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ABSTRACT 
The genetic  length of a genome, in units of  Morgans or centimorgans, is a fundamental  character- 

istic of  an  organism. We propose a maximum  likelihood  method  for  estimating  this  quantity  from 
counts of recombinants  and  nonrecombinants  between  marker  locus  pairs  studied  from a backcross 
linkage  experiment,  assuming  no  interference  and  equal  chromosome  lengths.  This  method allows 
the  calculation of the  standard  deviation of the  estimate  and a confidence  interval  containing  the 
estimate.  Computer  simulations  have  been  performed  to  evaluate  and  compare  the  accuracy of the 
maximum likelihood  method  and a previously  suggested  method-of-moments  estimator.  Specifically, 
we  have  investigated  the  effects  of the  number of  meioses, the  number of marker  loci,  and  variation 
in the  genetic  lengths  of  individual  chromosomes  on the  estimate. The effect of  missing data,  obtained 
when the  results of  two separate  linkage  studies with a fraction of marker loci in common are pooled, 
is also  investigated. The maximum  likelihood  estimator,  in  contrast  to  the  method-of-moments 
estimator, is relatively  insensitive to violation  of the  assumptions  made  during  analysis  and is the 
method  of  choice. The various  methods are compared by application  to  partial  linkage  data  from 
Xiphophorus. 

T he fundamental  genetic  characteristics of any 
organism are its diploid chromosome number 

(2n), the physical length of its genome in megabases 
of DNA which is related to total DNA content in 
picograms ( C  value), and  the genetic  length of its 
genome in Morgans. The genetic  length,  hereafter 
denoted by G (Morgans), has classically been  estimated 
from chiasma counts in meioses, although chiasma 
terminalization  can lead to  incorrect estimates. Where 
meiotic studies have proven difficult, and  where  an 
independent  estimate of G is desired,  genome  length 
can  be  estimated  from  experiments. 

As originally envisioned by  BOTSTEIN et al. ( 1  980), 
restriction  fragment  length polymorphisms (RFLPs) 
can  provide  a  large number of genetic  markers  that 
may be used to construct  a  total linkage map of any 
genome by classical linkage studies. Once  comprehen- 
sive (dense) linkage maps of each chromosome of a 
genome  are available, the G value is  easily estimated 
as  the sum of  all mapped intervals. However, the 
design of an efficient linkage experiment  leading  to  a 
dense  map, particularly the  determination of the num- 
ber of markers necessary to cover  a  genome, is criti- 
cally dependent  on  the G value (BISHOP et al. 1983). 
Thus, a  preliminary  estimate of G is extremely useful 
for designing linkage experiments. We show in this 
paper how an efficient estimate of G can be  obtained 
from  partial or incomplete  genetic maps, that is, when 
marker density is  low and significant regions of the 
genome are not  covered by markers.  Such an estimate 
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is also useful for  evaluating the overall relationship 
between physical and genetic  distance, as measured 
by the  number  of megabases of DNA per Morgan. 

A simple and useful method-of-moments type esti- 
mator of G has recently  been  proposed by HULBERT 
et al. (1988)  for  partial linkage data.  These  authors 
consider  a backcross with known linkage phase studied 
for multiple codominant  markers. The evidence for 
linkage for any marker locus pair is presented in terms 
of the peak lod score (MORTON 1955) as calculated 
from  the observed number of recombinants and non- 
recombinants. The estimate of G is obtained by equat- 
ing the observed and expected  proportion of locus 
pairs that exceed  a specified lod score value, such as 
3. The advantage of this method is that G may be 
estimated  without knowledge of the chromosome 
number,  but a  standard error of the estimate  cannot 
be simply obtained. Also, the  properties of such an 
estimation procedure  are unknown. We propose in- 
stead  a maximum likelihood method  for  estimating G 
under  the assumptions of no  interference  and equal 
chromosome  lengths that allows calculation of the 
variance and confidence limits of G.  However, this 
method  requires knowledge of the chromosome  num- 
ber, although  the possibility  of estimating the chro- 
mosome number also exists. 

