  Reference 

D.  melanogaster; sternopleural bristle num- 

D.  melanogaster; sternopleural bristle num- 
ber 

ber 

D. mefanogaster; wing  length (0.01 mm) 

D. melanogaster; abdominal bristle number 

M .  domesticus; body weight (9) 

M .  domesticus; body weight (g) 
body weight (g) 

D. melanogaster; abdominal bristle number 

Zea  mays; % protein content 
% protein content 
% oil content 
% oil content 

Tribolium  castaneum; pupa weight (micro- 
grams) 

D. melanogaster; abdominal bristle number 

D. melanogaster; wing-tip height (mils) 

D. melanogaster; ethanol resistance (min/ 
control min) 

4 +1.80 

4 -1.80 

6 +1.51 

8 +1.72 

15 +1.00 

17 +1.00 
19 +1.00 

14 +1.59 
14  +1.21 
14 +0.76 
28 +1.58 
28 +1.25 
28 +0.83 
56 +1.68 
56 +1.23 
56 +0.85 

34 +1.40 

34 +1.40 
34 -1.40 

34 -1.40 

100 +1.00 

60 +1.40 

11 +0.60 
56 +0.60 

280 +0.60 

48 +0.55 
480 +0.55 

2 

2 

1 

1 

1 

1 
1 

4 
5 
4 
2 
3 
3 
1 
2 
2 

1 
1 
1 
1 

2 

6 

3 
2 
2 

4 
2 

ferent intensities  of selection) were  used at  the same 
population size, it was necessary to use the mean  of 
the ratio Rso/Rl for lines  of  similar  size.  In general all 
these  estimates of R5,,/R1 can  be considered as over- 
estimates  since Rl’s  are underestimated by the regres- 
sion method. 

The estimates of Ne and i are those given  in the 
cited references, except that  the value  of Ne of 70% 
of parent number for the study of JONES, FRANKHAM 

11.64 

3.70 

14.65 

17.33 

7.27 

11.05 
10.27 

16.29 
11.23 
8.05 

20.25 
14.71 
12.16 
31.69 
18.81 
16.39 

7.10 
7.12 
8.87 
3.68 

2304 

18.34 

8.44 
12.49 
17.53 

2.48 
3.55 

1 .oo 

0.74 

1.46 

1.50 

0.45 

0.61 
0.50 

0.78 
0.72 
0.39 
0.75 
0.82 
0.63 
0.85 
0.73 
0.67 

0.48 
0.33 
0.3 1 
0.27 

58 

0.57 

0.41 
0.41 
0.41 

0.085 
0.082 

11.64 

5.00 

10.03 

11.55 

16.16 

18.11 
20.54 

20.88 
15.60 
20.64 
27.00 
17.94 
19.30 
37.28 
25.77 
24.46 

14.79 
21.58 
28.61 
13.63 

39.72 

32.18 

20.58 
30.46 
42.76 

29.18 
43.29 

RASMUSON (1 955; Figure 1, a 
and c) 

ROBERTSON and  REEVE (1952; 
Figure 4). REEVE  and ROB- 
ERTSON (1953; Figure 1) 

MATHER and  HARRISON (1 949; 
Figure 1) 

ROBERTS (1966a; Figure 1) 

ROBERTS (1966b; Figure 1) 

JONES, FRANKHAM  and  BARKER 
(1968; Figure 1) 

DUDLEY (1977; Figures 
1 and 2) 

ENFIELD (1  980; Figure 1) 

YOO (1980a, Figure 1) 

WEBER (1990) 

Present study 

and BARKER (1 968) is actually  given  in a review by 
FRANKHAM (1983). No estimate of Ne was given  in 
DUDLEY (1 977), and these lines are estimated here at 
70% (Ne = 34) of parent number. In the  three studies 
with extremely small populations (MATHER and HAR- 
RISON 1949; RASMUSON 1955; REEVE and ROBERTSON 
1953) no estimate was given and these  lines are esti- 
mated here  at 100% of parent number, i .e. ,  at Ne’s of 
8,  4, and 6, respectively. 