In this paper we contrast and  compare  the  proper- 
ties of these two estimators and  their variants. We 
specifically address  the  question of  how much  data are 
necessary to  obtain  an  accurate  estimate of G. Finally, 
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we evaluate the effect of assuming equal  chromosome 
lengths when they are variable and of  missing obser- 
vations on  the estimation methods. 

THEORY 

Consider a single F, backcross experiment  geao- 
typed at m codominant  marker loci. The cross has 
known linkage phase for all markers so that the FP 
progeny can be unambiguously classified as recombi- 
nants and nonrecombinants. We introduce  the follow- 
ing symbols: 

R =  
L =  
G =  
m =  
Ai = 
nq = 

ry  = 

e =  

w =  

number of chromosomes in the  genome, 
genetic length of each  chromosome in Morgans, 
kL = genome  length in Morgans, 
total number  of  marker loci studied, 
marker locus i (i = 1, 2, . . ., m), 
total number of meioses studied  for locus pair Ai 
and AJ ( i  # j ) ,  
number of recombinants  for locus pair A, and AI 
(i Z j), 
generic symbol for  the  recombination value (0 d 

generic symbol for  the  map distance in Morgans 

8<1 - 2)r 

(0 < w < a). 
We further assume that genetic  recombination  occurs 
without chiasma interference, so that w and 0 are 
related by the HALDANE (1 919) map function: 

* = ” In(1 - 20). (1) 
1 

Since the largest map  distance on a  chromosome is L ,  
the largest possible 8 value for syntenic loci is, 

8’ = T(1 - P ) ,  (2) 1 

obtained by inverting  Equation 1. 
Our motivation for using the maximum likelihood 

method arises from  the fact that conditional on k and 
L,  and  thereby G, there is a specified theoretical 
distribution of 0 values (true values, not estimates) 
between any locus pair. Thus,  the likelihood of the 
observed number of recombinants and nonrecombi- 
nants can be calculated for each locus pair as a  func- 
tion of G ,  assuming k is known. This likelihood func- 
tion, calculated for all locus pairs, can be maximized 
to estimate G .  To do so we first calculate the density 
function of 8. 

We make the assumption that  the genetic  marker 
loci have a  uniform  distribution on  the  map distance 
scale. For syntenic loci on a single chromosome of 
length L ,  the cumulative distribution  function of map 
distances is, 

F(w) = (2Lw - WZ)/L*.  0 < w d L (3) 

Using the HALDANE map  function  (Equation 1), the 
cumulative  distribution  function of recombination val- 
ues is, 

F(8) = -[ln(l - 28)] /L - [In( 1 - 2 0 ) ] 2 / 4 ~ 2 ,  

o s e B e ‘  
where  In(.) is the  natural  logarithm.  Thus,  the  prob- 
ability density function of 8 between any t w o  syntenic 
loci on a  chromosome of length L is, 

&(@) = F’(6)  
2L + ln(1 - 

28): 0 s 8 < 8’ < + 
(4) 

8 ’ < 8 < $  

where 8’ is given by Equation 2. On the  other  hand, 
if nonsyntenic loci are considered, the probability 
density function of 0 has unit probability at 0 = +,that 
is, 

Given m marker loci, there  are = M locus pairs. 

For any random locus pair A, and AI (i # j )  selected, 

Prob {A,,  AI syntenicj = k” 

Prob {At,  A] nonsyntenic) = 1 - k-’. 

13 

Therefore, if A, and Aj are two randomly selected 
marker loci chosen from  the  entire  genome,  the  prob- 
ability density function of 0 between Ai and AI is, from 
Equations 4 and 5 ,  

f(8) =J(f l>/A + (k - qMw.  
If we further assume that all locus pairs are statistically 
independent of each other (this assumption is dis- 
cussed later),  the  support (S) or In-likelihood of the 
total  data is, 

+ (k - l)(%p}. 
Observe  that given the linkage data {(r+ n4): i # j )  
and k, S is a  function of L and,  therefore,  a  function 
of G = kL. 

STATISTICAL METHODS 

Given values of k and m, and counts of recombinants 
and  number of meioses studied for each locus pair, 
{(ri j ,  ng): i # j = 1, 2, . . ., m), we estimate L by 
maximum likelihood. By calculating S at various ;L 
values we locate an  unique peak for the S function, S. 
A nonsymmetric  confidence  interval  for L can be 
calculated by including all L values with likelihoods S 
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- T or  greater, where T is a  predetermined  constant. 
Choosing T = 2 leads to  an  approximate 95% 5onfi- 
dence  interval. Finally, G is estimated as d = KL; the 
standard deviation and confidence limits of d are 
calculated from  those of i by multiplication by k. This 
method is henceforth  termed  method 1 .  

The method of HULBERT et al. (1988) estimates G 

6 = 2MX/K (7) 

where K is the observed number of locus pairs with 
lod scores Z or  greater  and X is the  map distance 
between two markers  for which the expected lod score 
is 2. The value of X is calculated as X = -Fln(l - 28) 
where 8 is the solution to  the  equation, 

by 

1 

z = 3 = n(e 10g102e + ( 1  - 0)10g10[2(1 - e)]). ( 8 )  

5ince n will generally vary over  the various locus pairs, 
G in Equation 7 is estimated by summing the X values 
for all pairwise comparisons rather  than simply mul- 
tiplying by M. Observe  that this method  does  not 
require a value for k, but does  not  provide  a  method 
for estimating the variance of the estimate either. We 
shall call this method 2. 

A simple variation of method 2 is to choose from 
all locus pairs with lod scores Z = 3 or  greater  that 
locus pair with the largest estimated 8 value. This 8 
value may be used instead of the  one in Equation 8; 
we shall  call this method 3. 

Finally, if the length  of  a single chromosome (k = 
1)  is being estimated, one  further  method,  method 4, 
can be used. This last procedure involves constructing 
a  genetic  map of the chromosome, calculating the 
total map distance between the two most extreme 
markers  and, on the assumption of map locations 
being uniformly distributed,  inflating  the  map by (m  
+ l ) / (m  - 1). 

COMPUTER  SIMULATIONS 

We used Monte-Carlo  methods for simulating ge- 
netic  marker  data  on  genomes with k chromosomes 
each of length L Morgans under  the assumption of no 
interference.  For  each  chromosome  the  total  length 
was divided into  1 cM intervals by lOOL + 1  genetic 
markers. We assumed that  the  parental mating.was a 
backcross of known linkage phase, i.e., 1 1 1  . . . 1/000 
. . . 0 X 000 . . . O/OOO . . . 0 where 1 and 0 are 
codominant alleles at each locus. Thus, recombination 
may be  simulated in the multiply heterozygous  parent 
by simulating  recombinant gametes. The allele at  the 
telomere  at  one  end was randomly chosen as 0 or 1 
with 50% probability. Subsequently, the allele at  the 
next  marker locus was chosen to be the same with 
probability 0.99 or different with probability 0.01. 
This  procedure was repeated  for all other loci until 
the  telomere  at  the  other  end was simulated.  Next, 

each of the remaining  chromosomes  had  marker allele 
data  simulated in the same way. Such a simulated 
genome was replicated by independent simulations 
corresponding  to  the sample size  of meioses (n) .  When 
data  on m loci were  needed,  these m positions were 
randomly selected from all k(IO0L + 1)  positions with 
equal probability. When  chromosome  lengths were 
unequal,  markers were randomly chosen from each 
chromosome with probabilities proportional  to  the 
relative chromosome  length. 

The primary  data consisted of n meioses scored  for 
m loci on k different chromosomes. All simulations 
used pseudorandom  numbers  generated by the RAN 
(FORTRAN)  subroutine on a VAX8300 computer. 
These  data were either used directly as input  to  the 
linkage analysis program MAPMAKER (LANDER et al. 
1987), or were used to  count  the  number of recom- 
binants and nonrecombinants  for all locus pairs. The 
estimation of G by the various methods described 
earlier was then  performed. The integral in Equation 
6 was evaluated by numerical methods. Specifically, 
the Gauss-quadrature  method  (QDAG) as imple- 
mented in the IMSLIO (1987) program package was 
used after validation for accuracy. 

To simulate missing data or  the  data  that would 
usually be available by pooling the results of two 
different crosses, we first simulated a  large cross with 
2m markers and 2n meioses. Next,  the last m - p 
markers of the first n meioses and  the first m - p 
markers of the last n meioses were deleted. The 
average number of markers  studied (fi), the average 
number of meioses studied ( i i ) ,  and  the  proportion of 
missing data (a)  are: 

6 = (m + p ) / 2 ,  
i i  = n(m + m + p - l ) /m(2m - I), 
a = l - & ,  

as calculated in APPENDIX I. Thus, given values of m, 
n and p ,  a may be calculated. 

RESULTS 

Genome  length  estimates: Genome  length was es- 
timated by methods 1, 2 and 3 for 10 chromosomes 
each of length 1.2 Morgans. All experiments were 
replicated  20 times for sample sizes of 50 and 100 
meioses. The results are summarized in Figure la. 

In general, estimates derived by all methods con- 
verged  toward G (12 Morgans) as the  number of 
marker loci studied increascd for  a  particular sample 
size. The  average value of G over the 20 replications 
is presented below for 10, 20 and 40 markers, respec- 
tively. For  method  1  and n = 50, the mean of the 
estimates was 10.20, 11.17, and 12.96 Morgans; for 
n = 100, the mean  estimate was 10.82,  13.77 and 
12.14 Morgans. For  method 2, the mean was consist- 
ently an overestimate of G: for n = 50, the mean was 
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FIGURE 1.-Estimation  of genome length for (a) 10 chromosomes each of length 1.2 Morgans, and  (b) 1 chromosome of length 1.2 
Morgans,  as a function of the sample  size of meioses and number of markers studied. Each experiment was replicated 20  times. The G values 
are plotted with relative frequency indicated by the  area of the circle. The average value is indicated by a - mark; the true value is marked 
by a line across the  graph. The  four series of values are those corresponding to methods 1, 2, 3 and 4, respectively. 

15.94,  13.39 and  13.96 Morgans, and,  for n = 100, a  unique effect on the estimates from each method. 
the mean value was 2  1.03,  16.59 and 15.20 Morgans. For  method 1, 100 meioses provided  a  more  accurate 
Method  3 consistently provided mean estimates less estimate of G than  did  50 meioses. The overall best 
than those of method 2. Thus,  the mean value was mean estimate  obtained was 12.14 f 2.64  for 100 
9.20, 1  1.06  and  13.60  for n = 50, while for n = 100, meioses and  40 markers. An equal  number of markers 
the mean was 10.68,  14.52  and  14.45 Morgans. with 50 meioses yielded an estimate of 12.96 f 2.74. 

Increasing sample size from 50  to  100 meioses had  For  Method  2, estimates of genome  length became 
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worse as the sample size was increased.  For  method 
3, no consistent effect of increasing sample size was 
observed. 

Figure l a  demonstrates two specific features  of  the 
estimation  procedures.  First,  method  1  tends to un- 
derestimate G ,  but  the bias becomes negligible as the 
number of markers (m) and/or  the  number of meioses 
(n) increases. However,  method  2  overestimates G, 
and this bias remains when n and m are increased. 
Method  3 has some properties of method  1,  but also 
gives biased G values when n and m are increased. 
Second, there is considerable variability between the 
individual estimates of G among all methods, and 
qualitatively this variation decreases as n and m in- 
crease. 

G was also estimated  for  a single chromosome of 
length  1.2 Morgans for samples of 50  and  100 meioses 
by methods 1, 2, 3 and 4. Again, experiments were 
replicated  20 times. These results are shown in Figure 
lb.  For all methods, the mean estimate is presented 
for 5 ,  10  and  20 markers, respectively. 

Method 1  provided  a  reasonable  estimate of the 
single chromosome  length in all cases. For 50 meioses, 
the estimate became more  accurate as the  number of 
markers  increased, the mean  being 1.24,  1.23  and 
1.22 Morgans. For 100 meioses, the mean estimate 
dropped  from 1.22  Morgans to 1.07 Morgans  as the 
number  of  markers was increased from 5 to 10. The 
mean value was unchanged between 10  and 20 mark- 
ers,  but  the  standard  deviation of the estimates de- 
creased. 

Mean estimates derived by method  2  approached G 
as the  number of marker loci increased for 50 meioses. 
For 100 meioses, 10  markers  provided  a slightly better 
mean  estimate  than did either 5 or 20  markers. How- 
ever, Method  2  again consistently yielded an over- 
estimate. The mean was 1.65,  1.49  and  1.36  Morgans 
for n = 50 and was 1.67, 1.43 and 1.48  Morgans for 
n = 100. 

Once again,  method  3,  provided less inflated esti- 
mates than  method 2. Mean values were 1.13,  1.41 
and 1.33 Morgans for n = 50. For n = 100  the mean 
value was 1.36,  1.34 and 1.40 Morgans. 

For method  4, increasing the  number of marker 
loci increased the accuracy of the estimates for  both 
sample sizes. Additionally, increasing the sample size 
from 50 to  100 meioses generally  increased the accu- 
racy of the estimates. The mean estimate for n = 50 
was 1.37,  1.26  and 1.23 Morgans. For n = 100,  the 
mean  estimate was 1.28,  1.18 and  1.19 Morgans. 

When estimating the  length of an individual chro- 
mosome, method  4  performs  the best, as  expected. 
However, of  the  other methods, the maximum likeli- 
hood  estimator is the best,  particularly when 50 
meioses are  studied.  In  general,  methods 2 and 3 

TABLE 1 

Genome size estimates with missing data 

Proportion of 
missing data Method 

Genome  length 
estimate 

0.12 1 11.29 f 2.85 
0.12  2 26.91 f 4.53 
0.12  3 19.31 f 3.72 

0.19 1 13.46 f 3.42 
0.19 2 35.32 f 6.05 
0.19 3 23.75 f 4.47 

0.27 1 13.05 f 3.45 
0.27 2 37.96 f 8.48 
0.27 3 24.48 f 5.42 

Mean and  standard deviation of the estimates of genome  length 
for 10 chromosomes  each of length 1.2 Morgans. Each experiment 
was replicated 20 times. 

always  give overestimates, whereas at TZ = 100, method 
1 gives an underestimate. 

Missing  data: The original cross simulated for each 
of the missing data  experiments was composed of  2n 
= 100  marker loci and 2m = 40 meioses. We set the 
number of loci studied in common (2p)  to be 10, 6 or 
2 and subsequently  computed the average  number of 
meioses ( r i ) ,  the average  number of marker loci (Gz), 
and  the  proportion of missing data (a)  for  each.  For 
cy of 0.12, 0.19 and  0.27, ri was 38,  32  and  27, while 
Gz was 13,  12  and  11, respectively. 

Genome  length was estimated by methods  1,  2  and 
3. The mean of the estimates from  20  independent 
replications of each  experiment is shown in Table 1. 
As expected,  the estimates generally become less  ac- 
curate as the  proportion of  missing data was increased. 
Of  the  three  methods used, only method 1 provided 
a  reasonable  estimate in  all  cases,  with the mean 
ranging  from  11.29 to 13.46 Morgans. Methods 2 
and 3  provided gross overestimates in  all  cases,  with 
the mean  ranging  from  26.91  to  37.96 Morgans for 
method  2  and  from  19.31  to 24.48 Morgans for 
method 3. 

Variation in chromosome  lengths: One probable 
drawback of the maximum likelihood method and 
Equation  6 is the assumption of equal  chromosome 
lengths. When chromosome  lengths in a  genome  are 
variable, there  are two possible effects on  the estima- 
tion of G .  First, the probability of synteny is larger 
than Ilk  and this would alter  the  distribution of 0 
assumed in the analysis. This is because the probability 
of synteny is cy = 2 L?/G2 = (1 + &L2)/k where L 
and a: are  the average and variance of chromosome 
lengths, and L, is the genetic  length of the  ith (i = 1, 
. . . k) chromosome. The effect of this would be to 
reduce  the  proportion of unlinked loci among all locus 
pairs since most unlinked loci arise  from two different 
chromosomes.  Second, since some chromosomes will 
have  lengths smaller and some greater  than  the aver- 
age  length L,  these  chromosomes would decrease and 
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FIGURE 2.-A plot of In-likelihood of the Xzphophorus linkage 
data versus average genetic length per chromosome. The vertical 
lines delineate the 95% confidence limits. 

increase the  proportion of unlinked loci relative to 
the average. The exact  magnitude of these effects 
cannot be theoretically predicted,  and so we resorted 
to computer simulations. 

We considered  a  genome with k = 10 chromosomes 
of lengths 30,  50,  70,  90,  110,  130,  150,  170,  190 
and 2  10 cM. Such a  genome has a  total  length of 12 
Morgans and  an average  chromosome  length of 1.2 
Morgans, as before. We sampled 100 meioses and 
chose 20,40  and  80 markers. These  expyiments were 
replicated 20 times and we computed G by assuming 
equal  chromosome  lengths  for  method 1. As a com- 
parison,  method  2,  that  does  not  depend on such 
assumptions, was also used on  the same data. Our 
results show that  for  method  1,  the  estimated  genome 
length was 13.87 f 4.34,  12.64 k 1.65,  and  12.95 k 
1.52  for m = 20,  40 or 80 markers. These estimates 
for method 2 were 16.22 2 6.03,  15.05 f 1.81 and 
15.44 f 1.50, respectively. Comparisons of these val- 
ues to  the 6 values obtained when chromosomes of 
equal  length  were simulated ( m  = 20 and  40  markers 
only) show values of 13.77 f 4.90 ( m  = 20)  and  12.14 
& 2.64 ( m  = 40) under  method  1,  and  16.59 k 5.33 
( m  = 20)  and  15.20 k 2.67 ( m  = 40)  under  method 2. 
Therefore, increasing the  number of markers gives a 
more precise estimate of G, but  method  2 consistently 
provides overestimates. In conclusion, the maximum 
likelihood method  performs very well even with 40 
markers, and even if equal  chromosome  lengths are 
assumed. It is interesting to observe that  the G value 
was more  dependent  on  the estimation method  than 
on whether or not  chromosomes were of equal  length. 

Xiphophorus linkage data: Because the integrity 
and accuracy of method  1 was maintained when data 
were missing and when chromosome lengths were 
unequal, this method was used to  estimate  genome 
length  from  partial linkage data of Xzphophorus (MOR- 
IZOT et al. 1990). The Xzphophorus data consisted of 
76 protein and enzyme coding loci segregating in 87 

TABLE 2 

The degree of genome coverage 

mrioses markers Expected cover- 
No. No. 

(n) (m) age 2 s~ nm 

50 10 0.382 k 0.044  500 
20 0.6 15 f 0.056 
40 0.846 f 0.049 

100 10  0.490 f 0.064 k:gRl 1000 1 
20 0.734 f 0.068 2000 
40 0.923 f 0.044 4000 

Given n and m, and assuming k = 10 and L = 1.2, the expected 
value and standard deviation of the proportion of  genome  covered 
was calculated from BISHOP et al. (1983). 

crosses which produced  26  14  offspring. The number 
of polymorphic loci per cross varied from two to 4 1, 
but  averaged  more  than 20 loci per cross. The details 
of the loci studied  and  the crosses are given in MORI- 
ZOT et al. (1991). By using the maximum likelihood 
me_thod the average genoye length  per  chromosome 
is L = 0.76 +- 0.09. Thus, G = 18.25 f 2.21 Morgans 
since k = 24.  Figure  2 shows the plot of In-likelihood 
values versus L,  from which these values are calcu- 
lated. This  figure also  gives the  95% confidence limits 
on L as (0.63,  0.88) Morgans; the  95% confidence 
limits on G being (15.12,  21.12) Morgans. 

A second estimate of G was also obtained by method 
2 (HULBERT et al. 1988). There were a total of 1921 
pairwise locus tests; 61 of these comparisons with 
sample size 10 or  fewer meioses were  ignored. Of the 
remaining 1860 tests, 68 comparisons gave lod scores 
3 or  greater.  These data gave a  genome  length esti- 
mate of 31.88 Morgans, close to two times that ob- 
tained by the maximum likelihood method. This over- 
estimate is entirely consistent with the results of our 
computer simulations. 

DISCUSSION 

The previous results clearly demonstrate  that ge- 
nome  length can be  estimated by a variety of methods. 
When  linkage  data are complete the two basic meth- 
ods,  the maximum likelihood and  the method-of-mo- 
ments  estimators, can perform equally well. However, 
when the  data  are  not complete or when the  chro- 
mosome lengths are variable, the maximum likelihood 
method is superior  and  should  be  the  one used. It is 
instructive to consider the reliability of the estimate 
of G in relation to  the expected  proportion of the 
genome  covered or assayable by the linkage experi- 
ment. BISHOP et al. (1983)  provide  formulas  for com- 
puting  the  expected  proportion  and  the  standard  de- 
viation of the genome  covered  (the  total swept radius) 
given values of the  number of individuals ( n ) ,  the 
number of markers ( m ) ,  the  number of chromosomes 
( k )  and  the length per chromosome ( L ) .  For a single 
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chromosome of length 1.2 Morgans, the  proportion 
of the chromosome  covered by the markers consid- 
ered in our simulations is 0.946 or greater. The 
independence of individual linkage tests as implicit in 
both methods is thus violated, but  the effect is  less 
serious on  the maximum likelihood method  than  on 
the method-of-moments.  For  a  genome with k = 10 
chromosomes, the expected  proportion of coverage is 
shown in Table 2.  Comparison of these values with 
the 6 values in Figure 1 shows that  the genome  length 
estimate is not reliable unless m 2 20 when n = 50 or 
n = 100; that is when the coverage is 61.5% or  greater. 
Note  that when n = 50 and m = 20, 1000 genotypings 
are performed. When m = 10 and n = 100, an  equal 
number of genotypings are  performed,  but  the ge- 
nome  coverage is 49% vs. 61.5% and 6 is underesti- 
mated.  This  demonstrates  that,  for  a  fixed  number of 
genotypings, it is useful to study more  markers  rather 
than  more meioses to obtain an  accurate estimate of 
genome  length. 

A crucial assumption in both  the  methods consid- 
ered is the  mutual  independence between locus pairs. 
In  the  method of moments  estimator,  the swept radius 
from  overlapping locus pairs are not  independent  and 
are “double  counted.”  This effect is more  pronounced 
as  marker locus density increases and is an explanation 
for  the consistent overestimation of G .  In  the maxi- 
mum likelihood method we also assume that each 
pairwise term is independent.  This is also clearly false 
for overlapping loci but does  not seem to have a 
pronounced effect. The reason appears to be  that we 
consider all possible pairs, linked and unlinked, and 
that  for any two randomly picked locus pairs the 
correlation is expected to be small. As shown in Ap- 
pendix 11, this average  correlation is 2% or smaller. 
We believe this is the reason  for the efficiency of the 
maximum likelihood method. 

The maximum likelihood method, as implemented 
in this paper, is restricted to  no  interference  and 
backcross data.  However,  Equation 6 is easily modi- 
fied to include other types of linkage crosses, such as 
an intercross. Also, Equation 4 can be easily modified 
to include chiasma interference, such as with the 
Kosambi map  function. The effects of interference 
are, however, more difficult to study since there  are 
no models of chiasma interference  that are readily 
applicable to  computer simulation. The effect of in- 
terference can be  studied empirically once  a  complete 
linkage map of a  genome is available. 
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APPENDIX I 

Characteristics of a mixed cross: Consider two 
crosses each with n meioses and m + p loci but 2p loci 
studied in common as shown in Figure 3. Thus,  there 
are  three  groups of markers A, B ,  C with sample sizes 
n, 2n and n, respectively, and consisting of m - p ,  2p, 
and m - p markers, respectively. The average  number 
of markers  studied (m) ,  weighted by the sample size, 
is: 

rit = (2(m - p)n + 2p.  2n1/4n 

= (m + p ) / 2 .  
We calculate the average number  of meioses ( f i )  per 
locus pair by considering the various numbers of locus 
pairs and  their sample sizes using Table 3. Thus, 

LOCUS 1 2 ...... m-p m - p + l  ... ... m+p _..... ...... 2m 
Meiosis 

2 

n 

n+l 

n+2 

2n 

FIGURE 3.-A visual representation of the  characteristics  of  two 
independent  backcrosses with a  fraction  of  common loci. 



182 A. Chakravarti, L. K. Lasher and J. E. Reefer 

TABLE 3 TABLE 4 

The numbers of locus pairs and meioses from two independent 
backcrosses  with  a fraction of common loci 

Comparison 
No. locus 

pairs No. meioses 

- - n(m + P)(m + P - 1) 
m(2m - 1 )  

In comparison to a single equivalent cross the  propor- 
tion of missing data is calculated as 

f f = l - & & .  

On the  other hand if a is fixed,  then p may be 
calculated by inverting the above  equation: 

p = { d l  + 4P2m(2m - 1 )  - (2m - 1) / 2  I- 
= ~ J m ( 2 m  - 1 )  - m 

when m is large and where P = 1 - a. Thus,  for fixed 
values of a, m and n ,  p may be calculated. This is 
helpful for simulating crosses  with a  predetermined 
proportion of  missing data. 

APPENDIX I1 

Correlation  between locus pairs: Consider the 
three  ordered loci ABC studied in a backcross experi- 
ment with known linkage phase and interlocus  recom- 
bination values of and 02, respectively. The ex- 
pected  frequencies of the  four classes of progeny are 
provided in Table 4. Consider now the locus pairs AB 
and AC which overlap in the A - B segment.  Let R1 
and R1+ 2 be  random variables denoting  the  number 
of recombinants between A and B, and, A and C, 
respectively. Then, R1 = a + b and  R1 + 2 = b + c, and, 

Probabilities of recombinant classes from  a 3-point backcross 

Class 
Observed 

Probability No. 

Double recombinant & = B I O n  a 
Recombinant A-B 6 = 01(1-e2) b 
Recombinant B-C 5 = ( 1  -&)O? C 

Nonrecombinant 5 = (l-O,)(I-Od d 
Total 1 n 

E(R1) = n6'1 

E(RI + z )  = no1 + 2  

V(R1) = n6'1(1 - 0,) 

V(RI + z )  = n6'1 + 2 ( 1  - 6'1 + 2 )  

where 6'1 + 2 = O1 + 6'2 - 2d102 assuming no chiasma 
interference; E and V are the  expectation and vari- 
ance, respectively. Then, 

Cov(R1, R1+2) = COV(U, b)  + COV(U, C) 

+ COV(b, c) + V(b)  

= n6'1(1 - B2 - + 2 )  

= n6'1(1 - el)( 1 - 26 '2 ) .  

If ~ ( 6 ' 1 ,  6'1 + 2) denotes  the  correlation between R 1  and 
RI + 2, then, 

Note  that if 6'2 = 0 then p = 1; if O2 = then p = 0, as 
expected. Finally, if 6'1 = 82 = 8 then, 

( 1  - 2 q 2  
p2(6') = 2[  1 - 28(1 - 6')J' 

The correlation p decreases as 8 increases, as expected, 
and takes the maximum value of l / &  = 0.71 as 8 -+ 
0. 

Consider now a linkage experiment with m markers 
on k chromosomes, with m/k markers per chromosome 
on average. There  are M = m(m - 1) /2  pairwise locus 
comparisons overall, of which correlations can exist 
among only a subset of pairwise comparisons that arise 
from  a  chromosome. Since there  are M terms in the 
In-likelihood in Equation 6 there  are a total of M ( M  
- 1) /2  correlations,  considering all  locus pairs. Fur- 
thermore, with m/k loci per chromosome, there  are P 
= m(m/k - 1)/2k terms per chromosome in Equation 
6 .  Consequently,  for all k chromosomes  a maximum 
of KP(P - 1) /2  correlations can exist. Thus, at high 
marker density (6' + 0), an  upper  bound  to  the maxi- 
mum correlation is, 

kP(P  - 1) /2  
Pmax M ( M  - 1 )  . 

When k = 10 and m = 40, M = 780 and P = 6 and 
d 2.5 X lop4 so that pmax < 0 .016 .  


